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Varieties of instability of a boson field in an external potential
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A relativistic scalar field is quantized in a one-dimensional "box" comprising two broad electrostatic potential

wells. As the potential difference increases, the phenomena found long ago by Schiff, Snyder, and Weinberg in

such a model occur: merging of mode frequencies and disappearance of the vacuum as a discrete state,

followed by appearance of complex frequencies and unboundedness below of the total energy. However, a new

effect appears for some values of the potential: The discrete vacuum (with the associated particle

interpretation) reappears, but the energy remains unbounded below because some negative-norm modes have

greater frequencies than some positive-norm modes. That is, a particle-antiparticle pair can have energy less

than that of empty space. As the outer walls of the box approach infinity, this situation goes over into the

boson Klein "paradox, " marked by nonuniqueness of the vacuum (spontaneous breaking of time-reversal

symmetry) and coexistence of positive- and negative-norm continuum modes at the same frequency. These

phenomena are of interest in connection with current work on pair creation in external gravitational fields,

especially black holes.

This paper has three purposes: (1) to report a
curious and unexpected property of the eigensolu-
tions of the Klein-Gordon equation in a deep poten-
tial well, (2) to clarify the relationship between the
Klein paradox' and the effect discovered by Schiff,
Snyder, and Weinberg' (SSW), and (2) to draw to
the attention of both general relativists and field
theorists the close connection between the present
intense activity concerning "particle creation by
black holes" and the existing lore concerning strong
electrostatic potentials in quantum field theory.

The Klein-Gordon equation with a time-indepen-
dent external electrostatic potential reduces, after
separation of the time variable, to the equation

[(u~ —eA, (x)]'y, (x) = ( V'+m')g~(x) (1)

for normal modes Q,. with time dependence e '"~'.
(We set S= c = 1.) Ordinarily in the corresponding
quantum field theory the sign of the "norm"

c,.=i dx,*. e,+i', &- g, +ieA„

(2)
determines whether a normalizable solution P,.
represents a particle (+) or an antiparticle (-). If
the potential differences of the problem exceed the
threshold for yair creation, ~e&A, &2m, then the
behavior of the solutions generally makes ordinary
second quantization inapplicable. The simplest
example is a step-function potential in one spatial
dimension,

eAO= —V for —L &x&0,

eAO=O for 0& x& L, ,
where V is constant. This model already exhibits
a variety of phenomena.

If L, =I. = ~, the boson version of the Klein
"paradox" arises. An unambiguous separation of
the Q& into particle modes and antiparticle modes
becomes impossible, because solutions of the two

types are degenerate at the same frequency ~ and

hence admit Bogolubov transformations mixing
annihilation operators with creation operators.
Among the infinitude of rival "vacuum" states
therefore associated with inequivalent choices of
basis modes are some states for which one cal-
culates fluxes of energy and charge outward from
the potential jump. Although this accords entirely
with the usual interpretation that pairs are created
and ejected by the potential step, there is nothing
in the field theory preventing one from considering
a state with purely inward fluxes or with no net
flux. (The justification for choosing purely out-
ward fluxes is evidently a statistical one, having
to do with the plausibility of various initial condi-
tions. ) The situation may be described as spon-
taneous breakdown of time-reversal symmetry.
The Klein effect has excited renewed interest since
generalizations of it were discovered in quantum
field theories set in the intense gravitational po-
tentials near black holes. '

A formally different, but presumably physically
related, effect was discovered by SSW (Ref. 2) in
the case that either or both of I, are finite and the
field is required to vanish at that boundary. They
found that as the strength of the potential V in-
creases, bound particle and antiparticle modes
"annihilate" each other in pairs and pairs of nor-
malizable solutions with complex frequencies ap-
pear. Let us review how this situation comes
about.

The real frequencies in the SSW model as func-
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tions of V are graphed schematically in Fig. 1.
The qualitative behavior of an eigenfunction in the
spatial regions x& 0 and x& 0 is determined by the
relation of the corresponding frequency to the val-
ues +rn and +rn —V, respectively. Thus, solu-
tions corresponding to points in the part of Fig. 1
labeled "bound from right" are oscillatory in the
left region (x& 0) but exponentially decaying on the
right. The reverse is true of solutions "bound
from the left. " "Free" and "Klein" solutions are
oscillatory everywhere.

At V=O the spectrum of ~ is, of course, that of
a free boson field quantized in a finite box. As L,
increases, the spacing between the frequency lev-
els decreases, resulting in a continuous spectrum
when L, = ~. The particle frequencies remain sep-
arated from the antiparticle frequencies, however,
by a mass gap of width 2m.

As the potential is turned on, the mode frequen-
cies change. In yarticular, "bound states" grow
out of the particle continuum into the mass gay.
At the point labeled A. the frequency co of the low-
est-lying particle mode becomes negative. In
second quantization this means that a particle can
exist with negative energy (relative to the vacuum
state); infact, since arbitrarily many particles can
be present in that mode, the total energy operator
of the second-quantized theory is not bounded be-
low. No catastrophic instability of the system
thereby results, however, since the absolute law
of charge conservation prevents the vacuum from
decaying into such a state, even under the influ-
ence of any physically permissible external per-
turbation. In fact, the negativity of the energy can
be removed simyly by a gauge transformation
which adds a constant to all the frequencies in the
theory. To put it another way, charge conservation
aQows the energy observable to be redefined by

the addition of a term proportional to the total
charge, because the energy difference between two
states of different charge of a closed system can-
not be measured. (The redefinition must be applied
consistently to all charged fields, including any
external perturbing field whose quanta might carry
charge away from the subsystem of original in-
terest. )

At the point 8 one of the antiparticle modes moves
into the region of Fig. 1 containing wave functions
bound into the left potential well. This phenomenon
may appear paradoxical, since one would expect a
yarticle of charge —e to be repelled, not attracted,
by the negative potential. Klein and Rafelski4 have
pointed out the physical explanation of this effect.
For such a mode the oscillatory yart of the wave
function inside the well makes a positive contribu-
tion e to the norm (2), but the exponential part on
the right-hand side contributes a negative term,
e„with ~e, &e, so that the total norm, e, is neg-
ative —corresponding to an antiparticle mode.
However, the energy of a state contains a term
proportional to J dx ep A„where the charge den-
sity p(x), for a one-particle state, is just the in-
tegrand of Eq. (2). In the present case, with the
chosen gauge, only the part of the function inside
the yotential well contributes to this integral; the
result is —E V, which is negative. This term
makes the total energy of the antiparticle less than
m (i.e. , ~ & —m), so that such an antiparticle bound
state really can exist. In other words, the charge
density of the state is Polarized by the potential,
so that the total charge is negative, but the charge
density near the yotential is yositive and hence
contributes a negative (expectation value of) binding
energy. The modes in the Klein region, with free-
particle-like wave functions of opposite charge
inside and outside the well, may be regarded as
extreme instances of this polarization. (It should
be understood that an extended charge structure
is being attributed here not to the yarticle itself,
but only to its wave function. )

The really significant effects begin at the value
V, of V corresponding to the point labeled C in
Fig. 1. There the bound-antiyarticle mode appears
to coalesce with the lowest bound-particle mode.
The grayhs of the two frequencies as functions of
V form a single smooth curve with a vertical tan-
gent at C, corresponding to a frequency v, . At
that point there is only one solution of Eq. (1) sat-
isfying the boundary conditions, and its norm is
e = 0. [The missing eigenfunction survives as a
solution of an inhomogeneous form of Eq. (I)—see
Refs. 5 and 6.] Let us call this situation a siqgu-
lax mode. As V increases beyond V, there are
eigenfunctions corresponding to a corijugate yair
of comylex v's, which grow out from v, into the
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FIG. 2. Frequency levels for m= 1 and L+ =L

complex plane. Qualitatively similar behavior is
observed at larger V for successive higher-lying
pairs of particle and antiparticle modes.

Schroer and Swieca' have shown that singular
and complex-frequency modes can be quantized,
although not in the usual way. The Hilbert space
of the quantized field theory does not contain a dis-
crete vacuum (ground state). In addition, when
complex frequencies are present, the total energy
of the field is not bounded below; the states of such
a theory would be unstable against perturbations
(e.g. , coupling to other fields which exist in na-
ture). Despite the formal completeness of this
quantization procedure, it has been objected that
the resulting theory is yhysically irrelevant be-
cause its predictions would be yrofoundly changed
if the dynamics of the electromagnetic field itself
were considered or if other interactions" were
included. The same opinion exists about the Klein
paradox. ' Nevertheless, the study of unstable li-
near systems seems worth pursuing, both because
of the light that may be cast on related nonlinear
problems and because of their intrinsic intellectual
interest. [Making the quantum theory of such sys-
tems rigorous is an unsolved mathematical yrob-
lem, because of the lack of a spectral theorem for
Eq. (1) except under conditions which prevent the
effects in question from occurring. ]

This yaper reports a reinvestigation of the SSW
model (3) with a modern computer. SSW interpre-
ted x as the radial coordinate of a spherically sym. -
metric problem, with —L marking the center;
they therefore studied only L, = ~ or J-, » L and
reported results of the type shown in Fig. 1. In
the present work the case L, =L„has been treated,
in the hope of elucidating the connection between
the SSW effect and the Klein paradox or its black-
hole analogs. (Because of the central singularity,
the radial coordinate of a black hole is best re-

garded as extending to —~ as the hole is approached. )
The calculation of the normal modes and the de-

termination of the signs of their norms [Eq. (2)]
were done essentially as described in Ref. 2; in-
formation was also obtained from a useful equa-
tion givenby Klein and Rafelski [Ref. 4, Eq. (2.17)].
Details are given in Ref. 6. The results are pre-
sented in Figs. 2 and 3. In contrast with the case
studied by SSW (Fig. 1), the turnaround of the fre-
quency curves occurs not in the region of "bound
states, "but rather in the "Klein region" (m —V
&m & —m), where the Pz(x) act like particle modes
at x&0 and like antiparticle modes at x&0. This
is no surprise, since symmetry imylies that the
quantities &u (related to the wavelength of the os-
cillations of P,. at x& 0) and &u+ V (related to the
wavelength at x & 0) must play parallel roles in this
case.

What is surprising is that each of the curves (ex-
cept the first) has more than one point of vertical
tangency. Whenever one of these "wiggles" is
convex toward the left, it must mark the disaP-'
peazanee of a pair of complex frequencies. This
behavior is sketched in Fig. 3, an enlarged plot of
the Klein region of Fig. 2, with eA, redefined from
Eq. (3) by the addition of a constant, —,

' V. This
trivial gauge transformation increases every fre-
quency co by & V, but leaves the physics unchanged;
its purpose is to show the symmetry of this system
under charge conjugation.

It turns out (from the Klein-Rafelski equation or
by direct numerical calculation) that near a point
of vertical tangency the slope of the curve of fre-
quencies v&(V) has the opposite sign from the norm
&& of the corresponding solutions. Therefore, im-
mediately beyond the point V at which a pair of
complex frequencies disappears, there exists a
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FIG. 3. Enlargement of the Klein region of Fig. 2 in a
charge-symmetric gauge. The dashed lines qualitatively
represent extensions of the curves into the complex ~
plane.
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negative-norm solution with a frequency higher
than that of some positive-norm solution. [For
example, in Fig. 3 one can see at V=2.6, starting
at the top, two positive solutions, then a negative
one (+=0.1), apositive one (&o= —0.1), and two
negative ones. ] Since the frequencies are real,
these modes can be quantized in the usual way.
(Indeed, if there are no other complex frequencies
or singular modesatthatvalue of V, then the field
theory has a discrete vacuum state, even though
the contrary was true for smaller V.) On the oth-
er hand, in a state with a definite number of par-
ticles N& in a mode Q, , the contribution of that
mode to the total energy is sign(e&) &u&N& It fol-.
lows that when a positive-norm and a negative-
norm mode appear in the abnormal frequency or-
der, the energy spectrum of the quantized field
theory is not bounded below, since each pair of
such quanta makes a (gauge-independent) contri-
bution equal to the difference of the frequencies.

This phenomenon of negative- energy particle-
antiparticle pairs must be added to the catalog of
"catastrophes" which may befall a boson field in
an external potential; the others are the Klein
paradox, complex frequencies, and the singular
behavior at a point of vertical tangency in an ~&(V)
graph.

A model with L, = 10 L has also been computed.

Here the first few frequencies behave as in Fig. 1,
but at higher frequencies, belonging to functions
with about 10 nodes, behavior like that in Fig. 3 is
detected (see Fig. 4, where positive and negative
solutions appear in the abnormal order near
V= 30.97, for instance). The conclusion is that
the disappearance of complex frequencies and the
existence of negative-energy pairs would be found
also in the original SSW model with L «L. (but
L, t ~), if one looked at large enough quantum
numbers.

In retrospect, the nature of Fig. 3 might hpve
been predicted from a knowledge of the Klein par-
adox. In that case there are nobounded solutions of
complex frequency, but for every ~ in the Klein
interval (1 —V«u &- 1) there are both a positive-
norm solution and a negative-norm solution (not
normalizable, but bounded). With effort one can
envision this as a limiting case of Fig. 3 as
L =L,-~, with the curves becoming closer to-
gether and acquiring more wiggles until they fill
the entire diagram. It clearly is not a limit of the
original SSW picture (Fig. 1), where the particle
and antiparticle modes are separated by a hori-
zontal curve (In f.act, resolving that discrepancy
was a major motivation of this research. )

A detailed account of this work, including an
exposition of the quantization of abnormal modes
and a review of the relevance of boson instabilities
to black-hole physics, is available from the au-
thor. '

Note added in proof. The relationship between
the SSW and Klein effects has been clarified fur-
ther by B. M. Wald (unpublished). He attributes
the exponential growth of the complex-frequency
modes of the field in the SSW situation to stimu-
lated emission by each side of the potential well
under the influence of the Klein emission from the
other side. As D. W. Sciama (unpublished) has
remarked, this means that a deep potential well
acts as a laser.
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