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Calculation of the K~4 decay rate
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The K„4 decay rate is calculated. We show= that the variation of the K,4 form factors between the soft-pion

point and the physical point accounts for a large amount of the discrepancy between the current-algebra

theoretical value and experiment.

The form factors for the decays E,4 were first
calculated by Callan and Treiman' from current-
algebra and soft-pion techniques. Their result for
the form factor E, differed considerably depending
on which of the final-state pions was taken to be
soft. Weinberg &' later explained this rapid varia-
tion of E, by taking a nearby E pole explicitly into
account. The rates for the decays E~ and E~~ cal-
culated from the values of the form factors ob-
tained by the authors of Refs. 1 and 2 show some
discrepancy with the experimentally measured
ones. Some time ago Schilcher and one of us'
showed that the discrepancy between theory and
experiment in the E,~ case could be accounted for
by the variation of the form factors I', and E2 be-
tween the soft-pion limit and the physical point.

The amplitudes used for extrapolation by the
authors of Ref. 3 differed slightly from the pre-
viously measured ones, the choice being motivated
by the use of the collinear-dispersion-relation

method of Fubini and Furlan. ' These amplitudes
are simply related to the E,4 form factors and to
the E-m scattering amplitudes which appear on
equal footing, and it was argued by the authors
that their different choice of smooth functions
constituted a better approximation, for it mini-
mizes the contribution of the continuum which
represents corrections to the soft-pion limit by
damping it strongly in the low and intermediate
energies of the g-m system.

A calculation of the E ~ decay rate, to which Il,
contributes, was not attempted in Ref. 4 as no
measurement of the rate was available at the time
and as some controversy subsisted about the factor
g of K„decay which appeared in the final expres-
sions. This note presents a calculation of the K„4
decay rate.

The E,~ form factors are defined in the following
way:

Z

f,m2 dx e""(m'- e&')(~'(c.) I
T'D, (s)&, (o) I&'(p) &

M l&f(q, +e ).+&2(e, —e-). + I"3(P —e. —e )g1 (I)
2 M

where m and M denote the masses of the n and E
meons, respectively, a, b=+, —or a, b= —,+, B
= 8~A& is the divergence of the axial-vector cur-
rent with the quantum numbers of the w, (0 D v)
=f,m' with f,=94 MeV, A~» is the axial vector-
current with the quantum numbers of the E", and
the E s are functions of the invariants.

Instead of the amplitude defined by Eg. (I) we
choose for extrapolation the related one with the
E pole removed:

Q'y =See= x

using the notation

E,(x)=,~' E,(x) . . (4)

e =(P e. -~-) e=D-ff. '.
We work in the special configuration with all par-
ticles at rest and use the collinear parametriza-
tion

with

dye"P(m'-q, ')

x (&'I 7'y, (&)&," (o) Ix

Z,.(»= I)=([I'- (~ -2m)']/I 2]Z,.(» = I) are form
factors evaluated at the physical point where all
particles are at rest.

Standard soft-pion techniques and the use of
collinear dispersion relations in Ref. 4 yielded
the following sum rules ':
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—,
' [E,(1)+E,(1)]=, ' + — (, Abs[E, (x)+E,(x)],

—,'[E,(l) —E,(l) =— ~ Abs[E; (x) —E; (x)] (5b)

and

E,(1)+

1 I

E,(l)+

f» i i M (M m) M(f +f ) 1

' T,„(K'v -K-~-) = — +, AbsE;(x),f» ~ ~ 1 dx
J» x

c&c

(
2 )

AbsF»(x), (6a)

(6b)

with the absorptive parts separated from

AbsM'(x)= p &0 j, n, K'&&n, v'IJ'» 0&6(p„+p —q»+/&ol j, lm&&m, v'Iz» IK'&6(p —q,)
n Nl

+Z &~'I j»l» K'& &~l~»-l0&«p~+P -q. -q»+g &"
I j»lk&.&k I&»-IK'&.6(p» -q. -q,)

g (0IZ» Ik, K'&&k, v If»I0&6(p, ,+q +q,)

-g &0l&»-I&'&&&' v'lj»IK'&«g +q.+q» -P)

0 J~- m', X' m' j ~ 0 5 p~, —qq — p' J~- n' n' jq E',5 p„+q~-p
m ns

(7)

where the index c denotes the connected part of a
matrix element and where

j,=( +m')y,

J»- ——
» (Cl+M )Ao

and where f, are the usual K» form factors

&v'(q) ll'» IK'(P)&= -
2 [f, (P+q), +f (P -q), l

evaluated at (p —q)2= (M —m)».
Equations (5) and (6) yield the on-mass-shell

values of the form factors. As was argued in Ref.
4, our choice of a smooth function minimizes the
contribution of the continuum to (E, aE, ) by strong-
ly damping the contribution of the m-p system in
the range 2m~(p»')' '~12m. We thus have from
Egs. (5) and upon neglect of the continuum'

E,(l)=E,(1)=2 '-=1 20.M —(M —2m) f f

contribution of the states m, m', f, f' (0 states
other than the g and K themselves) are the "PCAC
(partial conservation of axial-vector current) cor-
rection" terms and no reliable way of taking them
into account is known. The states In'& = IK, m&

contribute at threshold; this contribution can be
calculated and amounts only to a few percent. The
contribution of the states n, n' can be estimated by
saturation with a "x" resonance and also amounts
to only a few percent. The most sizeable contri-
bution is expected to be that of the k, k' states (0')
and estimates can be tried saturating with an "&"
resonance. These estimates are very uncertain,
however, owing to the coupling of these states to
the EE: system. We shall thus try to give no
numerical estimate of the contribution of the con-
tinuum to Egs. (6), and we shall neglect it bearing
in mind that this may introduce an error of- (30-40)%%ug in the evaluation of E,(l). We thus write

E,(1)+ ' T,„(K'v' -K'w')

(6)

the factor 1.20 representing the correction to the
soft-pion value.

For E, we have Eqs. (6) at our disposal. We
recall that the K pole, which did not affect (E,
+E»), contributes here to the continuum. The

and

(M m)' -M(f. +f )
M

E (1)+ f»- Tt„(K'm -K'v )

We next use current algebra and collinear dis-

(10)
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persion relations to calculate T,„(K'g'-K'v').
Let

T"(x) =i(m' -q')'

Tt„(K'v ' K'm') = —6.70,
T~„(K'g -K'w ) =8.90 .

Equations (17) and (18) now yield two values for
E,(1):

E,(1) = 2.80

q=Px .

and

E,(1)= 3.70,
(13)

Also let

T"(x) = T'(x)6"+ i &,,,x T (x),
where T'(x) are even functions of x. Standard soft-

pion techniques yield

T'(o) =~=- —
2 (K'(P) I[Qg. D]..~. IK'(P)&,

E,(1)= r, =2.35 .
2 f~

(14)

The transition matrix elements for the K„de-
cays,

which are to be compared with the value of Wein-
berg

which can be estimated from the Gell-Mann-
Oakes-Renner' model of chiral symmetry break-
ing to be

m2
T'(0) =—

T (0)=-

Also

T,„(K'm'-K'~') =T -(~/I)

= T' (m/~)+ —T -(m/I)
M

T,„(K'v- -K'~-) = T'-(- m/~)

The asymptotic behavior of T'(x) is usually in-
ferred from the existence of the equal-time com-
mutators [@,&f&], , and [@,@],, Equivalently
the wilson' expansion for the operator product

TP(y) $(0) can be used, which leads again to the

same conclusions (unless 2 & d & 3, which we ex-
clude), and then

I= sin8u(v)(1 —y,)y,u(- l)(m, w IA" IK),
2

are used to calculate the decay rates. I', and I'2

are taken to be constant over the whole spectrum,
whereas the variation of I', due to the E pole is
taken into account (in our notation E3 is taken to
be constant on the mass shell). Integration over
phase space yields

I'(K,4) = sin'e[1600E, '(1)+ 310E,2(1)]

I'(K„4)= sin38[180E,'(1)+ 25E,'(1)

+ VIReE, (1)E,*(1)+13E,'(2)] .

As we have taken f, (0) = 1/M2, the value we use
for the Cabibbo angle is the one obtained from the

E)3 decays

sine= 0.215 .
The values obtained for the form factors give them

I"(K„)=2.60 x 10' sec '

I'(K„,) =0.33 x 10' sec ',
which are to be compared with the values obtained

from the uncorrected soft-pion theorems

I"(K ) = 1.5 x 10~ sec ',
I'(K„)= 0.18 x 10' sec ', (16)

ChT (0) + (g 2/ g)
Abs T (x)

Consistently with the approximations which led to
Eqs. (9) and (10), we neglect the contributions of
the continua (again, threshold and the K contri-
bute only a few percent) and get

and the experimentally measured ones'

I'(K„)=(3.0+0.2) x10' sec ',
1(K.,) =(0.7+0.3) x10' sec-' .

We finally note that a large value of the g-m, s-
wave I=0 scattering length would decrease the
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theoretical values (15) and (16), as was shown by
Cabibbo and Maksymowicz. "
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retical Physics, Trieste. They would like to
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