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We use a statistical model including both pions and kaons to analyze data on ee annihilation. Effects due to
the finite size of the pion and kaon mass are included, and both are found to be significant. Good
approximations are introduced which do not require computer evaluations of phase-space integrals or infinite
sums. Using one parameter we obtain satisfactory fits to charged multiplicities, the o to K ratio, and the shape
of one-particle inclusive cross sections. Another parameter, which fixes the scale of the total cross section,
gives a satisfactory normalization for the one-particle inclusive cross section and for the four- and six-charged-
pion exclusive cross sections when it is chosen in agréement with the quark model.

I. INTRODUCTION AND SUMMARY

When electrons and positrons annihilate at
center-of-mass energies of afew GeV, many pions,
some kaons, and a few nucleons are produced, as
wellas i and ez pairs. The recent measurements
at the SLAC storage rings' have given us particle
multiplicities, total cross sections, and one-par-
ticle inclusive cross sections for ez annihilation.
In this paper these observed quantities are fitted
by a statistical model*?® which is constructed in
such a way that only two parameters remain to be
determined by the data. Our two-parameter fit
provides a good account of how the various experi-
mental quantities are-related to each other, and
predicts how these quantities should behave at still
higher energies.

The relevant data may be summarizedas follows:
(1) The inclusive cross section Edo/d®p for had-
ron energies below 1.2 GeV is well fitted by an
exponential

Ed—d%=Ce“‘E, (1.1)
where a™ =0.19 GeV and C is independent of the
particle species (at least for momenta below 0.6
GeV/c). (2) The angular distribution of final-state
hadrons is isotropic. This isotropy is true only
for the lower-momentum particles, which con-
stitute the majority of the final-state particles ob-
served. Although high-momentum particles are
not our concern here, one should be aware that
anisotropies are observed for high-momentum
pions,* which strikingly confirms a prediction that
follows if the elementary charged particles are
spin 3. A few comments about the relation between
statistical models and parton models will be made
near the end of this Introduction. (3) The multiplic-
ity of charged particles increases smoothly from
about 3% to 41 as Vs (the total c.m. energy) in-
creases from 3 to 5 GeV. Also the total cross sec-
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tion is measured, and is conveniently expressed
in terms of its ratio R to the pointlike uu cross
sections, 4ra?/3s. The data’ show that R ~2 be-
tween the resonance region and vs =3.5 GeV;
between 3.5 and 5 GeV there is an unsettled region
presumably due to production of charmed quarks,
and above 5 GeV again R is constant, at least until
the data run out at 8 GeV, with R~5.5. We shall
suppose that R continues to be constant at large
energies, i.e., that o,,,, goes like s™ at large s.
This is also suggested by quark-gluon models with
asymptotic freedom.® Finally, there is an “energy
crisis.” The fraction of the total energy that goes
into charged hadrons is smaller than the £ that
might be expected, decreasing from about 0.6 to
0.5 as Vs increases from 3 to 5 GeV.

The first three points above are characteristic
of a statistical model. The application to e& an-
nihilation has been examined by several persons,
including Bjorken and Brodsky® and Engels,
Schilling, and Satz.® Our contributions here are to
take into account in a fairly transparent way the
masses of the final-state particles, including the
mass of the pion, which ought not be neglected to
get good results, and to treat the pions and kaons
(and such other particles as may be considered) on
a footing that does not require separate parameters
to describe them. No computer calculations of
phase-space integrals are needed.

Our approach follows the work of Bjorken and
Brodsky. The probability that a particular channel
will be present is assumed to be proportional
to the phase space available, suppressed further
by the statistical factor,®

exp<—-aizj=v:1 Et) , (1.2)

where E;=(m?+p?)*/? is the energy of the ith
outgoing particle in the overall center-of-mass
system and a is one of the parameters of the theory
which will later be seen to be the same as in Eq.
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(1.1). I we introduce an unknown proportionality
factor a,, assumed to be independent of energy,
the probability that N particles are produced is
then proportional to

py(s) = ay(@n)t H f (2‘1’1);’2‘15 -aan*(P-; p‘)
—aNfd xe'”"H X, (1.3)

inl

where P%=s,

TZ)A;D—ZE_ e B g Eylait) (1.4)

Note that the four-dimensional § function has been
replaced by an integral over space-time. Since the
integrals (1.4) cannot be evaluated exactly, Bjor-
ken and Brodsky consider the case where m; can
be neglected, and replace E; by p,= |5, |. They
then evaluate the integrals and obtain an explicit
form for the energy dependence of the N-particle
cross section

X,(%,1) =

47a?
o,,=g py(s). (1.5)

(The details of all of these calculations are pre-
sented in Sec. II.) Finally, the coefficients a, and
hence the relative size of the N-particle cross
sections are determined by the requirement that
the total cross section

Otota1 = Z Oy (1.6)
¥

have the “correct” behavior at infinite energies.
They obtain Eq. (1.1) and, for the case when 0,,,,
—-s™ at large s, a particle multiplicity

(Ny=3aVs +2. (1.7)

However, if a is evaluated from the one-particle
inclusive data, the predicted multiplicity is too
high. At Vs =5 GeV, for example, (N,)=3(N)=11
is predicted, whereas only 4.3 charge particles
are observed on the average.

It is important to consider the mass of even the
pion. The mass dependence comes into (1.4)
through the quantity E,, which occurs in both the
oscillating exponent and in the denominator. The
replacement of E; by p, in the exponent is reason-
able for small times where the integral tends to
be cut off at large values of E, but since the in-
tegration over ¢ must give us an energy 6 function,
the oscillating behavior at large ¢ is crucial. By
the stationary-phase approximation, the major
contribution at large ¢ comes from the region
where

dE;_
dp, ’

which is at threshold where E;=m ;. Hence, in
the exponent we replaced E; by p,+21;, where A,
is a constant. The replacement of E; by p, in the
denominator overemphasizes the small-p, contri-
bution and it should be sufficient to replace this
E, by some constant €;, which sets the overall
scale of X. These substitutions give

d - .0 - + a=
X&) f(z )fz‘g e rReThi vt (in,

(1.8)

which can be evaluated. The two parameters A,
and €, are determined in Sec. II by comparing (1.8)
with the exact X; for ¥=0. For X; one obtains
m; as expected. If there is only one species of
particle, the choice of €; is unimportant because
an overall constant can be absorbed into a,. If
there are several species of particles, we shall
choose ¢, to get the correct ratio of X;’s, which
gives €;' cm K, (am,)e™, where K, is a Bessel
function and the constant of proportionality is ab-
sorbed into a,.

If one makes the approximation of neglecting the
masses, all the X; are identical and there is no
natural distinction between pion and kaon contribu-
tions to the cross section. We can explain these
differences through the mass dependences of the
X;. Specializing Eq. (1.3) to the case of n pions and
m kaons, where N=n-+m, we obtain a generaliza-
tion of the Bjorken-Brodsky results,

Pom(s) = a,, f dixe XX O™, (1.9)

where we have included a statistical factor

N!

wtml? (1.10)

which counts the number of different channels with
n pions and m kaons.

The integral (1.9) can be evaluated using the
techniques reviewed in Sec. II. Also, the requisite
sums can be done by converting them to integrals
and using saddle-point integration methods. The
constants a, are determined by the requirement
that the total cross section fall like 1/s, or that
R be constant, for very high energies. Since the
X’s and €’s are fixed in terms of the particle mass-
es as described above, the theory is left with only
two parameters, g and R («).

Using the summation technique referred to above,
a number of physically interesting quantities are
finally determined. We obtain

Edo _ 4702 a8
% 35 ——— R(«)F(s,E)e (1.11)
where
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F(s,E)=0.608aVs +8.70 - 2.31aE

=24.3-12.1E, (1.12)

the lastbeing valid for s = 23 GeV?and E'measured
in GeV. Since R(s) is fluctuating at this value of
s, we shall use R () =33, the value given by. the
standard colored-quark model with charm. The
data and our curve are shown in Fig. 1. The
value a™=0.19 GeV was chosen (corresponding to
a temperature of 2 X 10'2 K).

With the value of a fixed, the total multiplicity is
given by

(N)=0.244avs +0.91. (1.13)

The reader should note that the effects of includ-
ing the mass have reduced the slope by a bit over a
factor of 2. The charged multiplicity, taken to be
2 of this, is plotted with the data'” in Fig. 2. If
the intercept were taken fixed, this slope would be
the best possible. However, a larger intercept
and a lower slope would fit the data better.

Our cross sections for the four- and six-charged
pion exclusive reactions are shown in Figs. 3 and
4. Our curves are gotten from Eq. (2.10). Since
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FIG. 1. One-particle inclusive cross section at
Vs=4.8 GeV as a function of particle energy. The dots
without error bars are pion data; those with error bars
are kaon data, The solid line is the fit given by Eq.
(1.12) with R(~) =35 as given by the colored-quark model
with charm, Data are taken from R. Larsen as reported
at the Williamsburg conference (Ref. 1).
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FIG. 2. Charged-particle multiplicities (N)., . The
solid line is % (N'), where (N) is given in Eq. (1.13).
Data are taken from J.-E. Augustin (Ref. 1), with the
last two points from C. Morehouse, talk at the 1975
Washington APS meeting.

this equation is for all types of pions emerging,
we have multiplied by the fraction of those events
in which all of the emerging pions will be charged.
This is ¢z and &2 for the four- and six-charged-
pion exclusive channels, respectively.

Finally, the fraction of negatively charged part-
icles which are kaons is shown in Fig. 5 as a func-
tion of particle momentum for Vs =4.8 GeV. Equa-
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FIG. 3. Four-charged-pion exclusive cross section.
Solid line is our fit with R(») =3%. Data from B. Richter

(Ref, 1).
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FIG. 4. Six-charged-pion exclusive cross section.
Solid line is our fit with R () =31, Data are from
B. Richter (Ref. 1),

tion (1.11) was used, remembering that 3 of the
pions and  of the kaons are negative.

We offer a few concluding remarks. The statis-
tical model can be viewed as a complement to
field-theoretical or parton models. The latter are
able to predict total cross sections provided a
perturbation expansion is valid, and can do so in
some detail, for example predicting quantitatively
the increase in hadron cross sections at the thres-
hold for charmed quark production.®. However,
features of the physical observed hadrons, which
come from strong-interaction recombinations of
quarks and productions of additional quark pairs,
cannot be studied perturbatively. It is interesting
that the statistical model can describe them well.
On the other hand, while the statistical model
does study features of the physical hadrons, it
cannot give the overall normalization, i.e., the
total cross section.

A characteristic of the statistical model is that
the multiplicity (V) rises linearly with v's. This
is a significantly more quickly increasing function
than the In s predicted by some models, and it
has been a concern that the statistical model may
predict too many particles. We have seen that
taking account of the pion mass, as well as the
masses of heavier particles, reduces sizably the
slope of (N) vs Vs [compare Eq. (1.13) with (1.7)].

We turn finally to the question of the energy de-
ficit in the charged-hadron channels. This is a
serious problem, and the possibility that some
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FIG. 5. Fraction of kaons as a function of momenta
for Vs =4.8 GeV. Solid line is our fit. Data are taken
from R. Larsen as reported at the Williamsburg Confer-
ence (Ref. 1).

new process is involved should be kept in mind.
On the other hand, conventional physics may be
adequate to explain the effect.®*° For example,
Grammer and Smith® have pointed out that hard-
photon bremsstrahlung and two-photon processes
both increase the energy that appears to go into
neutral particles. Neither affects the hadronic
physics. For the case of bremmstrahlung from
the initial ez, they calculate that on the average

a hard photon will take off 7.5% of the total energy
for Vs =5 GeV and total cross section falling like
1/s; other processes will add to this. A new
process that could affect the energy carried by
charged particles is the production of a heavy-
lepton pair.'' It is expected that significantly less
than £ of the decay products of a heavy lepton would
be charged. This explanation, of course, can only
hold above the threshold for producing heavy lep-
tions, so it cannot be a complete explanation of the
“energy crisis,” but it can explain the observed
sudden worsening of the crisis at Vs =3.6 GeV.

In this paper we have provisionally taken the view
that the observed charged hadrons are indeed close
to £ of the total number of hadrons produced.

II. CALCULATIONS AT ASYMPTOTIC ENERGIES

A summary of our calculation and a discussion
of the results have already been given in Sec. I.
In this section we will fill in the missing steps for
the case when the energies are asymptotically
large.

The scattering amplitude which describes e&
annihilation into » pions and m kaons can be written

eZ
Mmm= = LeHT", (2.1)

where L* is the lepton current and H;™ is the
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phenomenological matrix element describing the
production of the hadrons by a virtual photon. The
total cross section for the production of » pions and
m kaons is therefore

1
o"'m='2—sL“" J"'"' (2.2)

where P2?=s is the square of the total energy and

L¥ = Z L*LY

=R'UE+ R - g¥ R B, (2.3)
and k and &’ are the electron and positron momen-
ta. For the hadrons we introduce the phenomeno-

logical form

nym= - dapi o dspi ( nympy nym*
e —f i (2m2E; II-_Il (21r)32E’ (2m)*s* E 1’4‘2 P)H H'

—E‘l} (Pqu—'guuPZ)pn,m(s) ’

where our statistical model ansatz for p, . was
given in Eq. (1.9). Combining (2.2)-(2.4) gives

4 2
Onm= g o Prm(S) - (2.5)

Determination of € and A

To evaluate p as given in Eq. (1.9), it is necess-
ary to evaluate X, and X, where X; was introduced
in Eq. (1.4). Since the integrals cannot be evaluated
analytically, we introduce the approximation (1.8)
as discussed in Sec. I. To evaluate the parameters
A;, and €;, we note that if X=0, X; can be computed
exactly,

X(X 0 t) f (217)32E e'Ei(“"”)

m .
=-(2-11)2_(7‘i_—i-t-;K1(mf(a—1,t)) (26)

N m; l/ze-rrq(a -it)
= | 5@ (a - il )° ’

where E; =(m‘2+pi2)1/2 and K, is the modified Bes-
sel function of the third kind. However, our ap-
proximation for X ; gives

X, (=0, t)= f(zﬂ)sz e-(Pir A (a -40)

2 -\; fa - it)
= e " i . 2.7
27)2(a - it)e,

There are two features that determine € and A.
The crucial part of the ¢ dependence is the oscilla-
tion at -, Since the cooperative effects of these
oscillations from the different X; give rise to the

(2.4)

—

energy-conserving 8 function, the choice x;=m;
will ensure that this conservation is maintained.

Next we must get the correct relative normaliza-
tion of the X,;’s. The X,’s are largest at ¢t =0, and
we shall choose €; to give the correct ratio of the
X,’s there, or

€z _mgy(amylex @.8)
€x m K, (am)e

Note that our approximate X, falls off faster than
the exact X; as { - «, This means that our approx-
imation will give an unreliable estimate of the
average overall size of X,, but this overall normal-
ization can be incorporated into the constant a,
[introduced in Eq. (1.9)]. Perhaps it is worth not-
ing that since our approximation does reproduce
the relative size of the different X;’s, it should
properly describe the 7elative probability that pions
or kaons will be produced. It is for this reason
that we can assume that our overall normalization
constant @y depends only on the total number of
particles and not on » and m separately. Further,
the choice of e,r/ex above will be seen to lead to a
self-consistent relation when the one-particle in-
clusive reaction rates are studied.

Integration and summation

With these choices we now can evaluate p, ,, fol-
lowing the procedure of Brodsky and Bjorken.
First, we have

-Xi(a —it)

a-—it (2.9)

- €
X% )= 2n%¢; [(a-it+x°F’

which gives
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(5)=a NI d4xe-h§ t o=(nXgemig)(a -(t)(a —it)¥
Pnsm Yuim! ) @r)Velen [(a—itf +x%]?¥
Nt (4N - 4)! e-tnArmAg) o e—it(\[s-nxﬂ-mkx)
=ay ——(4m)? 2\ cnpm f t —\3N =3
nlm! @N-1)I2N =2)! (327%)Velel J_. (a - it)
ca N! (4N - 4)! 327378 (V5 —nr,—ma, )N (2.10)
¥nlm! QN-1)!2N=2)! (32772)"61’;6,'}‘ BN-4)! :
_o. ! B;)" B\"[a(Ys —=nr, =mrg)]N " g
¥ulm! \e,/ \eg (3N -4)! ’
where we have substituted
(4N -4)! L =CyBYa¥ . (2.11)

WEBN-1)I@N —2)1 3275 T

Note that the form of the ¢ integration ensures that p,, =0 if Vs <nX,+m), providing an approximate descrip-

tion of the threshold dependence.

Finally, we must sum the p,,, terms over n and m to determine R(s). As we discussed in Sec. I, we will
assume that R(s)- const as s becomes very large. This means that Cy and B must be chosen so that when

Vs is very large
R(x)=lim 3~ 37 p,n(s)
n m

—1 -a V& E_" £ ™ N! [a(‘/z—nh,,—m)\,()] . 2.12

lim e™® 30 3 C"<e,,> <ex> alml  @N-4)] @.12)
r

It should be noted that the range of the sum over » (NY =¢,a's +§&,, (2.16)

and mdepends on V's because only when Vs — nA,
—mAg >0 are the terms to be included in the sum.
Because of strangeness conservation, only even
values of m are to be included, but both sums may
be taken to start from zero since the factor
(3N —4)! in the denominator will automatically
ensure that N = 2.

In preparation for treatment of (2.12), we con-
sider a simpler sum obtained by omitting Cy,

= & B\"/B\™ NI
s=12. 2, (e—) (?,;> P
[“‘“‘(;’;":Z;?K””"‘, (2.13)

where the sum is over all » and even m. At large
s an examination of the summand shows that it
peaks sharply inn» and m. We assume that it is
possible to choose N and B so that as v s becomes
very large,

S— e, (2.14)

If this is indeed the case, then N and B are im-
plicit functions of @, and we can estimate the aver-
age value of N=(N) from the identity

as (NYdB a dX

aa—-&'= [(3<N> —4) a-?d—a- +§ 2—&-}5- (2-15)

Substituting (2.14) gives

where £, and £, are independent of s. Therefore,
as Vs -, (N) also approaches infinity, and the
major contribution to the sum comes from terms

in which n+m are large. Furthermore, the sta-
tistical factor N!/m !n! ensures that the major con-
tribution comes from terms in which both » and m
are individually large. Thus we may approximate
the sum by an integral

%%f dn dm &) | (2.17)

We shall now sketch how to evaluate S. We use
the procedure of approximating the exponential by
a Gaussian. The work is straightforward, although
perhaps we: may entice the reader by remarking
that some of the cancellations are pretty.

The function g(n,m) may be written out, clearly
involving a number of logarithims and factorials;
the latter are treated with Stirling’s approximation.
The function g peaks sharply in the vicinity of some
particular values of » and m, which we denote by
n, and m,. Expanding g in a Taylor series about
this point, keeping terms to second order, and in-
tegrating the resulting Gaussian gives

)_21T

5 (2.18)

X & (ng, m,
== 00 Mo
ze

where
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D =detg”
_%% % ’g \*
Tong amy: (anoam (2.19)

The values of n,, m,, and B are determined by
requiring that both first derivatives of g vanish and
that S is exp(aVs) for large s; i.e., we have three
equations, each of which contains Vs as a variable.

Drawing from the result (2.16) we assume that,
at large Vs,

n0=a1rQ+»81r)

My =g @ + By (2.20)
with
Q=avs. 2.21)

Remembering that we are interested in the solution
for large @, we substitute into our three equations.
The K /7 ratio at infinite @ comes out analytically,

=% K, (amy)
T == =
a, m.K,(am,)

=0.230 (2.22)

(all numerical results are given for a™*=0.19 GeV),
as does B,

B ea mm

€, 1+7,°

(2.23)

The «; and B; must be obtained numerically, but
this is easy, and

@,=0.199, B,=0.984,

ay =0.0456, B, =-0.072. @.24)

We then calculate g(ny,m,), where we need only
the leading and next-to-leading @ dependence,
obtaining

g(no) mo) =Q - %ln[ 3a1rax(2”Q)2] )

where terms of order @ ™! have been discarded.
Computing D to leading order gives

1 1

(2.25)

=== e 3. .
b @ 3a agla, +ag) 2.26)
Thus (2.18) reduces to
s'=919‘4'¥5e° @.27)

J

E.do, n _4ma® Nlay _,5 1
a%,  3s "mnl®
_410® Nlay 2
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giving
2

N= =8.16.
Ot Oy

(2.28)

We now return to our original discussion of the
sum for R(s). By comparing with (2.12), we see
that the choice

Cy =R ()N (2.29)

will ensure that as s—«, R is constant.

If we wished to require that R behave like a
polynomial in s at large s, then Cy would be re-
quired to have the corresponding power dependence
on N, so that even though we have assumed that
R approaches a constant for large energy in this
paper, our method can easily be generalized to
treat other cases. That is, an N dependence in
Cy can be used to give any required V's dependence
in R. To sharpen this observation we note that the
pth moment of n or m can be easily calculated.
Defining

Y inm W Pn, m(S)
25 num Pnm(S)

and evaluating both sums by the stationary-phase
method, we obtain

92 2
oy =t 10— ) L),

()= (2.30)

(2.31)

where we have retained terms of order @ relative
to the leading term.

Also, for p=1 we obtain the useful result that
the average value is equal to the value of » at the
peak, n,, Hence the pion and kaon multiplicities
are given by (2.24) and the total multiplicity is

(N)=0.244avVs +0.91. (2.32)

The total K to 7 ratio is 7, which we compute as

Mo _ _651
= 0.23o<1 =7

(2.33)
One-particle inclusive cross sections

Next let us consider the one-particle inclusive
cross section at large energy. We will consider the
pion first. If only one pion is observed, the con-
tribution of the channel with » pions and m kaons
present will be as before with one integral left un-
done and a counting factor n included:

3 f d%x e HPE it T XN DX P(x, B)

e—a\/s

3s mln-1)! (3272em)"~}(32m2¢4)™ (2N = 3)1 (2N - 4)!

N-1
X (——d—) [(s+n=(n=1)A, —mrg—E P -p2]?¥ ™

dan

(2.34)

n=0
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For a fixed N, we can choose p,> small enough to be neglected, and then the derivatives can be evalu-
ated. This will give a correct answer to leading order in s. However, when the sum is done over N the
corrections from the p,? terms to the leading order will be down by a factor of only a/s, not a®s. This is
because the term is raised to the power 2N — 4, and the peak value of N itself is increasing like v's. The
best way to calculate the corrections (which turn out to be important here because of the numerical factors
multiplying them) is by a self-consistency argument. We will first get the general form and leading order

of the inclusive cross section.

Neglecting p,”, evaluating the derivatives, and substituting the previous value for a, gives

Eyd0,, _410° BGNEN-1)@N=2) , .5 (N-1)! B*-
(n-1)Im! ep~teg -

a%, 3s 7 @N-5)@AN_T)

[a(Ws =(n= 1A, —mr=E )P~
BN -1 )

(2.35)

In doing the sum over »n and m, we notice that the first group of terms depending on N is slowly varying,
and the remainder of the terms are the same as before if we express the summand in terms of n’=n- 1,
and replace V's by \/—s--—E,. Using (2.31) to calculate the slowly varying terms in the sum we obtain

E,do _4ma® B el N’
5.~ 35 5. C°(N) +2.5)e CN’% T

B -a
= g;r-as((N) +2.5)e " Er o,

=F(s,E )e % Er g

total *

€

)”"(ﬁ)’” [a(Vs =n' N —mAr, —E ) ¥

€x BN'-4)!

(2.36)

The value of (N) should be evaluated at the energy Vs - E,.
The dependence of F(s,E,) on Vs is of the form Vs +constant, where, as discussed before, not all of the
constant term has been included. We modify F(s,E,) by adding a constant (which can depend on E,):

3
F(s,E,) =%17[(a"+a,()a\/'§'— (ap+ag+c)aE +2.5+B, +Bx+Cs) , (2.37)

where ¢, and ¢, will be determined self-consistent-
ly. The same formulas are valid for kaons if we
let E; - Ey.

To determine the values of ¢; and ¢,, and also
the absolute normalization of B, we recall that

a’p -
o0 total = f LF(S,Ee™ T 0 1 »

E‘W
% (2.38)
M0 yota = E F(s,Eg)e™ % & T totat *
K
Taking the leading terms gives
Ay =3 Bla,+ag)d®m K (am,), 2.39)

ag =3 Bla, +ag)a®mg K, (am ) .

These equations are identical because of our prev-
ious result for a,/a,, and solving for B gives

B=0.429 GeV. (2.40)
In the next order, we obtain
Br =3 Ba®m [ —(a, +ag+c)am Ky(am,)

+(2.5+B,+B, +Cc)K (am )] (2.41)

and a similar equation for 8,. These equations can

—

be solved for ¢, and c, to get
¢,=0.682,
c,=0.089 .

(2.42)

It might be noted that ¢, is rather large.

This completes our calculations for very high
energies. The results have already been collected
and compared to data in Sec. I. Some comments
regarding the validity of our sums at smaller val-
ues of s, where we do not have a large number of
kaons, are made in the Appendix.

APPENDIX: CALCULATIONS AT FINITE ENERGIES

In this section we consider calculations at finite
energies. The main conclusion is that our approxi-
mations are quite good at lower energies, Vs <5
GeV, where there are in fact only a few kaons. The
accuracy of our results seems to depend only on
having a large number of pions.

The total cross section is related to a sum [see
Eq. (2.12)]

5= 3 S, an

where
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=

N /B\™ <~ N! [ B\" [a(Vs —n, —mA,)JP¥
wile) (@) et

(A2)

There are already large numbers of pions for

Vs 2 3 GeV so that S,, can be summed by familiar
means. If we suppose that m is a fixed number not
growing with s, then to leading order we obtain the
result

:-)z - Qal B m
Sm __g‘"aa{"e(o ma)\K)§Tr< ;r ?) ’
K,

S Er
(A3)
where the sum is dominated by »n’s near n}, where
=a;Q+B7 (a4)
and
3af

&, = m— 0.944 . (A5)

If this result be sufficiently accurate, we should
be able to sum it and recover our old results for
S [Eq. (2.27)]. Unfortunately we do not. The
problem lies in our result for S,. It is accurate
for fixed m and Vs -« (or for m small and Vs

moderate size), but if we sum over all m, the value

of m at which S,, is largest grows with Vs, and the
first correction terms to S,, become necessary.
Inserting these corrections gives

J
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N
Sm =m§,,3a;e(°"" AOET(Q +m b, +5,)"

’ m
x <"‘—g B~> : (46)
n €g
The parameters 6, and 6, can be gotten from an
accurate evaluation of S,,, but can be more easily
obtained by requiring self-consistency; when the
above equation is summed at large Vs using the
saddle-point integration methods, to give S, the
result should be the identical to that given pre-
viously in Eq. (2.27). Defining £, =1~ £, gives the
identities

al B
£,°
N, a{,=2e'625K(1—61§K),

=81k +al &
EKe 1%k K"’

(AT)

together with the values
8,=-2.94=~(ax, +0.31),
6,=5.00.

(A8)

This gives a more transparent result for Sy

e‘°S,,,= &%&le—(oms”az)q

X (@ +mbd, +6,)"E7 . (A9)

Thus we obtain a formula for R(s) valid at finite
energies,

R(s)=2R()(1 =8 ,&,)e~(*%+ 82)&k[ 1 +3n%avVs +28,+6,)% + Hn*avs +45, +8,) 4+ ], (A10)

where
n=e”%1%K¢, =0.066. (Aa11)

Evaluation of this formula shows that R(s)—~ R(«)
from above and at Vs =3 GeV it is about 10%
larger than R(«).

The multiplicites at finite energies are similarly
insensitive to our improved evaluation. Our re-
sults for the total multiplicity agree with the as-
ymptotic results to within 5% in the range 1 GeV

s <5 GeV.
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