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By using a simple eikonal model of hadron structure, along with the uncertainty relation, we obtain a
successful empirical parametrization of the dependence of the transverse momentum on multiplicity for
charged secondaries in high-energy proton-proton collisions.

I. INTRODUCTION

In two recent papers"' the present authors have
successfully parametrized several quantities re-
lating to emitted particles in hadron-hadron col-
lisions, using an extremely simple model. Indeed,
the point of view has been not to make the model
as realistic as possible, but to make it as simple
as possible, employing essentially only one pa-
rameter to see how much data can be parametrized
in this way and to compare this to what can be
achieved with more elaborate theories and models.

Although, fundamentally, we view the hadron as
composed of constituents of a certain "size,"for
the present discussion we confine our attention to
energies where the hadron constituents partici-
pate collectively, so that a hadron-hadron colli-
sion is characterized only by the overall "size" of
the hadron. The hadron is then seen as a con-
tinuous distribution of matter, for which distribu-
tion we assume the simplest form —namely, a
step function, of radius R.

When two hadrons approach one another, no
interaction takes place if the impact parameter,
b, exceeds 2R. If b&2R an interaction occurs and
particles are emitted. The hadronic spheres are
imagined to move through one another and second-
aries are produced in the volume overlap. We use
a version of the eikonal approximation to give the
relative probability for interaction and emission
of secondaries.

Indeed, as the impact parameter decreases,
the volume overlap increases and, according to the
model, so does the probability for emission of
increasing numbers of secondaries. In Ref. 2 we
related the multiplicity of emitted charged second-
aries to the impact parameter in this way and, in
particular, calculated the mean multiplicity as
well at higher moments of the multiplicity distri-
bution.

For a given impact parameter, and hence a given
overlap, there can be defined a characteristic
length, Ax„ that is a measure of the overlap. In
Ref. 1, using a preliminary version of the defini-
tion of hx„we applied the uncertainty relation in

its simplest form to find the momentum conjugate
to this Ax'„and associated that with the rms value
of the transverse momentum of emitted particles.

In this paper, using our model of the hadron, the
eikonal approximation, and the uncertainty rela-
tion, we display the dependence of the transverse
momentum of charged secondaries on their multi-
plicity. We calculate &p,(n) at three values of the
beam momentum, ~pz, =28, 102, and 405 GeV/c.
Comparison with experiment at 28 GeV/c (the only
value in this range at which data of sufficient de-
tail exist) yields agreement to within about 3%.
Intuitively satisfying qualitative agreement is ob-
tained between theory and experiment in the fol-
lowing features: At a fixed beam momentum, the
transverse momentum decreases with increasing
multiplicity. For a given multiplicity, the trans-
verse momentum exhibits a slow increase with
beam momentum.

In Sec. II we outline in greater detail the as-
sumptions of the model and in Sec. III, we define
and calculate the quantity, Ax„conjugate to the
transverse momentum. Comparison with experi-
ment is presented in Sec. IV, and Sec. V contains.
a discussion of our model and its results, along
with a comparison with other eikonal models.

II. ASSUMPTIONS OF THE MODEL

Consider two hadrons —protons, to be specific—
each a homogeneous sphere of hadronic matter,
parametrized by radius R. In a given collision at
a fixed beam momentum a particular charged
multiplicity m is observed when the impact param-
eter ranges from a maximum value for that
multiplicity, b~(n), to a minimum value for that
multiplicity, b (n), namely

b"(n)& b b„(n).

The range of n extends from 2 to the maximum
value, n&, of the charged secondary multiplicity
observed at this given beam momentum. ' Of
course b„(n~)=0, b"(2)= 2R, and b (n —2)=b~(n).

The values of b"(n) and b (n) are specified by
the requirement that equal increments of n corre-
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spond to equal increments of the density-overlap
function W(b}, defined as

W(b„(0))= 0,

W(b„(n)) = ns, (2 2)

where 6 is a constant.
Thus, for two multiplicities, n' and n",

n' W(b (n'))
n" W(b„(n")) (2.3)

W(b) fz p,dA, = (2 4)

where z, is the "thickness" of the target through
which the projectile moves at a given point in the
plane normal to the beam direction; z~ is the
corresponding "thickness" of the projectile. The
integral extends over the area that is the projec-
tion of the maximum volume of overlap in this
plane at this impact parameter. ' A straightfor-
ward calculation yields'

W(b) (4R2 b2)[vR2 Lb(4R2 b2)1/2

—2R'sin '(b/2R)]. (2.5)

We assume that to a given impact parameter
there corresponds a well-defined rms value of the
transverse momentum of emitted secondaries
determined by the amount of overlap at that im-
pact parameter, as specified below. Calling this
value of the transverse momentum dp, (b) for the
present, since the multiplicity n has been asso-
ciated with a range of impact parameters from
b (n) to b~(n), the expression for the transverse
momentum in a reaction with a particular multi-
plicity can be formally written as a weighted
average over this range of impact parameters,

The density-overlap function, W(b), represents
the relative probability that an interaction takes
place at impact parameter 5, and is given accord-
ing to the eikonal approximation' by

In the next section we calculate hx, (b) geomet-
rically. When this is done, Eq. (2.6) will give the
desired result for bP, (n) explicitly since, for a
given beam momentum and a given multiplicity,
Eq. (2.2) fixes the limits of integration and Eq.
(2.7) yields &P,(b).

III. CALCULATION OF M~(b)

The physical meaning of bx, (b) is that it is the
coordinate that is conjugate to bp, (b), the rms
value of the transverse momentum or emitted
particles. In a qualitative sense nx„(b) is a mea-
sure of the characteristic linear dimension of the
production region for a given impact parameter.
While there can be some discretion in the precise
method of calculating this quantity, we make the
following specification.

As the two spheres move through one another at
a fixed impact parameter, the volume of overlap
varies over time; it is within this volume that
particle production takes place. &x, is the mean
value of the radial coordinate of an area which is
the projection of the time-varying volume of over-
lap onto a plane normal to the projectile's motion.
The calculation of Ax, (b), the full details of which
are presented elsewhere, ' is a satisfying geomet-
rical exercise, only the results of which are sum-
marized here.

Referring to Fig. 1, we note that as the projec-
tile moves from left to right, two well-defined
regions determine the projections of the overlap
volume onto the XY plane.

(a) Region I [sin '(b/2R) ~ 8~ ~v]. At the lower
limit of e [&„=sin '(b/2R)], the spheres just be-
gin to make contact. In this region the projection
of the overlap volume onto the plane of symmetry
AA' is a circle of radius x, and the projection of
the overlapping volume onto the XY plane is an

PROJECTILE

f';.',"„',~p, (b) W(b)b db
l~~& & W(b)bdb (2.6)

Z

~P,(b)n, (b) = —.'b. (2.7)

The final assumption is that the transverse mo-
mentum associated with a fixed impact param-
eter, Ap, (b), introduced above, is the variable
conjugate to the linear measure of overlap, nx, (b),
at that impact parameter, and is given by the op-
timal form of the uncertainty relation,

TARGET

I IG. 1. The overlap of two spheres for gm ~ 9 ~ 27'.
This is the "side view"; the projectile is traveling in the
+ Z direction.
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ellipse,

X Y2
+ —,=1.x' cos'p,

The area of the ellipse is

(3.1) b" (n)
(10 ~3 cm)

bm(")
(10 ~3 cm)

TABLE I. The values of the impact parameters defin-
ing the various multiplicity domains for +z =14.

A (b, 8) = xr'(b, 8) cos p, (b, 8). (3.2)

A(-.'s) = vftl™(ft--,'b)'" (3.3)

(h) Region II (—,m& 8~m —8 ). In this region the
projection of the overlap volume in the XY plane
is no longer an ellipse, but a figure that varies
in area from

2

4
6
8

10
12
14

1.600
1.027
0.810
0.634
0.476
0.323
0.168

1.027 .

0.810
0.634
0.476
0.323
0.168

0

at 8=&x, to its maximum value, at 8=m —8, of

A(s —8„)= s(ft --.'b)(It'--.'b')'". (3.4)

From this we find Ax, by identifying it with the
mean radial coordinate of the above mean area,

f;r'dr
f;rdr ' (3.6)

where a is defined by

A =—wa'

This yields' for hx, (b)

(3 7)

~,(b) =
I

(-', s)'"
I
-.'(2R —b)

and from this, &P,(b) follows immediately from
the uncertainty relation

(3.8)

(3 9)

As the projectile passes through the target, the
mean value of the projection of the overlap volume
onto the XY plane is

f$„~ A(8)d8

f~'"«

tal results. As one sees from the table, theoreti-
cal and experimental results agree, on the aver-
age, to within 3/0.

We also calculate the theoretical expressions
for hp, (n) at representative higher values of inci-
dent beam momentum, p~, even though experimen-
tal studies have not tabulated explicitly the multi-
plicity dependence of the transverse momentum
at these higher beam momenta. We do that at
P~ = 102 GeV/c, where n = 18,""and at p~ = 405
GeV/c, where n„= 26." Table III gives the re-
sults.

The results show a variation in transverse mo-
mentum that displays two intuitively satisfying
properties that also agree with experimentally ob-
served trends':

(i} For a given beam momentum the transverse
momentum decreases with increasing multiplicity.

(ii) For a given multiplicity, the transverse mo-
mentum exhibits a slow increase with increasing
beam momentum.

V. COMPARISON WITH OTHER MODELS AND

DISCUSSION

When this expression is used in the integral, Eq.
(2.6), 4p, (n) is found explicitly.

IV. COMPARISON WITH EXPERIMENT

Smith et a/. ' present data on proton-proton col-
lisions for a laboratory momentum, p~= 28.44
GeV/c, in which the multiplicity dependence of the
transverse momentum is reported. We apply our
theory to that case, for which the maximum
charged secondary multiplicity is n„= 14.

Equation (2.2) fixes the values of b"(n) and b„(n)
which are the limits of integration in Eq. (2.6}.
Table I tabulates the results.

Using these values of b (n) and b„(n), we calcu-
late the transverse momentum &P,(n) for all even
values of n —n . The data of Smith et al. give
the experimental values of hp, (n) for n= 4, 6, and
8. Table II lists these theoretical and experimen-

TABLE II. A comparison of theoretical and experi-
mental values of 4P~(n) at PL, =28.44 GeV/c.

&P&(~) (GeV/~)
(theory)

&P&(~) (Ge&1~)
(experiment)

4
6

10
12

0.383
0.395
0.363
0.330
0.300
0.274

0.383
0.370
0.355

As we remarked in the Introduction, our model
is not presented as a realistic picture of hadron
structure. Bather, we have proposed a naively
simple model which has parametrized a consider-
able amount of proton-proton scattering data in
some detail, using only one parameter, along with
the most fundamental and firm of principles, the
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TABLE III. A comparison of &p&(+) for three values of the projectile's momentum.

pl, =28.44 GeV/c
(n~ ——14)

p1.=102 QeV/c
(n~ =18)

pg305 GeV/c

&pz (4)
&pg(6)
bp (8)

pi{10)
&p.{»)
Qp (]4)
Ap (16)
&p~(18}
&pj.(20)
&p~(22)
&ps(24}
&p (26)

0.383
0.395
0.363
0.330
D.300
0.274

0.336
0.403
0.389
0.363
0.337
0.313
0.290
0.270

0.177
0.376
0.404
0.397
0.381
0.363
0.345
0.328
0.311
0.295
0.279
0.266

uncertainty relation.
One can gain some perspective on the special

features of our model by comparing and contrasting
it with other related eikonal or impact-parameter
models. Most commonly, one thinks of the eikonal
method in describing elastic scatting by an invari-
ant scattering amplitude, in eikonal form

M(e, t) = 4nis b

dbms,

(bv'-t)(I —e'"""), (5.1)
0

where X is the eikonal phase or eikonal function,
s and I; are the usual Mandelstam variables, and
b the impact parameter. To describe particle
production in the eikonal framework, the same
formalism can be used, with X(b, s) an operator.

Several groups of investigators have shown that
this eikonal form for the scattering amplitude fol-
lows from field-theoretic calculations (usually, if
certain simplifying assumptions are made) where
incident particles interact through exchange of
various entities. For example, Cheng and Wu"
have studied the problem of the exchange of non-
interacting towers in massive quantum electro-
dynamics, obtaining an elastic scattering a.mpli-
tude in eikonal form"

at very high energies each particle acts like a
Lorentz-flattened sphere (in first order) with an
absorptive black core of radius R=R, ln S~(where,
essentially, S-s) which grows with energy, and
(in next-higher orders) with a partially absorptive
gray fringe.

Chang and Yan" consider the related problem of
exchange of noninteracting ladders in Q' theory
to describe elastic and inelastic scattering, and
also obtain results in eikonal form, as long as
fragmentation processes are neglected. In their
case the asymptotic form of the eikonal function
(for the special and interesting case of strong cou-
pling) is

iP(0)
8nci 21n(s/i 2)

s b2
x exp ~ 0 —1 ln —,1- 2, 5.5

m

2 2

with

M= ', im 's ' dxe'-'*(1-e").

In the limit s-
gZ-isa~-u txl

where b and p. are real constants and

(5.2)

(5.3)

16m2 p,
'

iN(0) = 64n',

g2
96e2 p.'

(5.7)

(5.8)

(5.9)

[ln(- e))' [ln( —u))' (5.4)

with u the third Mandelstam variable and a a posi-
tive constant.

In quabtative terms, their model results in a
physical picture of hadron-hadron scattering where

and where p, is the pion mass.
One sees that if 5 & 5„, y(e, b) increases as a

power of s. If 5) 5„, y(e, b) behaves like a nega-
tive power of s. Thus, the qualitative behavior is
that the target behaves like an absorptive disk of
radius 5„-Ins. (This behavior, as well as that
found in the work of Cheng and Wu, is to be con-
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x [R 'cos '(b/R) —b(R ' —b')'j'] (5 11)

In this case the qualitative picture is that of a disk
with constant radius, B„ independent of energy.

Barshay" uses a highly intuitive approach in
which the eikonal is identified with the overlap
integral of hadronic matter of projectile and tar-
get, and assumes that this takes on a Gaussian
shape:

y(b) =b Jl d'y D(y —b)D(y), (5.12)

e X(b) & ~e-X52 (5.13)

The distribution of average multiplicity of pro-
duced particles in impact parameter space is taken
to be proportional to the matter-overlap integral

(n(b))-8 "'. (5.14)

This approach is in spirit closest to that of our
own work presented in the present communication.

Several aspects distinguish our model from the
above-described and other eikonal models. First
of.all, our interest has not been to derive eikonal
behavior from a more fundamental theory. Also,
our interest lies not with elastic scattering, but
only with the production of secondaries in a had-
ronic collision. Our formalism makes no direct
use of the scattering amplitude —regardless of
whether it is written in eikonal form, and focuses
not on energy and impact-parameter dependence
of the cross section, but straightaway on the multi-

trasted with our model in which the radius of the
absorptive disk, A, is energy independent, as
explained below. )

Auerbach, Aviv, Blankenbecler and Sugar have
discussed a large class of models for which the
S matrix satisfies full multiparticle unitarity at
high energies. " In the earlier versions of their
work" hadrons were treated in accordance with
eikonal principles like particles which neither
fragment nor lose an appreciable fraction of their
incident momenta. One specific model considered
by these authors leads to an eikonal with a be-
havior

X(Y,h) = —ze(R,zY' —b')z~z8(ROY —b), (5.10)

when c =g'nz'/24R, and Y is the rapidity. " In
qualitative terms this corresponds, as in the mod-
els of Cheng and Wu, to a black disk with a narrow
gray fringe. Asymptotically, the radius of the
disc grows as lns.

Another model described by these authors em-
ploys the following eikonal

plicities and transverse momenta of secondaries.
Our version of the eikonal model consists of the

straightforward assumption that the probability
of production of secondaries (and hence multipli-
city) is proportional to the density overlap func-
tion at a given impact parameter [see Eq. (2.2)],

To arrive at W'(b) we use the simplest model of a
hadron, a homogeneous hard sphere and, hence,
the simplest function for D(s) in the standard
eikonal expression,

W(b) - dA D~(z )D, (z), (5.15)

namely D(s) =z.
Indeed, the model used for the hadron, a sphere

of radius 8, has no explicit energy dependence. "
In that sense the eikonal appears to be energy inde-
pendent, and our whole model appears to be ener-
gy independent.

Qf course energy dependence does enter but ln
a different way. At a given energy we take as
given the experimentally determined maximum
multiplicity. " Then, as shown in the text, trans-
verse momentum depends on multiplicity, because
there is associated with each multiplicity a speci-
fic amount of overlap and, by the uncertainty rela-
tion, a specific transverse momentum. For a
different, and, say, a higher energy, the maxi-
mum multiplicity is greater. The "radius" of the
hadrons is unchanged. Therefore, since more
"layers" are to be fitted into the same 2R, the
overlap associated with a given multiplicity (and
hence Ax) is less than in the lower-energy case.
By the uncertainty principle the transverse mo-
mentum is thus higher.

Although we are not aware of any detailed calcu-
lation with as straightforward an application of the
uncertainty relation as we have carried out, the
general idea of the utility of the uncertainty rela-
tion to account for the limited transverse momen-
tum is, of course, not novel with the present au-
thors. However, its use in ca1culating the trans-
verse momentum has been criticized in the past,
especially by Hagedorn, "as not being able to
account for the (slight) energy dependence of the
transverse momentum. Our model has been able
to overcome this objection and to display such a
dependence.

In a more general way, some mention might be
made of the curious similarity of some features of
our model to the oM quantum theory. Specifically,
the connection of the continuously varying phase
integral, Jpdq, to the integral quantity, nh, sug-
gests itself for comparison when we connect the
continuously varying density overlap function,
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&(b), to the multiplicity [Eg. (2.2)j.
Two views couM be taken toward our calcula-

tions: One, that it is another empirical param-
etrization, and has some virtues of simplicity.
Qn the other hand, since our naive model used
only the simplest input, such as a step-function
distribution of hadronic matter, it is natural to
consider next using more realistic assumptions.
However, since the results seem quite good al-
ready, one has to wonder about the apparent in-
sensitivity to the distribution function that these
quantities display.

At ultrahigh energies (with which the present
work does not concern itself) one can no longer
consider the hadron constituents as interacting
collectively; new production channels are opened
as the constituents interact individually. Experi-
ment" in this domain clearly shows that much
higher values of the transverse momentum are
contributing. More detailed recent studies" show

that the multiplicity distribution of the high-p~
emitted particles differs from that of the "normal"
low-P, particles (P,&0.4 GeV/c), resulting, in-
deed, in a higher mean charged multiplicity.

This behavior is qualitatively consistent with
our model. The higher transverse momentum is
related to the smaller "size" of the constituents.
As one enters the individual-constituent domain
and particles of high p, are emitted, a new produc-
tion channel is opened, and the mean multiplicity
increases. The predictions of our model in this
domain constitute the next application of our ap-

proachh.
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