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A systematic account of a few typical electromagnetic mass differences of hadrons (N, X; K, m) is presented

within the framework provided by a broken-SU(6)l &(O(3) model of hadron couplings. The model, which has

specified combinations of couplings of "magnetic" and "charge" origin, is characterized by the supermultiplet

form factors at the hadron vertices. The parameters of these functions on the mass shell have been determined

recently via a study of the decay widths of the resonances. Using these form factors, suitably extended off the

mass shell of the vector meson so as to render the calculations formally free from series and integral

divergences, the coupling scheme is found to provide a reasonable description of the mass differences through

the twin mechanisms of dominance of magnetic contribution over charge contribution and that of (L + 1)
wave couplings over(L —1). A formal connection of this approach with the more conventional dispersion-

theoretic one can be established through the observation that the subtraction term (necessary for b, I = 1 cases

of mass differences) finds a close parallel to the couplings of magnetic origin (which have extra momentum

dependence vis-a-vis the charge couplings) thus making the magnetic couplings relatively more important for
the AI = 1 cases according to Harari's interpretation. The model is not so successful for AI = 2 mass

differences which are dominated by the (weaker) charge couplings.

I. INTRODUCTION

Though the age-old problem of electromagnetic
mass differences has occasionally received major
attention, it can hardly be considered to be solved
even today. ' Basically, there have been two ap-
proaches to the problem. The earlier one, which
originated through the work of Feynman and
Speisman, ' is characterized by the language of
field theory in which the form factors involving
extensions off the mass shell play a central role.
The newer version owes its origin to the work of
Cottingham' which established the basic con-
nection between the Compton-scattering amplitude
and the electromagnetic self-energy of the parti-
cle concerned. Most of the work in the 1960's
has been on the latter lines, which are character-
ized by the language of dispersion relations and

Regge poles (tadpoles, ' A, exchange, ' etc. ). The
role of subtraction terms in the dispersion-theo-
retic approach was clarified through the work of
Harari, ' who showed that they are relatively un-
important for the n. I=2 cases (adequately covered
by the Born term), while they play a significant
role for ~l = 1 mass differences. Calculations of
the latter have, therefore, suffered from the un-
certainties inherent in the subtraction-parameters
in the absence of additional input information. The
most comprehensive calculations along these lines
have been due to Buccella et al. ,

' who were the
first to give a unified and systematic account of
electromagnetic mass differences, but only with
the use of an additional universality hypothesis
due to Cabibbo, Horwitz, and Ne'eman' which

was shown to provide the necessary connections
between couplings of the A, Regge pole and the
particle under study within the framework of U(3)
x U(3).

The potentialities of the Feynman-Speisman'
language never seem to have been adequately
realized, except, in more recent times, when the
experimental interest exhibited in the couplings
of higher resonances to lower hadrons has pro-
vided more meaning and relevance to this ap-
proach. The connection of this description to the
dispersion-theoretic one is not easy to establish.
However, in a general sort of way, it can be said
that the subtraction terms (necessary for aI = l
cases) correspond in some sense to the appearance
of high-momentum dependence of the higher-reso-
nance eouplings in a field-theoretic language.
These couplings are, in turn, dominated by
the "magnetic" (-O„,A, ) rather than the "charge"
(-y ) contrl. buttons. Therefore, one should expect
that the AI= I mass differences which are domi-
nated by the subtraction terms in dispersion
language' should be correspondingly dominated by
the magnetic couplings in the field-theoretical
description. A more precise statement is diffi-
cult to make on the correspondence. Both approaches
are characterized by the appearance of extra
unknown parameters for Al =1 cases: the sub-
traction terms in dispersion theory and cutoff mo-
menta, especially for magnetic eouplings, in field
theory. Reduction of parametrization in the latter
case is possible only through additional universal-
ity assumptions on the coupling structures such as
partial symmetry' and Regge universality. "
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The object of this paper is to present the results
of calculations of some important electromagnetic
mass differences in the spirit of Feynman and

Speisman by employing a relativistic coupling mo-
del for hadron supermultiplets" which has been
developed at this institution over the years. In
this model, the baryons are classified according
to the supermultiplets [56 even'] and [70, odd ].
In recent times, however, there has been some
evidence of the existence of states belonging to
[70, even'] (Ref. 11) but we do not consider the
effects of these states in the present paper. The
general philosophy of the approach is in confor-
mity with the duality spirit" wherein the effect
of Regge exchange is sought to be simulated by an
infinite sequence of direct-channel resonances.
Further, the framework of the model is versatile
enough to allow investigations of a wide class of
processes and some of these applications have
proved fairly successful. " " In particular, a
preliminary application of this model to the n-P
mass differences has already yielded some en-
couraging results. " It is, therefore, of interest
to present the results of more systematic in-
vestigation of electromagnetic mass differences
for several typical hadrons (N, Z;K, v) so as to
bring out the general features of the mechanism
which produce the desired effects within this
coupling scheme.

As explained in the earlier references, ""
these couplings have specified mixtures of both
magnetic and charge types in accordance with the
principle of partial symmetry. Therefore, the
over-all results should be expected to reflect the
relative contributions of charge and magnetic
types for both the AI =1 and AI=2 cases without
the introduction of any new parameters. The
"power" form factors'" used in the present cal-
culations have recently been found to have a
kinematical basis. " This comes about from the
Lorentz-contraction effect on the external mo-
menta involved in the transition matrix elements
according to an argument due to Licht and
Pagnamenta. "

In Sec. II, we outline the structures for mesons
(those for the baryons having already been pre-
sented elsewhere'~) together with the integral
formula for the self-mass (6m). Sec. III briefly
explains the assumptions on the off-shell ex-
tension of the "power" form factors needed for the
evaluation of the self-energy integrals. In Secs.
IV and V we present and critically discuss the
numerical results. The essential conclusion is
that since the coupling scheme is dominated by
terms of "magnetic" (rather than "charge") origin,
the model is expectedly more successful for the
AI=1 cases than for AI=2 ones.

II. FORMALISM

To first order in e', the perturbation theory ex-
pression for the self-mass of a baryon [6(m') for
a meson] of mass m is given by the Cottingham
formula'

1 "d4 T„,(k, k~)
+4 y2 (2.1}

k(P+P)A'= Bq q~ m„(P„+Pq}- k2
— kq

L

(2.2)

In the above expression, e„e, T„,( kk, ) is the
forward Compton amplitude for the scattering of
a virtual photon with three-momentum k, energy
II|„and polarization vector e„ from the baryon at
rest.

We have to calculate the contribution to T„, of a
particular resonance of spin J and then sum over
all the different sequences of resonances relevant
to the cases under study. Since, in our model,
the electromagnetic interaction is introduced
through the VMD (vector-meson-dominance)
hypothesis, "the two basic ingredients required to
evaluate the vertices H~Hy (H for hadron) are the
H~HV couplings and the y-V vertex. Most of the
material required in this connection has been pre-
sented in sufficient details in Refs. 14, 17, and

10, and since we borrow heavily from them in the
present discussion we shall, henceforth, denote
them as papers I, II, and III, respectively.
However, for easy retrieval of this information,
we draw attention to the main features of the
coupling structures for the different types of parti-
cles involved [N, Z;K, v] as detailed in the above
ref erences.

(a) Baryon couPlings. For the case of nucleons,
the five basic types of B~BV couplings (A E)—
along with the appropriate SU(6)xO(3) factors are
as given in I. Also listed therein are the y-V
vertex in the VMD hypothesis and the recipes for
making these couplings gauge invariant. The case
of the Z hyperon differs from that of the nucleon in

having nonzero couplings to Q in addition to p and

~, thus giving rise to some extra entries. Since
the geometrical SU(6) x O(3) factors for these are
adequately given elsewhere" we merely refer the
reader to paper III for these and related details
for meson couplings.

(b) Meson couplings. For meson states, the case
involving transition from a quark-spin S = 0 (e.g. ,

B meson) to another with S =0 (e.g. , pion) can
only have a "charge-type" coupling of the form
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which has been made gauge invariant on the lines
prescribed in I for the corresponding y-baryon
couplings. The transition from the quark-spin
triplet (S =1) to singlet (S = 0) is characterized by

magnetic-type couplings B' and C' connecting
states with J=L+1 (e.g. , A, ), and J =L (e.g. , L, )
to ry system, defined by

B'=—T„„„e„~„koV„(P+P)~f~~' k„~ ~ K„ II, (2.&)

j.(2—
C'=—5 " " L 1 I ~„„+k&6)k„, + 2M + 2 —P 6„" k

Vk„' ' 'k„ II .
(2.4)

d4k
5m =—,„, . — n~(k, k,), (2.5)

P

n, (k, k, ) =u(p) (Z„Z„')u(p), (2.6)

We should like to draw particular attention to the
factors(2M~ ) and (p'- P') (appearing in the first
and second terms in the square brackets of C')
which represent the over-all normalization factors
for the (L +1) wave couplings of the concerned
meson fields, the factor (P'- P') including the
GOR (Gell-Mann-Oakes-Renner)' '" effect ex-
tended off the mass shell (for details see paper
III). Note, further, that whereas the (L+1) wave
parts of both B' and C' are gauge invariant as
they stand, the (L —1) wave coupling in C' has
been made so by introducing the second term.
The symbols f~~'I f~t ' here stand for the (L+1),
(L —1) wave form factors, respectively. In
Table I we list the various (K, v)—y couplings,
taking account of the fact that the yw couplings of
the I= 0, 1 meson are governed by the G-parity
considerations which restrict the possible inter-
mediate states.

(c) St~ctu~e of 5m integrals. Using the above
B~BV structures (in conjunction with VMD), the
integral (2.1) for the baryon self-mass 5m is
expressible as

As(k, k, ) for type-A coupling of a spin (L+-,')
baryon to a nucleon is

(k, . . .k, )eg'u'g 'vj, (L+1)(k . . .k )uf u~ uu, . ~

x u(p) (io, i„.k, .)y„y»— ,
)
(-io„„k,) &(p).

(2.8)

In (2.8), e&p (J) is the projection operator for a
(s ')

boson of spin J (see Appendix B of I for other de-
tails).

The structure of the integral for 5m'(=2m om)
for the case of the mesons is obtained through ex-
actly similar consideration except for replace-
ment of the coupling structures (A-E) (Ref. 14)
by (A'-C') and concomitant changes usual for the
boson systems.

Provided that the conditions for a Wick rotation
are satisfied (i.e., the singularities in the k, plane
are located just below the positive real axis and

just above the negative real axis) we can, following
Cottingham, ' change the integration contour run-
ning in Eq. (2.5) from k, = —~ to k, =~ to one run-
ning from k, = —i~ to k, =i~. This condition im-
poses a constraint on the pole structure of the
various form factors, governed by the usual
Feynman condition M'-M' —ie (see Sec. III).

where

Ãzp (p) 1 m, m~ . ('~) M2 m& n~q2

+k " 3 '+k " 3 +k
P QJ m~ +

(2.7)

TABLE I. MJMy couplings of K's and I =0, 1 mesons.
The letters A' —C' correspond quantitatively to the fac-
tors indicated in Eqs. [(2.2)-(2.4)]. The operator T3 com-
mon to all the couplings has been suppressed.

and the j &
's [ V= p, &u, Q] are the coefficients of

the appropriate V-meson fields (V&) in the various
couplings given in I for nucleons and similarly for
Z's. As in I, the bracket ( ) in (2.6) stands for
the product of the propagator for the intermediate
state and the BVB~ vertices at its ends. To
specify the normalization, the contribution to

Trajectory

(K, 7r)

(K *,~)
K~
(KA ~K' *;A 2, ~')
(K~, A g

gPC

(I )~+

(L+ 1)
(L)'
(L)";(L)
(L + 1)++

Coupling

(A', 2A')
(B',2B')
A'

(C'; 2 C')
(B',2B')
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III. OFF-SHELL ASSUMPTIONS AND NORMALIZATION

The on-shell definition of f~~ have been given in
II [Eqs. (1.1) and (1.2)]. Our ansatz for off-shell
extrapolation is confined only to the radiation
quantum viz. p. '--k', while for other particles we
propose no extrapolation at all. This extrapolation,
in addition to endowing the integrals with the cor-
rect pole structure in the k, plane for the purpose
of a Wick rotation, also ensures that not only does
the integral converge for each L value, but so
does the summation over L for successive inter-
mediate resonances of each type (the latter
arising through a. linear dependence of M~' on L).
The numerical values of the reduced coupling
constants for the (L+1}waves, the dominant
contributors, are

(gw'/4w) = 1.5, (g„'/4w) = 0.16 (3.1)

for baryons and mesons, respectively, while for
(L —1) waves these are an order of magnitude
smaller and make negligible contributions to 5m.

The masses of the successive recurrences con-
tained in individual towers are generated, as in

I, through the standard linear relation
M~' =aL+6, a=1 QeV'. The comparison given in
I between the electroproduction data and the pres-
ent model provides the (phenomenological) basis
for parametrization of all the N*Ny types of
couplings except NNy which was not used as an in-
put for the calculations of that process. Thus, a
literal extrapolation of the N*Ny couplings used
therein to the NNy case would unfortunately imply
the unpleasant prediction of a nucleonic charge
rather too large [about (mz/m, }' ' times the normal
value]. We seek to remedy this feature for NNy

by demanding normalization of the NNV form
factor so as to produce unit charge via VMD.

For the case of other particles (Z;K, w), where
no direct guidance from reaction data is available,
we use the broad principle of normalization of the
elastic form factor to unit charge to fix the re-
duced widths for the electromagnetic couplings of

After this rotation, the variable g = k = k + kp is
always positive and Eq. (2.5} can be recast as

(4wi) e (» y2)l/2
5m, =—,— d» dy . Qw(», y'),16@4 gp p, x -sc

(2.9)

where we have used the symbol y for the photon
energy k, .

Numerical calculations involving Eq. (2.9) are
greatly facilitated by a change in the variables of
integration as briefly outlined in the Appendix.

these particles via VMD, partial symmetry, ex-
change degeneracy, and the additional principle
of Regge universality for the couplings of their
recurrences. In principle, this is adequate to
fix the reduced coupling constants uniquely for a
given class of form factors. However, as de-
cribed above, there is a violation of the universality
principle for the nucleon case to the extent that
the reduced coupling constant L =0 does not fit in
with those for L&0. We suggest the same amount
of violation for Z*Zy couplings versus ZZy
couplings as in the N case, viz. the reduced cou-
plings for Z will be related via SU(3) and SU(6) to
those of the Ã's. For meson couplings (K, w), on
the other hand, no such consideration is relevant
so that the principle of unit-charge normalization
for the elastic form factors of the mesons is
enough to specify the reduced coupling constants
for higher L states with the form factors of the
type given in II without violation of the universal-
ity principle in the transitions from L = 0 to
L&0.

As to the value of k' at which to fix the normali-
zation to unit charge, we use the standard point
0'=0 in all the cases except one, viz. wry. For
this isolated case, the unusually low mass of the
pion in relation to that of p unfortunately makes
the form factor particularly sensitive to the extra-
polation which involves a long journey from the
mass region (m&) used for comparison of the
p-decay data. " To avoid such a long extrapolation,
we have little alternative to normalization at the
p-meson mass shell for the calculation of the
pionic charge via wwy couplings. [A similar
ansatz was suggested for electroproduction, '~

where the extrapolation M'- W ' (=m'+rnid' —2P.k)
was found to give much better agreement with the
experimental results than the simpler choice
M' —W (=m —k —2P k).]

IV. NUMERICAL RESULTS

We have evaluated five typical cases of electro-
magnetic mass differences; three (viz. n -P,
Z —Z', and K'-K') having n i=1 while two
(Z'+Z —2Z' and w' —w') correspond to aI= 2. -

The P-n and K'-K' differences are just the co-
efficient of —,'T, in the self-energy integrals,
arising from (p(d, pQ) interferences only. Similar-
ly, the entire contribution to the AI=1 case of Z
and aI=2 cases of both Z and w come from (pu&, pP)
and (pp) interferences, respectively.

(a) n-P mass difference. In Table II, we present
the results of a breakup into contributions of mag-
netic and charge origin. One finds that for the
Born contribution, the charge term dominates,
making its expected (albeit small) contribution
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TAB LE II. Breakup into magnetic" origin, "charge"
origin, and their interference of contributions to n-p
mass difference from 1.=0, 2 members of N~. The con-
tributions are given in MeV.

Particle Magnetic Charge Inter. Sum

N(938)
F„(1690)

0.142
0.144

-0.522
-0.101

0.358
0.170

-0.022
0.213

with opposite sign. However, from the second re-
currence onwards the magnetic and the inter-
ference terms soon take over and produce a net
positive contribution for all the remaining N
resonances, the values for the (L+1) wave con-
tributions of the first four members of this tower
being -0.022, 0.213, 0.062, and 0.021 MeV, re-
spectively. Exactly the same mechanism is re-
sponsible for yielding a positive contribution
from the N„ trajectory as well. Since the contri-
butions of the (L —1) wave couplings is nominal
compared to that of the (L+1) wave (a direct
consequence of this feature being the dominance of
higher-spin trajectories, i.e. , J=L+ z, L+ —,

' over
those of low-lying trajectories, i.e., J=L —~), we

have refrained from presenting the corresponding
break up into (L +1) waves and their interference.
Instead, in Table III, we merely present the total
contributions of individual trajectories. It is
clearly seen from Tables II and III that two im-
portant factors, viz. (i) the dominance of the mag-
netic contributions over charge contributions and
(ii) preponderance of the (L+ 1) wave over (L —1),
are directly responsible for bringing about the de-
sired sign for the resultant (n-P) mass difference.

(b) Z mass differences. The basic mechanism
operative in the case of Z mass differences is the
same as for the nucleonic case except for the dif-
ferences brought about by the Clebsch-Gordan
coefficients and the presence of decimet inter-

mediate states which have no counterpart in the
latter case. The masses of the leading members
of experimentally unobserved towers (Z& and Z$)
have been fixed through using the twin principles
of 10, and 8~ mass degeneracy and small L —S
coupling. Specifically, the main contributors to
Z —Z' are Z (0.590), Z*~(0.317), and ZR.~«(0. 184),
whereas those to Z'+Z —2Z" are Z„(—0.374),
Zf(-0. 153), Z&(-0. 133), and Z (-0.124) (the num-

berss

in the br ackets indic ate the corr esponding
contributions). On the whole, however, the over-
all results for both the Z cases in our model are
unsatisfactory; Z —Z has correct sign (1.353)
but is too small in magnitude; Z'+Z —2Z' has
the wrong sign (-0.897) and is small in magnitude.
In Sec. V, we shall discuss some possible reasons
for the failure of our model in this case.

(c) K'-K' mass difference: For the K'-K'
(n, I= 1) mass-difference calculations (Table 1V),
there are, in all, six possible intermediate
trajectories. The essential n-p results, viz. the
dominance of (i) magnetic over charge contri-
butions and of (ii) the (L+1) waves over (L —1),
are maintained in the kaon case, thus providing a
similar mechanism for ~~0 & Sn~+. In bringing
about the dominance of the (L+ 1) wave over (L —1),
the normalization factor (4M~') relevant to the
former wave and the off-shell GOR fa.ctor (P' —P )
relevant to the latter [see Eq. (2.4)] have played an
important role. In more specific terms, states of
J=L, C =( —)

" Inatural parity, such as K„,K*']
seem to dominate over both J= L+1, C =(-1) "
(such as K*,Kr) and J=L, C =(—1) (unnatural
parity such as Ke). Since all the natural-parity
states have magnetic couplings, their dominant

TABLE lV. Analysis of K -K+ and 7(+-~ mass dif-
ferences. In the absence of relevant experimental data,
the mass of the leading member of K*' (~') is taken to
be degenerate with the second member of the K* (~)
trajectory.

TABLE III. Contributions to n-p mass difference of
individual trajectories.

Type Trajectory
Contribution

(MeV)

Trajectory

N~

cVH,

Nll
6

Ny

Ny
Ng

Roper

C ontribution
(MeV)

0.289
0.070

-0.147
0.491

-0.101
0.048
0.060

Total 0.710

(K'-K') K

K~
Kz

(K~+K*')

A2

g, + ~')

-0 ~ 592
0.099
0.021
0.002
3.362

Total 2.892

22.473
—0.054

0.082
-18.823

Total 3.678
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contributors, viz. J =L members produce the de-
sired signs in adequate magnitudes. The un-
natural-parity states [C =(-1) ], which are
characterized by charge couplings, contribute
wrong signs but of smaller magnitudes. The only
exception is the Born term whose (charge) coupling
is appreciable and considerably offsets the effect
of C =(-1) "states. [The exception for the Born
term is perhaps due to the fact that its coupling
does not require a gauge modification because of
the equality of masses, in contrast to the higher
(L&0}members; see Eq. (2.2).]

We note in passing that the numerical success of
this model for the kaon case is largely due to the
reinforcement of contributions from even and odd
L values (without distinction) involved in 4= L
states of natural parity. Such a reinforcement is
due to a common pattern of SU(6) couplings of the
kaon and its excited states to the photon via VMD,
without distinction between even and odd values of
L, a feature which owes its origin directly to the
absence of any role of G-parity selection rule in
the kaon case.

(d) w'm' mass difference. Finally, the r'-w' mass
difference (Table IV) is governed by the same
general mechanism as for the kaon case except
for the key role of the G-parity selection rule
which brings about some important differences.
Thus A, and (d, together with their recurrences,
make nominal contributions, in conformity with
the general pattern of small contribution from
J=L+1 states of natural parity. Again, the opera-
tion of the G-parity selection rule is responsible
for the absence of any contribution from p and B
as well as their recurrences to the m'-w' case.
However, the most important consequence of this
selection rule is that the J= L states of natural
parity now give opposite contributions for even
and odd L, in contrast to the kaon case. Indeed,
there appears to be a close competition between
the opposite contributions for odd and even L's
leading to a net negative contribution which is able
to offset the large positive contribution from the
Born term to an observationally more pleasing
magnitude. This apparently fortuitous yet in-
teresting result which characterizes our coupling
scheme with "power" form factors does not seem
to have any simple explanation beyond its over-all
consistency with the predictions in the other cases.

V. DISCUSSION AND SUMMARY

couplings, "seem to give quite sensible results
for the n-p, K'-K', and g'-71' cases, but do not
work as well for the Z case. The unusually low
value of the Born term for the n-p case in this
model, compared with contemporary calculations, '
is the result of large destructive interference be-
tween the charge and magnetic contributions, each
of substantial magnitude. Yet this result is not
entirely satisfactory since it implies a less rapid
fall with momentum transfer of the magnetic form
factors of the nucleon than is claimed to be indi-
cated by the data. " However, it should be also
noted that the success of the mechanism arises
mainly from the contributions of higher resonances
and depends only marginally on the fact that the
magnitude of the (wrong-sign) contribution of the
Born term is small. The lack of success for the
Z case could be partly attributed to the (unex-
plored) role of some more trajectories, espe-
cially [70, even'] (Ref. 11) mentioned in Sec. I,
which abound in Z states but have fewer X states.
These would, however, require additional param-
eters for their estimation without adequate support
from decay data and hence would be of less phys-
ical interest.

Our main argument for the estimation of 5m in
terms of towers of resonant contributions stems
from our earlier results on g production, "which
strongly suggested a simulation of A, exchange
supposed to be the dominant mechanism (tadpole)
for 5m calculations. ""Thus the compatibility of
these results with those of Buccella et al. ' could
be judged in this context, though a direct com-
parison is not possible beyond what is stated in
Sec. I. As to the contribution from the scaling
region, our method is probably inadequate to the
extent that only single resonant intermediate
states have been considered. However, the nu-
merical results would appear to indicate that this
region does not dominate the 5m contribution, in
agreement with at least some claims in the litera-
ture. Also, we prefer not to comment on contri-
butions from weak-interaction effects which have
been claimed in recent literature. We have merely
suggested one possible mechanism, viz. a resul-
tant of charge versus magnetic contributions (with
dominance of the latter) arising from different
towers of resonant intermediate states, with no
loose parameters. It seems to work rather well
for AI=1, but not so much so for AI=2.

Through the twin mechanisms of dominance (i}
of magnetic contributions over charge and (ii) of
(L+ 1) wave coupling terms over the (L —1) wave
terms, our calculations of electromagnetic mass
differences via an SU(6)~&&O(3) model of hadron
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APPENDIX

ex (x y2)l /2
I= i dx dy, „,f(x, y'),

o o x~x+ rn
(A1)

the factor (x+ m, 2)' arising from the y-V vertex
[Eq. (2.7)]. Introduce the parabolic coordinates
u and v defined by the equation

Consider the following double integral occurring
in Eq. (2.9):

integral (Al) can be recast as
" i4 u+VI=~ dv du( )/,

(1 4u)~ /2(1 + ~v)~/2

(4+V u

The further substitution

lv=(—, -u) 1 —(d

so that

(A6)

y" = 4u(x+ u),

y" = -4v (x —v),
(A2)

y x 1
(A3)

In terms of the new variables, whose ranges of
variations are given by 0 ~v & ~, 0-u- —,', the

where y' and x are dimensionless quantities given
by

0 ~co ~1

leads finally to

»4 d.I= — —(1 -4uar)'/'(u —2ucv+ —,'(o)
So ~& Jo 4u

(A6)

—,
' —u (—,

' —u) (4u(u)
1 —&u 1 —&u

(A7)

a form particularly suitable for numerical work.
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