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%e consider Regge and scaling behavior in electroproduction employing the Deser-Gilbert-Sudarshan

representation. Under a certain analyticity assumption we connect the limits q'~ —oo and q'~0 of the

integral of the proton structure function W,(v, q') over positive v and, as a consequence, obtain a sum rule on

the scaling function F,(co). This sum rule appears to be in reasonable agreement with experiment.

I. INTRODUCTION

The use of causality to derive certain sum rules
on the invariant functions arising in the decomposi-
tion of matrix elements of current commutators
was introduced and discussed by Schroer and
Stichel, ' Meyer and Suura, ' and Gervais. '

Causality sum rules involving Bjorken scaling
functions in electroproduction were derived by
Leutwyler and Stern. 4 Under the assumption of

5
scaling, these are equivalent to those of Meyer
and Suura. ' The extension of the work of Meyer
and Suura to the nonforward case and a thorough
investigation of the role of causality in sum rules
originally attributed to current algebra or light-
cone commutators of the quark model were re-
cently undertaken. "

The convergence of the fixed-mass limit of the
causality sum rules was discussed by Leutwyler
and Otterson. ' Their idea of causal Regge sub-
tractions could also be used to derive convergent
fixed-mass sum rules from current algebra. ' For
this purpose it is possible to use causal Regge
forms introduced by Brandt' in a causal Regge ex-
pansion of a structure function in electroproduction.

The causal Regge expansion was used by Brandt
and Ng" in an attempt to derive a sum rule on the
electroproduction scaling function F,(ur). This
derivation was subsequently criticized by several
authors" "; the point was that a certain term in
the causal Regge expansion of the structure
function W, (v, q') was missing in the form assumed
by Brandt and Ng. However, there is a definite
restriction on the causal spectral function a(a, b)
in the DGS " representation of W, (v, q') which
arises on imposing scaling, namely'

l e(a, b)da =0
0

and which may be further specialized on using the
Regge expansion of 0(a, b). It thus appears plaus-
ible that under certain conditions a corresponding
restriction on W, (v, q') may exist. It is our pur-
pose in this paper to investigate this possibility.

We find that use of the causal Regge form to-
gether with the scaling condition (1.1) and a certain
analyticity assumption give the equation

2 W, (v, q')dv=n —q', dx,
0 0

(1.2)

where W, (v, q') is the proton structure function

W, (v, q') minus its causal Pomeron contribution,
a is an arbitrary constant, and q(x) is a function
such that rl(x) =0 for x ~ 0, lim „„xq(x)=0, and

q(x)dx = 0.
0

These equations then imply our basic result:

Eco —EO =1
0

(1.5)

for the proton electroproduction scaling function
F(&u). To specialize (1.4) to (1.5) we have used a def i-
nite form for the causal Pomeron contribution. '
However, the sum rule (1.5) completely exhausts
the content of the result (1.4).

It will be evident from our proof of the result
(1.4) that its validity is not dependent on the
specific Regge expansion introduced in Sec. II
[Eq. (2.2)], but in this respect essentially only re-
quires that v(a, 0) is finite. This is a mild re
quirement for Regge behavior. Much more
stringent conditions on a(a, b), near b=0, must in
fact be placed to ensure Regge asymptotics. "

The specific analyticity assumption we make is
that the contribution of a(a, 0) to W, (v, q') has at
most a 5 singularity at v = ——,'q', since this is the
singularity of W, (v, q') at this point. A list of all
the conditions we have used in obtaining the sum
rule (1.5) is given at the beginning of the discus-
sion in Sec. V. In this section we also give re-
marks on the neutron case and compare the sum
rule (1.5) to similar results from the quark model.

The main work of the paper is done in Secs. II

lim W(v, q')dv= lim W(v, q')dv. (1.4)
Q

oo 02 Q2 p p

From this result follows the sum rule
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and III. Section II introduces the conditions of
Regge behavior and scaling on the causal repre-
sentation and leads to the singularity in o(a, 0}
at a = 0. Further considerations on this singu-
larity in Sec. III yield the sum rule (1.5).

An experimental estimate of the left-hand side
of (1.5) is attempted in Sec. IV. It is found to be
in reasonable agreement with the data, preferring
a value of F,(0) around 0.06.

we now note that the necessary condition for the
scaling of vW, is in fact more stringent than (2.4).
It is given by

V

1im v o(a, b)da = 0 .
P~ 00 0

(2 7)

Condition (2.4) is then a consequence of (2.7). For
the terms c;(a) in the Regge expansion, condition
(2.7) gives

II. CASUALITY, SCALING, AND REGGE BEHAVIOR
lim v dav(a) =0, i=PO 1, . . . .
P~ Qo 0

(2.8)

Causality implies that the structure function

W, (v, q') in electroproduction satisfies the DGS"
representation

Defining W, (v, q') to be IV,(v, q') minus its causal
Pomeron part, in (2.2) given by the first term,
one obtains from (2.1), (2.2), and (2.4) the equa-
tion"

Wj, q'j= —q'f d db t, b) 1q-)b))) f W, (v, q')dv=-,'q' daco(a)ln(a-q').
0 0

(2.9)

bx(q' 2+bv —a)c(v+b).

(2.1)

It was noted by Brandt' that the behavior of the
spectral function c(a, b) near b=0 determines the
Regge behavior of the structure function

W, (v, q'). An expansion of o(a, b), near b=0, con-
sistent with Regge behavior for W, (v, q') is

o(a, b) = op(a)ln(b (+o,(a)+c,(a)(b (' '+. ~

(2.2)
It is the term o,(a) which is missing from the
analysis of Brandt and Ng. "

For v &0 and q'&0, the representation (2.1) may
be written in the form

W2(v, q') = — dav a,

(2.3)

It is this equation which we shall use as the basis
for the derivation of our main result. We show in
the Appendix that, with the Pomeron given by (2.2),

lim W, (v, q')dv=Gs (0),
q 2~0 0

(2.10)

so that it vanishes for the neutron and equals unity
for the proton case which is under consideration.
From this, one concludes that, for the proton, the
term o,(a} cannot vanish identically, since in this
case

o,(a)ln(a- q')da- —,, as q'- -0.
0

(2.1 I)

This equation shows, in fact, that the function v, (a)
must be singular at a =0.

Before we leave this section we remark that from
the representation (2.1) and the scaling condition
(2.4) one also obtains the equation

It follows that scaling of vS', implies that

l dao(a) b) =0
0

l.e. )

(2.4)

" W, (v, -2(v-q)
d

2(v +q

da o(a, $)ln(a+ q), $ &0, q ==- E' (2.12)
0

r dav;(a) =0, i = P, 0, 1, . . . .
0

(2 5)

From (2.3) and (2.4) one finds that the scaling
function F2((d) is given by"

a relation that fails to hold for $ = 0, giving way to
the Pomeron-subtracted relation (2.9) at fixed
mass. We also note that from (2.12) follows the
causality sum rule

F2((d) = 2(u(9(1 —u)) da av'(a, (d
0

"W (v -2 (v-q}2 ) dv=0
2 )v +'g

(2.13)

—,'-5(1-cu) daac(a, 1), &u &0 (2.6)

where o'(a, b) =(ao/eb)(a, b).
On closer inspection of the representation (2.3)

of Leutwyler and Stern. '
In the next section we use scaling and a plausible

assumption on the zero-mass singularity in v0(a)
to obtain the result (1.4).
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III. SUM RULE

When the scaling conditions (2.8) are satisfied,
the expansion (2.2) generates from the representa-
tion (2.1) a series for W, (v, q') such that each
term is causal and scales. In particular the con-
tribution of o, (a) to vW, scales. If we define a
function P(x) by

lim S'2 v, q' dv=lim W2 v, q2 v.
q2~~ do 0 q2~0 0

(3 9)

We now observe that the limit of the right-hand
side of this equation as q'-0 exists and is given
by —,'a since )1(0)=0. The limit as q'--~ also ex-
ists and is again given by ,'a —since (3.7) holds.
We are thus led to the general sum rule

dt ) = f d.( )«. (3 1)
An alternative proof of this result follows. By

direct integration of Eq. (2.6) one has

and (C)(x) = 0 for x & 0, we find that the contribution
of o,(a) to vW, is --,'q'g(2v+q'), when q'=0 and
v&0. From Eq. (2.6) this scales to —,'a5(1-&v)
where

F,( (v) =-,a,dip

where a is given by (3.2), since co(a) =o(a, 0).
Define q'(x) by Eq. (3.6). Then

(3.10)

ao, (a)da.

We now define a function )I(x) by

g(x) =a5(x)+q(x) .

(3.2)

(3 3)

,(d)dd=dt)t*) f d (d)d'
0 0

and the scaling property gives

Then g(x) = 0 for x & 0 and the scaling of g, xg(Ax)
-a5(1(.) gives

limxf(ax) =0, va,
X ~o

11m x)I(1(.x) = 0,
X~ d)o

(3.4)
where f (x) = )I'(a)da.

0

where A. is arbitrary (including A. =0).
Now the structure function W, (v, q') has only a

5(q'+ 2v) singularity at v= ——,'q'. We shall assume
that the contribution of c,(a) to W, (v, q'),
—q'/2vg(2v+q'), does not possess a worse singu-
larity at v = --,'q'. Thus r)(x) can have at most a
5(x) singularity at x=0. The scaling condition
(3.4) then implies that, under such conditions,
q(x) is in fact finite at x = 0 and that

q(0) =0 and Iimxrl(x) =0.
X~ (mo

Equation (3.3) then gives

o,(x) =a 5'(x) + )I'(x).

(3.5)

(3 6)

q(x)dx = 0,
0

for integration by parts gives

(3 'I)

xo, (x)dx+ a "x5'(x)dx
0 0

Substituting for o,(a}from (3.6) into (2.9) we
obtRln Rfter Rn integration by parts Rnd use of
(3.5),

W, (v, q )dv = ~a- —,q dx.f t ) 2 q(x)
0 x (3.8)

Further, from (3.2)„(3.5), and (3.6) one deduces
that

Assuming tha, t the contribution of cd to W,
'

has at
most a 5 singularity at v = --,'q', f(x) mustbefinite
at x=0 and f(0)=0. We may therefore take ri(0)=0
to complete the definition of )I(x). Equations (3.5)
and (3.6) then hold and (3.8) follows. From (3.8)
one has

lim v(W, —W, ) =0.
Pw ()0

(3.12)

We now specialize the sum rule (3.9) by taking

—,'at = lim 8'2 v, q2 dv,
@2~0 0

which, with (3.10), completes the proof.
Before we proceed to discuss the consequences

of the sum rule (3.9), it is important to point out
here that its validity is not dependent on the special
form of the causal Regge expansion (2.2). In this
respect we only require that o(a, 0) be finite. It
is then possible to write%2 in the form

W =Ho)+W&" (3.11)

where WP~is the contribution of c(a, 0}such that
both W,"and W", separately scale. Equation (3.11)
then completely replaces the expansion (2.2) for
the purpose of the derivation of the sum rule (3.9).
It is of course also implied that the subtracted
causal Pomeron contribution, 8'„already scales
since W2 does. However, the Pomeron term need
not have the specific form given in (2.2), and the
result (3.9) holds with any scaling causal Pomeron
function subtracted from 8', i.e., any causal
function W~ (v, q') such that vW, scales and
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for the Pomeron the particular form given in (2.2) authors we write

c~(a, b) =up(a)ln[b ~. (3.13)
/

F,((u) =n, +n, (d"'+n, (d'/', 0 &(u&(d, (4.3)

It is shown in the Appendix that, in this case, Eq.
(2.10) holds. The sum rule (3.9) then reads

where &@0&0.1, and obtain

F2N GE20 =1,
0

(3.14)

where F, ((d) =E,((())—F2((d). But F,((d) may be ex-
plicitly obtained, for this case, from (2.6) and

(3.13). One finds

&.'( )=le()- )f & ( ),
0

I

F,((a) + 2(u, ) /'(n, + 3 (d,n, )
(d

0

—o.,ln(do '. (4.4)

l, e. y

F~~((d) = F,(0)0(1-(d), (d & 0 (3.15)

The authors of Ref. 17 estimate the parameters
a; in four different fits to the data giving

Fit
since F(&u)-0 as (d-0. We thus finally obtain from
(3.9) the sum rule

(3.16)

I 0.12 0.462 4.02
II 0.06 0.618 4.64
rrr 0.05 0.645 4.75
g7 0.07 0.663 3.67.

(4 5)

for the proton electroproduction structure function.
In the next section we give an experimental esti-

mate of the left-hand side in (3.16). A complete
set of the conditions required for its validity and
some remarks on the neutron case are given in
Sec. V.

IV. EXPERIMENTAL ESTIMATE

Fi(~) ~n ~-)/2y. . . (4.2)

so that F,'((())-~ as (()-0. Thus unless n, = 0, the
apparent constancy of F2(u&) for 0&(d & 0.1 is mis-
leading and the approximate constant value in this
range should not be taken as F,(0).

The approach of Close and Qunion" accords to
this point of view. We shall therefore use their
fits to the data in the small-(d region, particularly
since their parameters appear to be in agreement
with more recent estimates. " Following these

Experimental estimates of integrals of the type
appearing in the sum rule (1.5), from the cur-
rently available data, have proved to be rather
difficult, due to uncertainties in the small u be-
havior. In particula, r the estimate of the integral
in the present sum rule is very much dependent
on the value of F,(0) The data. for vW, show some
apparent apprximate constancy for 0& (d & 0.1
around the value 0.3. This is taken by some
authors as the experimental value of F,(0). How-

ever, one notes that the asymptotic expression

F2((())-n) +n, (d' '+ ~ ~ ~, for small (() (4.1)

implies that

A recent experimental determination" gives

~

~

0 ~ 8 d(d
F, ((()) =0.81,

0.04
(4.6)

with an estimated systematic error of 5%. Since
F,((d) = 0 for 0.8& s& & 1, we shall take this to esti-
mate the first term on the right-hand side of Eq.
(4.4) for (d, =0.04. The other two terms may then
be calculated for the four fits of Ref. 17 from
(4.5), yielding

F, (u)) =0.81+g(n, +,n, ) —2n, ln5
6(d

(d

=0.63, 0.89, 0.93, 0.87, (4.7)

1 d(g)
[F,((u) —0.285] — =0.02,

~

~ ~

0 o04 (d

giving

l 1

F2((d )—=0.94.
o.o4

(4.8)

(4.9 )

If we use this expression in (4.4), in place of (4.6),
we obtain

P(())—=0.76, 1.02, 1.06, 1.00,~ ~ ~ ~

1 — d(d

0 (d
(4.10)

for the fits I-IV, respectively. The sum rule (1.5)
thus appears to be in reasonable agreement with
experiment, preferring a value of F,(0) around
0.06. This is in line with the value F,(0)=0.07 ob-
tained f rom the generalized vector-dominance
model. " Kirn and Rodenberg" also obtain a, =0.55.

Brandt and Ng" estimate the same integral using
F,(0) =0.285, and obtain 0.02 for its value. But
with F,(0) = 0.285, F2((() ) =0 for 0 «() & 0.04 so that
their estimate may be read in the form
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from the four fits of Ref. 17, improving the agree-
ment with experiment.

V. DISCUSSION

1. We start by reviewing the conditions under
which we have obtained the sum rule (1.5). These
are the following:

(a) causality, which gives the representation
(2.1);

(b) regge behavior, which requires that

o,(a) =limo(a, 5}
5~0

exists;
(c) scaling, which yields the condition (2.7) and

also requires that the integrals on the right-hand
side of (2.6) exist;

(d) analyticity, which shows that c(x, 0) and g(x)
are singular at x=0;

(e) an assumption on the singularity of the term
—(q'/2v)g(2v+ q') in W, (v, q') at v = --,'q', namely it
is a 6-singularity, since this is the singularity of
W, (v, q') at this point.

2. Our consideration of the singularity structure
of P(x) at x =0 was important for obtaining the sum
rule (1.5). In the neutron case this singularity is
nonexistent and one cannot therefore link g(x) at
x = 0 to W, (v, q') at v = ——,q'. To see that g(x) is non-
singular at x = 0 in the neutron case consider Eq.
(2.9), as q'-0. Then

(1.4}. Further, on the basis of Regge behavior,
the left- hand side is diver gent.

(ii) The sum rule (5.2) also follows from the
naive relativistic quark-parton model, " together
with

(5.3)

[F,(~) —F .(~)]
0 (d

(5.4)

l ' IF,"(~)-F .(~)l
0

(5.5)

where the sea contribution describes the diffrac-
tion or Pomeron part, so that

for the neutron. The left-hand side of (5.3) is
again divergent, and the sum rule is in fact not
satisfied at q' =0. However, one should note that
the quark parton model is generally restricted to
the deep-inelastic region, so that (5.2) and (5.3)
should really be read for scaling functions. As
such the quark parton model is not suitable for
checking the result (1.4), of which the sum rule
(1.5) is a direct consequence.

(iii) The general quark-parton model" yields
neither of the sum rules (5.2), (5.3). However,
the "valence+ sea"' specialization of the general
model gives in place of (5.2) and (5.3), re-

spectivelyly,

lim —, W2 v, q' v—= lim o, a ln a-q' a
0 @2~0 0 F .(cu}-F(0)2as +-0. (5 6)

(5.1)

exists, so that xo,(x)lnx-0 as x-0 and g(x), de-
fined by (3.1), cannot be singular at x =0. In fact
$(0) = 0 and g(x) does not contribute to the elastic
term in W, (v, q').

Qne may artificially add to 8'2(v, q') in this case
a well-defined term putting in such a singularity
by hand, make the assumption (d) about it, and
subtract the new term at the end, obtaining a sum
rule similar to (1.5), for F,'"(&u), with the right-
hand side equal to zero. However, it is clear that
this sum rule is much less compelling than (1.5)
and the basis for its validity is rather weak. Such
a sum rule would imply F,(0) w0. "

3. Sum rules similar to (1.5) have been obtained
in various forms from some versions of the quark
model.

(i) The Gottfried sum rule, "obtained from the
naive nonrelativistic quark model, reads

Equation (5.4), by itself, does not restrict F,(w)
since F,(u) is unspecified. However, it is con-
vergent and when combined with the sum rule (1.5)
gives

(F..(~) -F,(0)j „=0 (5.7)

G '(0) ——, or&(v)—
1 6v

4 + mf1~{&/2)m7I V

] m &+{1/2}wt7I
2

6v
+ o& (v)—

4w cy v

a restriction on F .(cu) indicating that, in a sense,
F,(0} averages F„,(u) over the whole range.

4. Separating the elastic contribution in (3.8),
with Qt=2, and taking the limit q -0, after division
by q', we obtain

l 8'2(v, q )dv =1.
0

(5.2) g(x)—,(5.8)
0

This is obviously stronger than our basic result where G'(0) is dG/dq' at q'=0 (see Appendix).
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Kith m, = 0 this gives the sum rule where

Now

1 dV I 1 dX

p
~

~~ ~ ~
~
1

~

~

Io",(v) = G'(o)+-' n(~) (5.9)
G(q') = (I —'q'-) 'IGz'(q'}-4 q'G, '(q')1, (A2)

v, = ~(2m, +m, ' —q'), and W2v is the causal Pomeron
contrlbutlon to TV2. I11 the llIIlit g Oy

G'(o) =2Gg(0)+4(1- pp'), (5.10)

so that G'(0) & 0 since p & 1 and the data" show
that G~(0) & 0. An estimate of the left-hand side
indicates that it is positive. It thus appears that

dh
q(x) —& 0,

0
(5.11)
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implying that q(x) $0.
5. Equation (S.B) is of the same form as sum

rules on structure functions that hold in the
presence of fixed absorptive poles, such as causal-
ity sum rules' or current-algebra sum rules when
modified to include such poles. ' It therefore
appears to be interesting, and may prove in-
structive, to pursue this analogy further and ex-
plore the connection of o(a, 0}to the existence of
fixed poles in electr oproduction.

r
CO 2

W, (v, q')dv-, o" (v) —, (AS)
Vp mtf+(i/2) ~2 V

where F"r(v) is the total photoabsorption cross sec-
tion o„"(v) minus its causal Pomeron part o~~(v).

The integral on the right-hand side of (AS) is con
vergent and the contribution of this term in (Al)
vanishes at q' = 0. For the third term

J
2 mz+(1/2 }m&2

Wf (v, q')dv- 0„'(V)—, ,
p 0

(A4)

2V Q
or(v) = 2n'n vv(a) ln —da.

2V

Using the scaling condition (2.5) for ov(a), one can
rewrite or(v) in the form

ov(v) = or(~)[l p(2v)]+ P, (2v) ln 2v, (A6)
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P, (v) = „ov(a) ln ada,
2'' Q

y, (v)=2w*a J v (a}d,

y, (0)=1, y, (0) = 0.

(A7)

(AS)

APPENDIX

Separating the elastic contribution we write

r ~.(",e*)d"=G(e*)+J Tt' (",e*)~'
p Vp

Vp

W2v(v, q')dv,
0

(Al)

Note that $, (0)=1 defines or(~) from (A7) and that
ov(~) =or(~} is ensured by condition (2.7).

If we now assume that Q, (v)- v', e &0, as v-0,
we see that ov(v) -0 as v-0 and the integral on
the right-hand side of (A4) is a finite constant.
The third term in (Al) then vanishes at q' =0 and
we obtain Eq. (2.10) from (Al) and (A2).
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