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We show that the effective potential of three-dimensional $' theory to leading order in the I/N expansion may
have a minimum at $ = 0 even though the classical potential has a maximum. When this happens the effective
potential is double-valued near f = 0. We discuss some interesting consequences of this but show that provided
the $' coupling is of normal strength the global minimum of the effective potential remains at nonzero $'. This
confirms earlier results on the spontaneous breaking of the O(N) symmetry of this theory.

I. INTRODUCTION
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The effective potential for this theory to leading
order in 1/N was derived in Ref. 3, hereafter
referred to as (1). Renormalized results were
given only for the derivatives of the effective po-
tential. , but the renormalized potential itself can
be obtained as easily and is
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in which we have chosen to use the composite

(1.2)

Investigations into the nature of the ground state
of quantum field theories generally involve a per-
turbative evaluation of the effective potential of
those fields which may develop vacuum expecta-
tion values. However, in a simple loop expansion
we cannot consider the possibility that the true
ground state is not to be found from perturbations
about the tree-approximation ground state. Re-
cently, several authors have shown how this ques-
tion can be investigated in O(N)-symmetric A.Q'
theory through the 1/N expansion. ' This was pre-
viously thought to be an inconsistent expansion in
four dimensions because of the presence of tachy-
ons in the Green's functions. ' This criticism is
not correct because the effective potential, as a
real function of @', is actually double-valued, with
the global minimum occurring at Qs = 0 on a branch
not previously considered. The O(N)-symmetric
Green's functions constructed about this global
minimum are free of tachyons. '

In this paper we pursue these issues in another
renormalizable scalar field theory with an O(N)
internal symmetry, Q' theory in three dimensions,
for which the Lagrangian is

field notation. " X(Q) is given implicitly as a func-
tion of Q' through the "gap equation"
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Notice that Eq. (1.2) does reduce to the correct
classical potential. as k-0 because, to zeroth
order in S, X = Q /sN. If Eq. (1.2) is differentiated
and use is made of the gap equation we obtain

8v(4) ., ~x, nx'
8(jb.

'
6
' 5! (1 4)

To find the minima of V(Q) we set 8 V(Q)/8$, to
zero. In (1) we studied the consequences of the
choice
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With the gap equation for X(Q) we see that this is
equivalent to

(1.6)

might provide the global minimum of the effective
potential and prevent the spontaneous breaking
of the O(N) symmetry, as does happen for four-
dimensional A.Q' theory. ' At first sight this would
seem unlikely because it was shown in (1) that
the propagators constructed about a broken-sym-
metry minimum of V(P) are free of tachyons, in
contrast with four-dimensional x/4 theory. But
it would also appear from the gap equation, (1.3),
that there might be more than one real branch of
X(Q) and hence, through Eq. (1.4), of V(Q). We
will show in the next section that V(Q) may indeed
be double-valued, and that it is therefore im-
portant to check whether the global minimum of
the effective potential can occur on one of these

which is the tree-approximation result. What
we did not consider in (1) was the probability that
the other choice,

=0
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branches. While we do find some interesting non-
perturbative results paralleling those of four-
dimensional A. Q~ theory, we also find that the con-
clusions of (1) concerning spontaneous symmetry
breaking remain valid provided the Q' coupling
is not too large.

1
e~ gar

(2 8)

In this case there are two allowed branches of
g(Q) for large P2, but Eq. (2.8) clearly shows the
singular nature of the theory at f =1. For this
reason we will. consider only

II. THE GAP EQUATION

We must first find all. real solutions to the gap
equation, (1.3). By squaring we obtain

g«1

in the following.
Our second observation is that

(2.9)

m + —+

This is a quadratic equation with the solutions

(2 1) 20K. ~ 5~ m~ 2&51
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where the left-hand side appears in Eq. (2.2) and
U' is &U/S(P'/N) with U(Q'/N) the classical po-
tential. Note that the minimum of U' occurs at

20& 5l m
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where g is the constant

10k.
+ =0

with a minimum value of

10g ~ 5f m~
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(2.3) There are two distinct regions in parameter space
to consider. Firstly, if

Q2x- —-o
N
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The most important fact about the solutions of
Eq. (2.2) is that not all are necessarily allowed
because in squaring the gap equation we may have
introduced spurious solutions. In fact, a solution
of Eq. (2.2) is "allowed" only if

10K, ~' 5l m3
&0 (2.13)

}i(Q) and hence V(Q) are real everywhere. It is
not difficult to show in this case that only one
branch of g(Q) and V(Q) is allowed. We plot y
—Q2/N and V(Q) for this case in Figs. 1(a) and
1(b), respectively. If, on the other hand,

because the sign of the square root in Eq. (1.3)
is unambiguous. This is a reflection of the fact
that

10~ ' 5tm'
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+M 2
(2.5)

Q2 ] y pl/2
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is unambiguously positive for real M.
We have seen that g —Q2/N vanishes at the non-

zero extrema of the effective potential, and there-
fore we will plot y —Q2/N for various choices of
m~, X, and g. To this end we make several useful
observations. Firstly, the large-Q2 behavior of

Il(Q) is found to be

there is a nonzero minimum of U($2/N), and
V(Q) is complex for roughly those values of p2

for which U' is negative. For example, if m &0
and ~&0, there is a nonzero maximum and a non-
zero minimum for positive P2 and an allowed real
branch of g(Q) and V(Q) near $2=0. We plot g
—Q2/N and V(Q) for this case in Figs. 2(a) and
2(b).

If m2(0, U' will be negative from Q2 =0 to the
nonzero minimum. We might therefore expect
V(Q) to be complex in this entire region. But in
fact V(Q) may be real close to Q2 = 0. The pre-
cise condition is that

For /&1 we must choose the minus sign, in order
to satisfy Eq. (6.21). This gives us

51m~ 10k, ~ 5l pyg~
+ g&1,

n n n
(2.15)

Q2
X y2(~ ~ N 1 + gj/2 (2.7) that is,

If P&1 we may also choose the plus sign, for which
—6m' 1 —f

(2.16)
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FIG. 1. The symmetric case; no nonzero minimum of
V (Q). Both X(p) and V (g) are single-valued everywhere.
(a) X(p) —Q~/N; the dotted curve is the spurious solu-
tion. @)V (Q); the energy is towered slightly by the
radiative corrections. The dashed curve is the classi-
cal potential.

This can be satisfied even for («1 if we choose
m2, X, andy appropriately. We plot g-P'/N
and V(Q) in this eventuality for A. &0 in Figs. 3(a)
and 3(b), and for A. &0 in Figs. 4(a) and 4(b). We
see that if A. &0 neither branch is allowed and if
X&0 both are allowed, so that we need consider
only A.&0.

To see the significance of a real branch of V(Q)
near P' =0 differentiate Eg. (1.4):

s'V(P), ~X(0), nX'(0)
b
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FIG. 2. Symmetry breaking for m & p, A, & p. The
vertical dashed lines indicate the positions of the non-
zero maximum and minimum. Both g(Q) and V (Q) are
complex within these two lines. (a) x(p) —Q &/N; the
dashed curve is the spurious solution. (b) V (Q); notice
that V (Q) is double-valued close to the maximum. The
dashed curve is the classical potential. .

found for A. @~ theory. In addition, we argue in
Appendix B that the uPPer branch near Q' = 0 will
become complex to second order in 1/N owing
to the presence of tachyons in the Green's func-
tions constructed about a point on this branch.
The crucial question for Q' theory is whether the
minimum of V(Q) at Q' = 0 on the louver branch
is sufficiently low to prevent the occurrence of
spontaneous symmetry breaking. Ne address
this question in the next section.

4n= —X(0)e (2.1V)
III. THE GLOBAL GROUND STATE

This shows that V(@) is necessarily a minimum at
P' =0 on any real branch. It is therefore surprising
that such a real branch can exist for m'&0 be-
cause this means that the radiative corrections to
leading order in 1/N have turned a maximum of
the classical potential into a minimum of the ef-
fective Potentia/. This phenomenon is just that

To find the value of V(Q) in the broken-symmetry
minimum we set g = P'/N in Eq. (1.2), which be-
comes
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FIG. 3. Symmetry breaking for m & 0, A, & 0. There
is no al.lowed reaI. branch at $2= 0, and X, (Q) and V (Q)
are compl, ex to the left of the minimum indicated by the
vertical dashed line. (a) X(P) —$2/Ã; the dotted curve is
the spurious solution. Cb) V (P); the only minimum is
at nonzero Q2. The dashed curve is the classical. poten-
tial.

PEG. 4. Symmetrybreaking for m &0, X&0, with
X»l. The vertical dashed line indicates the position of
the minimum. g(Q) and V (Q) are real and double-valued
close to $2= 0. (a) g(Q) —P~+; the dotted curve is the
spurious solution, (b) V(Q); there are bvo minima of
V g) at P = 0, but the nonzero minimum will be the
global one provided f«1. The upper branch at $2= 0
becomes complex to second order in 1/N. The lower
branch remains real and plunges to —~ as g 1.

where Q . ~ is determined from Eg. (1.6). The
value of V(P} in a symmetric minimum is found

by setting Q' =0 in Eq. (1.2), which becomes

~X'(0) nX'(0)
N 4) 3x5i (3.2)

To compare the values of these two energies we
need to soive for g(0). From Eq. (2.2) we can
write

There are three ranges of values of E to be con-
sidered. These are the following.

E«g. In this case

y(0}= [1+K '~'(1+K)'~'] m'&010~
1 —g

[1+K '~'(K-1)'i'], m'&0
g 1 —g

(3.3)

where E is defined by

g(0) is complex for m'&0.
Z. K- l. In this case

X(0)- 20k,
), "0

q 1-g '

and

(3.5)

(3.6a)
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3. X»1. In this case

y(0) =0, m2&0

(3.6b}

(3 7)

and the upper branch becomes complex in the next-
to-leading order in I/& owing to the presence of
tachyons in the Green's functions constructed about
this branch. But in spite of the unexpected min-
imum on the logger branch at P2 = 0 the global min-
imum of the effective potential remains at non-
zero Q2 provided the Q' coupling is much less
than the critical value

20~
q = (4v)2 5! . (4.1)

In the tree approximation V(0) vanishes (with
our choice of overall constant). We would expect
radiative corrections to alter V(0} slightly and
hence alter the precise conditions under which
the broken-symmetry minimum of V(Q) obtains
the lower value. We are not attempting to find
these conditions here but merely to determine
whether the minimum on the lower branch of V(0)
at Q2 =0 is so low that it seriously alters the pre-
vious conclusions of (1) regarding the regions in
parameter space for which the O(N) symmetry
is broken. If

(3.8)

then V(0) is positive. Since this is greater than
the tree-approximation value we discount any
solution for }f(0)satisfying the inequality (3.8}.
There are therefore only two candidates for the
global minimum at Q2 = 0. These are

and

mm'

( (3.9a)

X(0)=
20k, K- 1, K»1.

q 1 —f (3.9b)

q «(4v)2 5!=4800. (3.10)

We leave the tedious comparison of V(Q . ) with
V(0) for these two cases to Appendix A and simply
state the result that, provided f«1, the global
minimum of the effective potential will remain
at nonzero P2. The condition on the coupling con-
stant implied by the restriction on g is (N' = 1)

The theory is singular at this critical value. One
example of this is that the lower branch of the
effective potential at $2=0, when it exists, drops
to —~ as the critical value of q is reached. While
this would ensure the impossibility of symmetry
breaking for values of g close to the critical value,
it is not clear how far our results may be trusted
for such large Q' couplings, andwechoose to re-
strict i} to values much less than that of (4.1), that
is, to couplings of "normal" strength. With this
restriction we confirm the results of Ref. 3 for
the spontaneous breaking of the O(N) symmetry
for three-dimensional Q' theory.

APPENDIX A

We have found two candidates for a global min-
imum of the effective potential at Q2 =0, with
values of!i'.(0) given by Eqs. (3.9a) and (3.9b). To
find the energy at &P2 = 0 we must substitute these
values of g(0) into Eq. (3.2). We obtain the follow-
ing results for the two cases.

2. K«1, m &0. }!(0)is given by Eq. (3.9a),
and the corresponding energy is

-v(D)=m'( —
)

—
(

i
) (A1)

the approximation is valid for K«1.
Z. K-1, K»1. }!(0)is given by Eq. (3.9b) and

the corresponding energy is
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IV. CONCLUSIONS

We have used the I/fi/ expansion to obtain es-
sentially nonperturbative information about the
effective potential and ground state of three-di-
mensional Q' theory. In particular, even though
the classical potential has a maximum at i!i2 = 0,
the infinite number of graphs in the leading term
of the I/Ã expansion can turn this into a minimum
of the effective potential. When this happens the
effective potential is double-valued near Q2 =0

which can be written for A, &0 as

'Ymin
[ I Ks -i/2(K I 1)1/2]

N q
(A4)

Equations (A1) and (A2) must be compared to
V(P . ) of Eq. (3.1). i!i . ' is the solution of Eq.
(1.6) and is

10~ 10~ ' 5!m2 '/'
N
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where E' is the quantity

5z'

IOA.

N (A6)

and all the terms of Eq. (3.1) are of the same
order of magnitude. Using E'-1 in the form
X-mq'~' we find

1 m'
N V(Q . )-

Because (j) . ' is complex if K'&1 there are only
two regions of E' to be considered. These are
the following.

1. K'-1. From Eq. (A4) we find

due to the presence of the tachyon in the Green's
functions constructed about this branch. Abbott,
Kang, and Schnitzer showed' that the tachyon on
the upper branch is caused by the existence of
the lower branch, which remains real to second
order in 1/N. By analogy, we would expect that
seheneve~ there exist two real branches of the
effective potential the upper one will become com-
plex in the next order of perturbation theory. To
verify this conjecture for P' theory in the 1/N
expansion we require a result of Ref. 4, in which
it was shown that the effective potential to second
order in 1/N for three-dimensional Q' theory is

V= V„+ —
~ ln 1+pI(P )+

d'P p Q'/3N
W p2+u2

(B1)
Z. K'»1. From Eq. (A4) we find

20k,

N (A8)

where V„ is the leading-order result and the suf-
fix E indicates a Euclidean integral. The quan-
tities M', p, and I are given by'

and we may neglect the m'($2/N) term in Eq. (3.1)
for E'»1. We obtain

~x nx'
6 51

(
( )

5«'
(50)

m'
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To compare V(0) with V(Q . ) note that K«I
implies no restriction on K' (for g«1), whereas
E-1 or E»1 implies that E'»1. Using the above
results we find the following.

i. For E«1 we have

'OX
p =A. +

)((*)= (
—)«r««(n(, ~*,)' '

(B2b)

(82c)

)'(( ) «(( —()"'

2. For E-1, E»1 we have

V((j) ) 1 I
V(0) 5

(A10)

(A11)

With Eqs. (82) we find the arguments of the log-
arithm of Eq. (B1) to be (in the limit P'-0)

I„ I, &0'/» I, ~, nX

P +~ p ~p 10 48m'~ 3N

(B3)

Equations (A10) and (A11) imply that V(Q . )& V(0)
if g«1, and therefore that the global minimum
of the effective potential remains at nonzero Q'.
Notice that as p approaches unity the lower branch
of V(Q) at (j)' =0 drops to —~. In this case the
global minimum would certainly occur at (j)' = 0,
but because of the singular nature of the theory
at f = 1 (in this approximation) it is not clear that
we can trust our results for such large Q' cou-
pling. We therefore restrict the results to f«1.

APPENDIX B

We have seen that even for small Q' coupling,
g«1, there may be two real branches of the ef-
fective potential, V(Q), near Q' =0 for certain
choices of the parameters, namely ~&0 and E &1.
It was shown by Root for four dimensional A. Q4

theory that the upper branch of the effective po-
tential becomes complex to second order in 1/N

and (in the limit P'-~)
pl'/3N1+pl+ 2 2- = 1.
p +M (B4)

Therefore there will be a zero of the argument
and hence a pole of the logarithm if

1+ ~+ —"" + P~ -01+ &+
4

+ 2 0

for some non-negative value of (I)2. Consider
(t)2=0, for which (B5) becomes

12 10 4w -g 0

or, equivalently,

(B6)

(Bv)

From Eqs. (3.6b) and (3.7) we see that this con-
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dition is satisfied only on one of the allowed
branches at Q' =0, and it is not difficult to show
that this corresponds to the upper branch of V(Q),
which therefore becomes complex to second order
in I/N owing to the presence of a pole in the
Euclidean integral of Eg. (Bl). It is obvious that
this is also true for some small region near Q' = 0,
and if our interpretation is correct the entire
upper branch will become complex.

The argument of the logarithm of Eq. (Bl) is
actually just proportional to the inverse g propa-

gator. This propagator has a pole for Euclidean
P' and therefore contains a tachyon. It is the
tachyon in the intermediate states that causes the
upper branch to become complex to second order
in I/N. This is similar to the behavior of the
effective potential of four-dimensional A. Q' theo-
ry; the crucial difference is the additional sym-
me A'y-breaking minimum of the effective potential
of three-dimensional P theory, which is in gen-
eral aLso the global minimum.
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