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Recent results concerning the possibility of scaling for the absorptive part of elastic scattering amplitudes are
extended and include properties of the multiparticle generating functional. Among other results one finds a
high-energy scaling law if the quantity ( n )/( n)' remains bounded. Transformations which respect the
existence of a dominant peak are applied both to sums of powers and to a large class of sums of orthogonal

polynomials with positive coe8icients, and generate the possibility of both upper and lower bounds for the

peak parameters. These transformations give us the possibiIity of constructing from a primitive function, having-a, .

dominant peak, a set of~functions with the same property. Consequently there exist different possibilities of
scaling: from the weakest scaling, where only the primitive function and another one scale inside a part of the

dominant peak, to intermediate scaling, where only a finite number of functions of the set scale with only a
finite number of derivatives of the primitive limiting function existing, up to the strongest one where any

function of the set scales and any derivative of the primitive function exists. This strongest scaling, where the

primitive limiting function can be analytic with respect to the scaling variable, corresponds to scaling laws

found previously, such as the case rT-(loy)' or the Koba-Nielsen-Olesen scaling.

I. INTRODUCTION

The ratio of the elastic absorptive amplitude to
its forward part is a function of two variables s
and t (s is, as usual, the square of the c.m. energy,
and t is the square of the momentum transfer in
the c.m. system). We study the possibility that this
ratio, when the energy goes to infinity, reduces to
a function of a single scaling variable, r = ty(s),
for physical v &0 values. A new approach to this
problem has been briefly reported recently. '
Taking into account the positivity properties of the
elastic absorptive amplitude and also of the multi-
particle generating function, we express such scal-
ing in terms of general requirements on the rele-
vant observables rather than to any particular mod-
el [such as or(logs) '-const, where or is the to-
tal cross section].

As is recalled in Sec. II, this new approach must
be compared with previous theoretical results, "
where, from analyticity in the complex t plane
when s -~, it was shown for the reduced elastic
absorptive amplitude that there exist scaling func-
tions f(~ = ty(s)) analytic in the complex r plane.
In these previous cases, the scaling exists for
physical 7. -0 as well as unphysical v & 0 values.
However, either it corresponds to particular
cases' or(logs) '- const or it requires' for
or(logs) '-0, assumptions which appear to be very
difficult to test experimentally. In the second sec-
tion we show, in the case ar(logs) '-0, that in
general this scaling cannot be expected to be de-
rived from assumptions about physical observables
alone. We note also the connection between these
previous results' and a recent popular formulation
of the scaling called "geometrical scaling. "4

In the third section we recall the Arzela theorem,
which appears to be very convenient for the proof
of scaling properties. We establish how it can be
applied to real functions having a "forward peak"
due to the existence of positivity properties. Let
us call —T„(s) the smallest momentum transfer
value such that this function is equal to a fixed
positive number n. If T multiplied by the forward
slope remains bounded when s increases, there ex-
ists a scaling function; the scaling variables are
either v = ET„' or 7 = t multiplied by the forward
slope. In this way we obtain sufficient conditions
for the scaling of either the generating multiparti-
cle function or the absorptive elastic amplitude.
For the latter we recall the result' that the scaling
exists if o,&b/or'/ ~, with scaling variables V = tb
or t= for'/rr, ~

'(b is the forward slope and o„ is the
elastic cross section).

In the fourth section we define a class of real
functions f(z), keeping the existence of a, dominant
peak at z„~f(z)) ~f(z,) for z~[z, z,] when we apply
the transform

f-g = [f(z) f(z,)]/(z —z&&)f'(—z,)

(we mean that g has also a dominant peak at z,).
Sums of powers, exponentials, and classical ortho-
gonal polynomials (excluding Hermite polynomials)
with positive coefficients belong to this class.

In the fifth section we consider such classes of
functions (keeping the existence of a dominant
peak). It is shown that inside the interval where the
peak is dominant these functions have lower and
upper bounds when we retain only an even or odd
number of terms in the Taylor expansion around
the dominant peak. For instance, the straight-line
approximation with slope provided by the slope at
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the peak value is a lower bound, whereas the para-
bolic approximation where the second derivative at
the peak value appears is an upper bound. As an
application we get that the elastic absorptive am-
plitude scales if c/b'$ ~ (c is the curvature) or
that the generating multiparticle function scales if
(n')/(n)'/ ~; the limit functions are differentiable,
and the scaling variables are either v = tT ' or
~ =tb, 7 =t(n) ((n) is the average multiplicity).

By successive applications of the above-defined
transformation we can, from a primitive function,
define a set of functions having a dominant peak,
and we can determine sufficient conditions in order
that these functions have scaling properties. In
this manner it appears that there exist different
degrees of scaling: from the weakest, where the
primitive function scales for v &0, with the first
derivative of the limit function existing, to inter-
mediate scaling, where only a finite number of
functions scale, with only a finite number of deriv-
atives of the primitive limiting function existing,
up to the strongest case, where any function of the
set scales and any derivative of the primitive lim-
iting function exists.

In this way it is shown that this strongest scaling
corresponds for the elastic absorptive part to the
one found in Refs. 2 and 3 (with scaling for ~ & 0)
and for the generating multiparticle function to the
Koba-Nielsen-Olesen scaling. ' These properties
as well as other applications of these transforma-
tions, keeping the existence of a dominant peak for
the absorptive elastic amplitude or the generating
multiparticle functions, are studied in Secs. VI and
VII. In Sec. VIII we give the inequalities satisfied
by the scaling functions and in Sec. Ix we give some
real-part effects.

II. STRONG SCALING OR SCALING VALID FOR COMPLEX

VALUES OF THE SCALING VARIABLES

IN THE ELASTIC ABSORPTIVE CASE

A. 0'&(logs) 2 ~ const

In this case Auberson et al. ' have shown that the
elastic absorptive part a(s, t) =A(s, t)/A(s, 0)

„f(~= t(logs)') for at least one sequence (s„)-~.
Furthermore, f(r) is an integer function of order
—', , and the forward slope b = ( logs)'.

B. o&(logs)

Let us assume' the following: (i) v„/or'
= (logs)», 0&y, & 2,

y, =2~a(s, t) ~ f(7 =t(logs)' )

as in the previous case; (ii) 0&y, &2 and I. ,„
= s'~'(logs) «' (where I, is the maximum num-
ber of partial waves entering effectively into the

determination of the amplitude in a complex neigh-
borhood of t= 0). If (i) and (ii) hold, then
b=(logs)~0, or=(logs)8, P&y„o„=(logs)'8 ~o,
and a(s, t) ~ f(v=t(logs)») for at least one se-
quence (s„f ~, with f(r) being an integer function
of oldel

In both cases we have scaling for v &0. More-
over, in A o ~ has a very particular behavior, and
in B the assumed L, ,„behavior, lower than the
Froissart cutoff L,„=s' '(logs), seems very dif-
ficult to be tested experimentally. Let us consider
P =y, and call R' = ( logs)». It follows that or = v„
= 6 = 8'. Furthermore, let us replace the condi-
tion about L, ,„in the t space by a condition in B
spa, ce (impact-parameter space). Let us assume that
that a(s, B), the transform of a(s, t), scales in the
form a(s, R) = a(B/R). In this way we get in the t
space a scalingf(tR'). This particular type of
scaling is known in the literature as "geometrical
scaling. "'

C. Assumptions about Lm and the yield of observables

when o&(logs) 2 -+ 0

Let us ask the following question: 0~, 0„,
b, . . . being given, without the assumption (ii) of
Sec. IIB, can we hope to prove the scaling for z&0
(or t&0)'P

The answer is probably no (taking into account
only the positivity properties of the partial waves)
as we shall see with the following example. Let us
write the expansion near t = 0 for a spinless absorp-
tive elastic amplitude a(s, t) = l+ bt+ ', ct'+ (positive-
terms for t& 0) and consider the following distribu-
tion of imaginary partial waves a, : a, = const for
Is '~'(logs) '~'w[c„c,] and a, = const (logs) ' for
Is '~'(logs) '~ Ic„c,]; the other a, are negligible.
We get o,~

—-or= b= logs=R', c=(logs)', whereas
if we put 7. =tR'we get for w&0

a(s, t) = 1+const x v + const x r'( logs)

+ (positive terms),

and at fixed z&0,

a(s, t) -~.
More generally, if the distribution of a, near the
Froissart cutoff does not decrease more than log-
arithmically, we can always manage a distribution
of a, such that the nth term in the a(s, T) expansion
diverges for r & 0 when s -~.

In conclusion, if we want to find conditions where
only the observables v„, o~, b appear as sufficient
assumptions for the existence of scaling, we must
give up to the 7 & 0 case" and seek scaling only in
the r &0 physical domain. (For further comments
see the general conclusion. )
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HI. ARZELA THEOREM~ AND SCALING CONDITIONS

We recall the results obtained in collaboration
with Martin' concerning the elastic absorptive
amplitude and extend these results to the generat-
ing multiparticle function.

A. Arzela theorem

Let us consider a(s, 7), a real function defined
for 7' w [7'„v,] with s being a parameter, and we
assume

(i) ~a(s, v)j &C„where C, is independent of s,

(ii) a(s, ~) is equicontinuous.

The theorem says that from any sequence (s„)
there exists a subsequence (s„')-~ such that
a(s„', v) - f(7);f(r) is continuous on [v.„r,] (Ho. w-
ever, for another sequence there could exist an-
other limit. ) Let us remark that the equicontinuity
property (ii) is satisfied if

Ba—(s, v) & C„where C, is independent of s.

B. Application to a function having a "forward peak"

2. Another sca1ing variable

Secondly, let us try to choose another scaling
variable

7 = ta(0), 7'(= [0, —a(0) To]. (6b)

In this case, from (3) and (4) we get ~a(s, '7)
~

~sa/87
~

& 1, and the conditions (1) and (2) of the
the Arzela theorem are satisfied; however, we
must' verify that the sealing function is not trivially
equal to 1.

In Sec. V we shall define a class of functions,
keeping the existence of the peak at t = 0 for those
through particular transf ormations (for instance,
the elastic absorptive amplitude and the generating
multiparticle function belong to this class).

(i) We assume that a belongs to this class. It
follows (see Sec. VI) that T„defined by a =n a 1
has a lower bound a(0) T & I —n. Let us call 7„
= —T„a(0) the corresponding value for which
n(s, 7„)= n.

(ii) We assume that (7) is satisfied or T„d(0)
& C, with C a fixed number. From (i) and (ii)
follows that —T has fixed upper and lower constant
bounds 1-a &-7 &C, and the scaling is certainly
nontr ivial if

Let us say that a real function a(s, t) has a for-
ward peak if for t E [0, —T,] we have

[ —(1 —n), —C](:]0,—T,d(0)[.

C. Spinless elastic absorptive amplitude

(6)

(i) [a(s, t)[ ~ 1,

(ii) —c — = a(0),
a &a

Bt Bt t 0

(3)

(4)

We take

a(s, t) = Q (2) ))( ' )P, (z),As, 0

z =I+ t/2b', a, )0, a(s, 1) =1,
(iii) p= sup a(s, —T,) & 1.

L Scaling variable

First let us define as a scaling variable

~=t/T. , ~~[-1,0]. (6a)

It follows that the first Arzela condition (1) is sat-
isfied. The second condition is satisfied if

= T —&T d(0) /=
~a Ba

a gt n sj- (7)

If the condition (7) holds, a(s, ~) scales for at least
one sequence (s„)-~. This scaling is certainly not
trivial because the scaling function f(~) is contin-
uous and takes the values e and 1 for y = —1 and 0.

Let us define a fixed n value 0 &
~ p~ & n &1, and for

each fixed s value we define T„(s) (T„&T,) as the
smallest momentum transfer such that

a(s, —T„(s))= n, 0 &
~ p~ & n & 1, 0 & T„&T,.

(10)scaling exists if b" ' T„(s),~=„~.

Assuming 7' & 4k' and applying theunitarityrela-
tion, we get

g ABS t 0

[a(s, t)] dt&Xn'T„
0'z

CX

(with l). a known constant).
Let us consider v=tT ' or 7 =tb~~~. Using (11),

the condition (7) can be written with other observ-
ables:

gABS y ABS

scaling exists if -r - 00 ~0'
T g g~OO

T

Let us remark that (12) is satisfied if o~)~'/or'
=(logs) ~', b"' =(logs))'0 or if (z"'=a =b"'

Vfe recall that sufficient conditions, in order that
b" and b have the same energy behavior (if b"

a has a "forward peak" for z a] —1, 1] because it
satisfies (3) and (4), and with the variables v = tT„'
or 7 tbABs bABs a(0)
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is sufficiently slowly varying at high energy and
the antisymmetric amplitude is negligible}, have
been obtained recently. ' From the experimental
point of view, o„b(ar) ' seems bounded' and is
less than orb(o,„) ', which also seems bounded. '

Let us assume o „"b"' /o r' & C' and try
'7 = to r'(rrArs') ' as a scaling variable. We have lal
&1 and isa/BVl & C'. If again T„ is such that a(s,
—7„)= n e 1, the corresponding 't„value, —7 „
= T or'(o „) ', has fixed upper and lower constant
bounds (C') '(1 —cr}& t„&—X 'n ', where X is the
constant appearing in the unitarity relation (11).
If bs is larger than a sufficiently large constant,
then 7 is always inside the interval dominated by
the forward peak and the scaling is nontrivial. If
Eq. (12) is satisfied with oAr" replaced by o „, then
we can choose 7 = to~'o,

&

' as the scaling variable.

D. Multiparticle generating function

We take

a(s, z)=g z"y„, n, &0, y„=~&0, z&[0, 1],
0'

T
(»)

a(s, 1) =1, z=1+t, tH[ —1,0]

(o„ is the n-particles production cross section).
a has a forward peak because it satisfies (3) and

(4), and for a(s, ~), taking as scaling variable
either r =tT„' or t=t (n), we get the following:

scaling exists 1f

IV. TRANSFORMATIONS KEEPING THE EXISTENCE

OF A DOMINANT PEAK

Let us define b, the space of real functions f(z),
such that

(1)f(z) has a "dominant peak"
l f(z) l

«f(z,) = 1 for
zc [z,z.], lf'(z)l -.f'(z.) & z «., If'(z) I

-. f'(z-.)
lf Z)ZO.

(ii) If we define the transform

1-f(z), ~eg( ) =
(, ,)f,(, ), f'( .) =

(16)

then g(z) also has a 'dominant peak" lg(z) l «g(1)
=1 for z~[z,z,], lg'(z)l «g'(z, ) if z&z„ lg'(z)l
« —g'(z, ) if z&z, . In other words, it fEh, then
the transform f T=g keeps the existence of a
"dominant peak. "

Concerning the reciprocal transform, let us re-
mark from (16) that necessarily g(z) & 0 for
z ~ [Z, z,]. This means that from any given f(z)
having a "dominant peak, " there does not exist, in
general, a corresponding h(z) such that h T=f.

It is outside the scope of the present paper to
give a complete study of g; we restrict ourselves
to particular cases which illustrate the role of the
positivity property.

Let us assume that f is a sum of real h„(z) func-
tions with positive coefficients,

f(z) =g y„h", f(z ) =1, h„(z )40, y„&0,
h„(z)
nZ0

(n)T' (s)$, (n) =
)=Q Bz g

Applying the "unitarity relation"

-2 &n&~
0'p ~+m+i

t 0 0

[a(s,z)]'dz & a'dt & n'T„,

(14)

condition (14) becomes the following:

scaling exists if g —" g " " — vr
SO'„ &no'm

1

O tl+m+ ~

If we summarize the results obtained in this sec-
tion, we see that in both cases C and D the im-
portant point is the existence of a "forward peak"
due to an expansion with two properties:

(i) The polynomials z" or P„al hsaove a "for-
ward peak. "

(ii) The coefficients a„or a„/or are positive.
In the next section we try to construct more gen-
eral functions having properties similar to (i) and
(ii).

such that h„has a "dominant peak"

lh„(z)l h„(z.) for z~[z, z,],
lh„(z) l h„(z,) rf Z&z„ lh„(z) l

- h„(z,) V' z &z,.
It follows that f(z) automatically has a dominant
peak. 4 we find classes of h„(z) such that the
transform defined by (16) leads to a g function,
which is also a sum of h„(z) functions with positive
coefficients, then g(z) will also automatically have
a dominant peak. In A and B below we provide such
types of examples, whereas in C we give another
example of f~g, where f and g are sums of dif-
ferent kinds of h„.

A. ys„=z"

Theorem I. If f(z) =gyp", y„&0, Z=O, z, &0,
n, & 0, f(z,) = 1, then g Refined by (16) cari be writ-
ten

g(z)= g p~",

with p„& 0, g(1) = 1, p„„/z, & p„(the proof is given
in Appendix A). So in this case fag.
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with
np

I

f'(z, )ti p„&0,

f'(z())n(P. + —P„)& 0,

X„=6„(0„„)[(u„(P„(z,)P„„(z,)]-',
(21)

g'(z, )ti)[i).„,'p„,—p„(k„'+A.„,')+k„„'p„,]&0.

The proof is given in Appendix A; the main tool
is the Christoffel-Darboux formula. For Jacobi
polynomia, ls (which include Legendre, Gegenbauer,
and Tchebichef polynomials) z, = 1 and z = z & 1 (see
Appendix A for the values of z), ti & 0, f'(z, ) & 0. It
follows that f as well as the Zacobi polynomials be-
long to $. For generalized Laguerre polynomials,
z, =0, z&z, (see Appendix A for z), f'(z, ) &0,
ti & 0. Here also f as well as these polynomials be-
long to g. For Hermite polynomials we have not
found any z, value such that p„(z) 'have for all n a
dominant peak at z„and so this is, among the
classical polynomials, the only case for which our
results cannot be applied.

C. f and g are sums of different kinds of h„ functions

Clearly the above A and 8 cases correspond to
particular classes offag. It is not necessary
that f and g be sums of the same types of h„ func-
tions. In order to illustrate this point we give now

another example of fEg, which is an important
physical case of the generating multiparticle func-
tion.

Let us consider

(22
np

In this case z, =0 and Z= —~. It is easy to verify
that for z &0 we have f(z) &f(0) and

~
f'(z)~& f'(0).

g defined by (16) can be written

B. Classical orthogonal polynomials

Theorem II. Let p„be the classical orthogonal
polynomials, " (p„,p„) =5„&0; k„ is the coefficient
of g".

(i) If ti, the sign of k„k„„, is n independent, al-
ways + 1 or always —1 (this property is true for
Jacobi as well as Hermite or generalized Laguerre
polynomials), (ii) if there exists a z, value such
thatp„(z, )&0 for any n values, and (iii) if

f(z) = Q y„", y„&0, f(z,) =1, nc& 0,P.(z)
P Z p

np

(20)

then g(z) defined by (16) can be written,

Because (e" —1)x ' & 1 for x & 0, we see that g(z)
&g(0) =1 for z &0. Similarly, g'(z) &g'(0) for z& 0.
Thus, obviously, f~g. Moreover, as we shall
see, g itself belongs to S. If we define g ~= h by
the transform defined in (16), then

(24)

Because (2/x') (e" —1 —x) & 1 for x &0, we see that,
for z & 0, h(z) &h(0) = 1. Similarly, one easily finds
h'(z) &It'(0) for z & 0. More generally, let us put

f=f, in E(I. (22), f, =g in Eci (23.), f, =h in E(I. (24),

Using obvious inequalities derived from the ex-
potential-type function it is easy to veriiyf, & gv(I.

D. Set (fz] of functions, keeping the existence

of the forward peak

Let us define

f. ,(z,) -f. ,(z)
(z. -z)f,', (z.) '

where f, belongs to one of the three classes con-
sidered above such that not only f~g but f r- g
with gag. From f, we construct a set f, of func-
tions, keeping the existence of the forward peak.
We will consider such sets Q, ] in the following
section.

V. GENERAL RESULTS FOR TRANSFORMATIONS KEEPING

THE EXISTENCE OF A DOMINANT PEAK

Let us consider the set p, ) deduced fromfo~g
by the transform

I-f~
f; x r= fi=( )f( ( )) Z =I) 2)

Inside the peak zan, z,] for which f, ~g, let us
remark that (z, —z)f&,(z,) is always negative in
both cases z «z «z, and z, «z «Z, where the
peak is at the beginning or at the end of the in-
terval.

A. Lower and upper bounds

Fromf& &1 we get

f, - 1+ (z - z())f()(z() )
Z ~[Z, Zp].

f() & 1+(z -z())f()(z())+ s(z -z())'f()'(z())

(25)

Property I. More generally, if we retain an even
(odd) number of terms in the Taylor expansion
near z„we have lower (upper) bounds for f,(z) in-
side the peak z~ [z,z,],
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2P+ 1

f (z) ~ 1+(z -zo)f,'(zo)+ ~ ~ +( )1
ft'~+'~(zo),

1+tf,(0) &f (t) & I+tf,(0)+2t f,(0), t & t& 0)

(28)

f (z ) & 1 + (z —zo)f'(z, ) + +
2 2 ~ f,'~" (z,)

q =0, 1,2, . . . ; p =0, 1, . . . ; zp[z, z,].

1 —T„f,(0) & n, &1-T j,(0)+ ,'T -'f, (0).

1. Lower bound

(29)

(26)

We introduce the following change of variable
(z —z,) = tp, where p can depend on a parameter (for
instance, p, = I/2k' for the absorptive elastic am-
plitude). The set P,] can also depend on a param-
eter that we do not write down at this stage. Now
the peak is always at /= 0 and is dominant on an
interval (t, 0) corresponding to (z, z,). Here t&0
or t & 0, depending upon whether the peak is at the
end or at the beginning of the interval. In the fol-
lowing we always consider t &0 (but it is straight-
forward to extend the results for t &0). So
B~f,(z)/Bz~~, as well as B~f,(t)/Bt l, ,arepositive.

Similarly, as in Eq. (5) let us define

f (s, —T )=n, , 0&o.,&l, t & —T„-0,
(27)

where we assume that Q,) depends on some pa-
rameter s, and if we fix n, in (27), this defines
T as a function of this parameter.

B. Upper and lower bounds for T and T f (0)
Qfq oq

and application to scalin3,

We recall that, from the Arzela theorem, the
boundedness of T„j,(0) is a sufficient condition
for the existence of scaling. We put Bf,/BtI, ,
=f,(0) The ine.qualities (25) can be written (see
Fig. 1)

Cq

-T0

FIG. 1. First lower bound and first upper bound of
f, (.~&.

From the inequality at the left-hand side of (29)
we get

].—Qa

7 (0)
(30)

Z. Upper bound for any q ~& 0 coming from the parabolic

upper bound approximation

Let us assume f, (0)/[f, (0)] $ ~ when s-~ and
define

(31)

T.,'f, (o) & [2(I- ~,)]- (33)

Firstly, we take T=tT '. From Eq. (33) we see
as well as

I f,/BlBrare uniformly
bounded, and consequently Bf,(s, r)/Br is equi-
continuous. By a trivial extension of the Arzela
theorem one can show that from any sequence
(s„)-~, one can extract a subsequence (s„')—~
such that f,(s„', 7.)-f,(T) and Bf,(7.)/BT exist for
7 c [-1,0]. Secondly, we take t=tf, (0) as a scaling
variable. We have

l Bf,/Bf'l &1 and

Bmf (s i') /BP &f (0)/[ f' (0)]2 & [2(1 a )]-~

Consequently, the scaling function f,(i') as well as
its first derivative Bf,(T)/B't exist. The scaling is
not trivial because for f, =n, corresponds t =-T
and f'„=T f,(0) h-as a lower bound and an upper
bound which are finite; (1 —o.,) & t& 2(l —n,-).

Property II. Iff,(0)/[f (0)]'g~, there exist
n, values (0&o. &1, a &n, ) such that T f,(0) and

'f (0) are bounded and f, scales either with the

In general (see property III), o.', 0 —~, and we re-
strict ourselves to this case. If n, &0, we take
n &o. &1 and otherwise 0&o, &l. If (31) is satis-
fied, then the parabolic curve y =1+tf,(0)
+ z tf,(0) and the line y =n, intersect at the value
-t=T", which provides an upper bound for g

-T" =f'( ) 1- 1-21-n" f,(o) ' [f,(0)]'

(32)

We maximize the right-hand side of the inequality
and get
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fle 0 &)f)0- &)

0 (f«))&

For q ~ 1 we have the relations

(34)

scaling variables 7 =t T ' or i'=tf, (0); in both
cases the limit functions are differentiable.

Let us define the Taylor expansion of the primi-
tive function fo(s, t),

tn
1+ P f(n&(P)

For -t=T we know that f, ,(s, T-, )$1, and
from (36} the corresponding T- ' =T f, ,(0) has
constant upper and lower bounds.

Property V. If D, / ~, then f, scales in either
scaling variables 7 =t T ' or tf, (0) =F. For
r=f T ' the results follow the inequality (36).
For f we note that Bf,(s, 7')/s7 ~~ 1, and for f, =o,
corresponds —7, = T,f,(0), which has constant
lower and upper bounds from Eg. (36). Summariz-
ing Properties II, IV, and V we get the following:
If

f,(o) 1 f, ,(o)

j, ,(0) 2 [f' ,(0)]' q + (35)

f&' "'(o)fo" "(o}
[f."'(o}]'

3. Upper bounds in the case q ~~ 1, taking into account
the fact that inff& &

is bounded

Inside the real interval of the dominant peak, we
know that f, , has lower bounds: for instance,
f,&-1 and f, & 0 for q & 1. Applying the definition

T f, ,( 0)f,(s, -T ) =I-f, ,(s, T), -
we get

T & (1- inf f,)[n f, ,(0)] ',
and also

0 —n, ) T,/, (0)4 (
' ')(. ' ),

f, -i(0)
( ) f (0)

1 —mff, -x
(36)

f,(o)

0(1
—inff, -

)*( f,(0)

)
Property III. If, inside the peak, T really~a

exists with e, 41 and n, WO, then for q ~ 1 either
D $0 or f, ,(0)/[ f, ,(0)]'$0. We recall that for
the proof of Property II we have used this result,
considering in Eg. (31) the case a, o -~.

Property IV. If either f,(0)/g, , (0) $~ or
D, / ~ or f, ,(0)/[f, ,(0)]'g~, then f, , scales
in either variables r =f T ' or 7=tf, ,(0), and in
both cases the limit functions are differentiable.

First we consider v = t T ', and by definition

f, ,(s, T)=1—n, T f-, ,(0). If D, / ~, then
Eq. (36) gives T f, ,(5)$~ and $0 and
T 'f, ,(0)/-~. lt follows thats'f, ,/BT'isbounded
an8 also that f, ,(s, —T )/1. The scaling exists
and is nontrivial, and the derivative sf, ,(~)/a7 exists

Secondly, we consider 7 =tf, ,(0). We have

sf, ,/sV. &1 and

8'f. , f', ,(0)»' [f', ,(0)]'

then (i) there exist n, , values such that f, , scales
in the variable 7 =t/T, and the limit function is

Rq
differentiable, f, , scales in the variable 7'= f/T
and the limit function is differentiable, and f, ,
scales in the variable f= tf, ,(0) and the limit
function is differentiable. (ii) f, scales in either
the variables 7'=t/T or T=tf, (0)

4. Existence of the qth derivative of the sealing function

For simplicity we consider only the derivatives
of the primitive function f„but, of course, corre-
sponding results could be obtained for f„f„.. . .
From the definition of D, given in Eg. (34}we get
the following for the (p+1)th derivative of fo:

f'~"'(0) =DP 'D ' D ~ 'D ~[f (0)]~0'. (3V)

Let us assume D, $ ~, q =1,2, . . . ,p. First we
consider the scaling variable r = t/T, . From the
second inequality (36), T,f,(0) is bounded, and
from (3V) we see that the derivatives

80 j
(s, ~) &f«&(0) T„0, q =1,2, . . . ,P+170

are bounded. Secondly, we consider 7 =t T ', and
we know from (32) and (33) that there exist n,
values such that T g, (0) is bounded. Here also

pep
& fo«'(0) T ', q=1, . . . ,P+1

0

are bounded. Thirdly, we consider t=tf, (0) and

&fo"(o)[f,(o)] '

for q=1, . . . ,p+1, are bounded if one uses Eq.
(37).

Property VI. If D, $~, q=l, . . . ,p (p finite),
then the derivatives of the limit functions 8 fo/8%
or 9'f,/87' (q = 1, . . . ,p) exist for 7 =t/T, and
v'= tf~(0). Furthermore, there exist n, values such
that this property holds for r=t/T



1700 H. CORNILLE 14

IV. APPLICATION TO THE ELASTIC ABSORPTIVE PART

At the beginning we consider the spinless case
and the expansion near the forward peak t= 0:

ct dt
a,(s, t) =1+bt+ +, + (38)

(where for simplicity in this section we omit the
index ABS for b, c,d, . . .).

1+bt&ao(s, t) &1+bt+ ,'ct'. —

From the unitarity relation we get, if b &4k',

0"& (16(() ' (1+bt) dt = b '(48(() ',
0'z pi

(39)

(40)

an inequality similar to the MacDowell-Martin"
lower bound but with a worse constant [(48(r) ' in-
stead of (36(() '].

A. Lower and upper bounds

Inside the "forward peak, " -4Q'&t» 0, we have
the inequalities

ln Dq xs given by

(41)

D. Application to one case of the strong scaling studied

in Ref. 3 (see Appendix B)

Theorem V. If

or = (logs)'

(2 I ""a()(Zl"'a()
(Q l aqqla )2

The proof of the theorem (given in Appendix B) is
obtained in successive steps:

(Z I'"'a, )(Z la, )'
q q (+la )qq(

(ii) C, &(c,) «"
(iii) If C, (t. ~, then C, ,$ ~, . . . , C, (t ~ and

(iv) Applying Property V of the above section,
we see that ao, a„.. . , a, scale.

(v) We apply Property VI.

B. Scalingi when c/b2 P~
We consider the scaling variables r= t/T Qpfr=t/T, 't=tb, where a, r a„a,(s, —T )=(r„7 0

a,(s, T)= „c(-a dnwe apply Properties II, IV,
and V of the above section.

Theorem III. If c/ba/ ~, then
(i) there exist (r, values such that ao scales in

the variable T = t/T and the limit function is dif-
ferentiable for r(= [-1,0],

(ii) a, scales in the variable r= t/T, and the
limit function is differentiable,

(iii) a, scales in the variable 7 =t/T, ,
(iv) a, scales in the variable 7= tb and the limit

function is differentiable.

I. -&contsxs' '(logs)" ', 0&&(2,

then for any integer q we have C, &(const)'. It
follows that any functions of the set (a,] scale,
and any derivative of the limiting function of a,
exists. Furthermore, b =(logs)", and if we de-
fine v'=const x tb we have iao(s, V) i&exp(const
x

i
v

i

' ') in the complex r plane around T = 0, and
the limiting function of a, is analytic in the 7'

variable. This establishes for this particular ex-
ample the link between the results of Ref. 3 and
those of the present paper.

E. Derivative of the absorptive spinless amplitude

C. Scaling for the aet (uq j
Let us define for a, , a, , q =1,2, . . . a set of

functions keeping the existence of the forward
peak:

Theorem IV. If

~(q +() (0)a(q -»(0)
[ (q)(0)]a $ ~, q finite

Let us define

8—a,(s, z)
=a,(s, z)—a, s, z

ct d
a (s t)=1+—+ ——+

(43)

then
(i) a„a, „.. . , a, scale in the corresponding

variables 7'=t/T, r =t/T, . . . , 7 =t/T, ,
(ii) a, scales in the variable 7 =t/T, , and the

first q derivatives of the limit function exist. If 7

=t/T, then c(, values exist such that the sameat 07

property holds. If 7'=tb ap scales and the first q
derivatives of the limit function exist. For the
elastic skinless absorptive part, the leading term

Because a,(s, z) is a sum of P', (z) with positive
coefficients and P', are particular Gegenbauer
polynomials, all the properties obtained above in
Secs. IV and V can be applied. There exist lower
and upper bounds, and sufficient conditions for
the scaling could be obtained. As an example we
have the following lower and upper bounds for
-4k'(t » 0:
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ct, 8ao ct d t2
1+—&b" &1+—+

b et b b 2' (44)

F. Spin case~

We have shown in collaboration with Martin'
that the ratio of the two-body absorptive part of
the elastic cross section for particles with spin,
divided by its forward part, can be written

(A)'=P C„cos(n8), C„~0, PC„=l.

Since the sum of Tchebichef polynomials T„
= cos(n8) with positive coefficients is in the class
of functions, all the properties established above
can be applied if we keep the existence of the for-
ward peak. We have the set of lower and upper
bounds by retaining even or odd numbers of terms
in the Taylor expansion. For instance, for -4k'
&t ~0, we have

A. Lower and upper bounds

We consider only the first two inequalities for
the primitive function ao":

1+ (n)t&ao")(s, t),

t(=[-1,0], i=2, t~0,
1+ (n(n —I))et'+ (n)t &ao")(s, t),

1+ (n)t+(n')et'&ao(2'(s, t).
More generally, taking an even (odd) number of
terms in the last term at the right-hand side of
(46) for i =1 or at the right-hand side of (47) for
i =2, we get a lower bound (upper bound) for, re-
spectively, tc[-1,0], i=1, or t&0, i=2. From
the lower bound in E(I. (47) we can obtain (if (n)
~ 1) a lower bound for (n), which in the multipar-
ticle case is similar to the MacDowell-Martin
lower bound for the slope b"~;

( ), 8(A)
0-0

If we use the unitarity relation and put D/2i'r'
= f, (A)'dcos8, then D& f (») r(l+-2bt) dt or t)
& (4D) ', which is a generalization in the spin case
of the MacDowell-Martin lower bound. " All the
properties of scaling can be extended to the spin
case, leading to results similar to those of the
spinless case.

) 1 t 0

[a,"'(s, z)]'dz ~

(n) &1,

then

(1+t(n))'dt = —,'(n) '

(48)

VII. APPLICATION TO THE MULTIPARTICLE
GENERATING FUNCTION

If (n) is the average multiplicity corresponding to
y„= a„/o„, ao(s, 1) = 1, then we have only to replace
or by o„ in Eq. (48).

From the initial multiparticle generating function
ao(s, z)=Zz"y„, y„= r„/(o r0&, ao(s, 1)=1 we can
associate other functions. For instance, we con-
sider

a,"'(s, t) = Q (1+ t)"y„

(n(n-1)' ' '(n —q+ 1))~

~qt

t(=[ 1, 0], (45)

a(e)(s t) g sary

(46)

We want to apply the results of Sec. V to ao"',
i = 1,2. In the first case, t = 0 is a dominant peak
for t (= [-1,0], and the repeated application of the
transform a(') a,",t) gives a set {a("],q=0, l. . . ,
keeping this existence of a dominant peak at t =0
in the same interval. Similarly, in the second
case ao"'(s, t), the corresponding set (a(a)}, q
= 0, 1, . . . has a dominant peak at t = 0 for t ~ 0.

B. Scaling fora~' (s,t) and a@(s,t), a@~a'~T

Theorem III'. If (na)/(n)'/ ~, we consider the
scaling variables

t/T(' 7 (a) t/T(i )
@0& N~ &

and get the following:
(i) There exists in both cases i=1,2, (ro values

such that ac" '(s, t) scale in the variables 7'"=
t/T"' and the limit functions are differentiable,

(ii) a,"'(s, t) scale in the variables v" = t/T"'
and the limit functions are differentiable,

(iii) a,"' scale in the variables v") = t/T, ,
(iv) a,"' scale in the variable 7'= t (n) and the

limit function is differentiable.

C. Scaling for the set fa(0), i = 1,2; q = 0,1,2, . . . , (a()) t ~ a() )

In order to simplify the conditions, let us as-
sume in the case i = 1 that (n) -„~. In this ca,se
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(n -')(n )
(n')'

Theorem IV'. If either D, )/ ~ or

(nq+1)
C,=, ,„, )t ~, q finite,(n~"'

then a,"',a,",', . . . , a,"' scale in the corresponding
variables

&(~) &(&) &(~) &(z)t t - t t
~(g) y T(f) &

' ' '&
Z

(c) ~ y(i)
Oq R Oty ~o

a,"scale in the variable r")= t/T" ', and the qth
derivatives of the limit function ex&st. If 7'"'
= t/T'„", there exist o.o values such that the same
property holds. If T = t(n), ao" ' scale and the first
q derivatives of the limit function exist.

The proof of the theorem (given in Appendix 8)
is obtained in successive steps:

(i) D &C &(C )'
(ii) if C, )t ~, then C, , / ~, . . . , C, $~ and D,

/ a)

(iii) applying Properties V and VI of Sec. X, we
see that a„a„.. . , a, scale.

D. Application to the strong-scaling case

If for any integer q value, (n')/(n)'/ ~, then
any function of the set 1aj scales. It is worthwhile
to recall that C,$ ~ v, is a property satisfied in
the Koba-Nielsen-Olesen scaling.

I.et us show now that if C, is uniformly bounded
in s and satisfies

(n"')
C,=( )„,& (const)', (49)

then we have a strong scaling in the sense that
there exists a scaling function analytic in the
scaling variables near v'=0.

Let us consider a(02'(s, t) in a comp/ex neigkbor
hood of t = 0. We get with the help of (49),

~

ao( )(s, t) )
& A~ exp(A

~

t
( (n)),

where X, and &, are s-independent constants or if
we write 7'= t(n),

(a,"'(s, r) (
&~, e~P, ~ri).

We have a uniform upper bound, which is s inde-

pendent, and then for at least one sequence (s„)- ~, ao"(s„,r), -„f(7'), and f(Y) is analytic near
7 =0. However, we could have a trivial limiting
function: for instance, a constant equal to 1. How-
ever, from (36)—(49) we have const &const x C, '
& T (n) &const. This means that for T such
that a,"'(s, —T ) = a„ the corresponding v, value

7',—= T,(n) satisfies const & 7' —& const. On the
other hand, for this same T, value, ao(s, &

T„(n))= ao(s, T)—/ 1 following Property IV.
It follows that the scaling is nontrivial.

VIII. INEQUALITIES SATISFIED BY THE LIMIT

SCALING FUNCTIONS

From the set of lower and upper bounds (26)
satisfied by functions belonging to 8, we can de-
duce in the v' scaling variables corresponding in-
equalities for the scaling function and its existing
derivatives. We consider a, (=- 8 such that a, &a,
keeps the existence of a dominant peak:

(i) We assume D, = ao(0)/[a, (0)]'/ ~ and consider
a fixed v &0 value. We know that ao(v) and Sao(7')/sr
exist with scaling variables ta, (0) or tT 'or tT
For any given &,&0 arbitrarily small there exists a
set (s„), n&N~ such that

a, (r)+ a, &a,(s„,v) &a,(~)—~„

(Ba
))

(Bg (7'))

Moreover, the first lower bound in the t variable
can be written in the scaling variable;

eao
a, (s„,r) ) 1+7' '(s„,7)NP

It follows that

sao v
a,(r)+ g') 1+7'

8T

where c' = e, (1+ T) is also arbitrarily small for r
finite. Moreover, from the Arzela theorem,
a, (s„,7') converges uniformly to a, (v), and we can
choose g, independently of v'.

In conclusion, if a, (0)/[a, (0)j')t- ~ (c/b' / ~ for
the elastic absorptive amplitude or (n')/(n)'/ ~
for the multipartiele generating function), then
the scaling function also has the lower bound
a, (r) ) 1+ rsao(7')/s7 for 7 &0,

~

r
~
finite.

(ii) More generally, if D, defined in Eq. (34) is
such that D, $ ~ for q = 1,2, . . . ,P, then for the
v & 0 values such that the scaling exists we have
the inequalitites

eao T 7 Qa
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+2n+1 B2w1+ (+) +2n+2 B2n+2+ (T)

the last inequality is a lower bound if P = 2n+ 1 or
an upper bound if P=2n+2.

(iii) In the elastic absorptive case or in the mul-
tiparticle generating function case we recall that
if either D2/ ~ or C2/ ~, then D, $~, q «p. It
follows that in these cases the p inequalities are
satisfied. This is, for instance, the case if (n )/

(iv) Finally, in the strong-scaling case where the
scaling functions exist also for ~&0 and where any
derivative at v = 0 exists, we see that for v & 0, if
we retain in the Taylor expansion of the scaling
function around 7.= 0 an even or odd number of
terms, they provide lower or upper bounds. In
conclusion, we see that for a, (s, t) c h then the
scaling function, if it exists, cannot be entirely
arbitrary because it has to satisfy well-defined
inequalitites.

IX. INCLUSION OF THE REAL PART

Because of the lack of positivity of the real part
of partial-wave amplitudes our method cannot be
directly applied, and the theoretical results ob-
tained are poor compared with those of the ab-
sorptive part. A summary of the present situation
is presented in Ref. 1, and here we want to add
some remarks concerning the strong scaling case.

A. The odd amplitude contribution

First we want to recall that if the odd amplitude
j.s not negligible compared to the even amplitude,
then many changes can occur. Let us assume"

(i) x(s) = 2' =(logs)vo, 0&y, «2,iE(s, 0) i2

el

(ii) I, ~ =s'~2(logs)"2~2 in a neighborhood of t = 0,
where E(s, t) is the scattering amplitude. We re-
calV that b & (logs)"&, and that at least for one se-
quence (s„) ~, E(s„,t)/F(s„, 0) —f(v=t(logs)"2);
the scaling is valid for complex 7. values. So the
scaling variable is A, (s), and if the odd amplitude
is dominant in such a way that ( ReF(s, 0) (/ImE(s, 0)
—~, then the scaling variable is t[ReE(s, 0) I2/sno„
instead of to,'/o„.

B. Symmetric scattering process

We must first assume that the limit scaling func-
tion is reached Vs ~ so. The even crossing pro-
perties or the dispersion relation give us in prin-
ciple the possibility to get the real part from the
absorptivepart. Aileast the existence of the first

E(s, t) =-(se "2)oz(se " 2)f(tb(se " ')).
We introduce the rapidity variable y= logs and define
b(s) =b(y), or(s) =or(y). Expanding and taking into
account first-order corrective terms, one finds

A(s, t)a(s, t) =A(, 0)

, Bf Blogor(y)) B Iogb(y)=f T ——1:—
y'Br By By

R(s, t)r(s, t)=
( '0)

Bf B I gob( )/yBy" »ogo&(y)/By
'

If, for instance, o,, =ye, b=y", 0&p«y«2, then
we get

y 8
r(s, t) =f(t)+ —v

a(s, t) =f(v)- — 2 v
n'2 Py Bf
4 (logs)' Br '

and if P=@, we recover the previous results of
Ref. 14. One can also determine the contribution
of the absorptive part and the real part to the for-
ward slope;

—(s, t)
~Q

Bg

8

t O v=O

Br
) &

Bf 1 B Iogb(y)/Byt=o».=0- »ogor(y)/By

If we put (Bf/B v)...= 1, then B is the absorptive

derivative of the scaling function is necessary;
however, many difficulties still remain, and so
we do not consider what we have called weak
scaling. We consider the "strong- scaling case"
of Ref. 3, knowing that all the derivatives of the
scaling function at 7 = 0 exist. We extend a recipe
which has been made previously in different
cases": We do not even try to justify it; the only
interest is that it gives an indication of what kind
of relation we could hope to obtain at best. From
an absorptive symmetric amplitude assumed to be
of the kind

A(s, t) „—so, (s)f (v'),

v =tb(s),

yg, —„exists,B"f(r)
T=O

in order to get the symmetric amplitude, we as-
sociate
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slope. If, further, &=y, o~=y, 0& p cy ~2,
then

—(s, t) =b I+-
st ', , P

We must, of course, assume that b can be pro-
longated analytically from s to se".

X. CONCLUSION

In this paper, through the mathematical details
which were necessary in order to distinguish
clearly what can be proved from what can be
guessed (see, for instance, ' the confusion between
the existence of an upper bound and the existence
of a limit scaling function) there emerge two or
three main ideas.

First we consider what we have called "weak
scaling, "where the scaling is insured only for
physical scaling values. In order to obtain it, the
knowledge of a few observables is sufficient: b, c,
o„or, (n), (n'), . . . . Experimentally, this scaling
seems well verified, and it is satisfied by current
phenomenological models. In this way, the ex-
istence of scaling in hadron physics appears as a
sufficiently natural and weak property so that per-
haps we shall not learn too much from it.

Secondly, we consider the "strong scaling" case
where the scaling is also valid for unphysical
scaling values. Although it has very nice proper-
ties (for instance, the scaling functions must
satisfy a well-defined set of lower and upper
bounds, the real part can be obtained in the sym-
metric elastic case, etc. ), it is, in general, dif-
ficult to prove its validity from the knowledge of
observables. We have given counterexamples con-
sidering explicit positive imaginary partial-wave
distributions leading to well- defined behavior
for some observables. The underlying difficulty is
mainly that, in general, from a finite number of
observables we can control only a finite number of
derivatives of the elastic amplitude at t =0, where-
as the scaling for unphysical scaling values re-
quires the specification for them all. Note that
the analyticity in a neighborhood of t =0 cannot
help, because the proof of strong scaling requires
the knowledge of a uniform upper bound for com-
plex scaling values, and, again, the control of all
the derivatives at t = 0. If we want to introduce
the contraints up to t =4p, ', then the recent work
by Haan and Mutter" shows that only partial waves
of the order of s' ' or more are constraints, and
so, again, the introduction cannot help for this
problem.

Why does this difficulty not occur if o z—- (logs)',
or more generally, when the unitary constaints
are saturated& Owing to the existence of the

Frois sart cutof f, in this case all the moments
gt'~"a, are known, with the further specification
that they have lower and upper bounds with similar
behavior. It follows that we control all the mo-
ments, or, equivalently, all the derivatives at t = 0
of the elastic absorptive amplitude. Let us con-
sider now or = (logs)"', 0 & y, & 2, and a trivial cal-
culation shows that only if L~a„, the maximum
number of partial waves, is s't'(logs)"Ot', are we
in the same favorable situation as above. (This
was the reason why this assumption was introduced
in Ref. 3.) Concerning the proof of "strong scaling"
we have, in principle, the same type of difficulty
in the multiparticle case, and the theoretical situ-
ation could be even worse because we do not know
the equivalent of the Froissart cutoff.

Thirdly, we consider the phenomenological
situation which is quite different in both cases.
In the multiparticle case, the coefficient o„/o r
of the sum is directly observable, many moments
(n') are experimentally known, and so we have a
good experimental confirmation of the boundedness of
(n')/(n)' for many q values. Personally, I have
the feeling that in the multiparticle case the ex-
perimental results seem to indicate that, really,
the strong-scaling case exists in nature, and in
this respect the success of Koba, Nielsen, and Olesen
is perhaps not merely an accident. For
the elastic case there are many drawbacks. On

the one hand, our present results apply mainly
to the absorptive part. On the other hand, the
partial waves are not directly accessible by ex-
periments (perhaps a fine analysis in the impact-
parameter space could help) and we know only a
few moments +la„gl'a„Zl'a„without the
expectation of obtaining more in the near future.
In the elastic case, even if one has no doubts that
the actual experimental results are compatible
with weak scaling, one cannot be as sure con-
cerning the existence of strong scaling.

Finally, it may be useful to add three remarks.
First, the scaling, if it exists, is not described by
entirely arbitrary functions because they have to
satisfy well-defined inequalities for physical
scaling values. Secondly, in this paper there ex-
ists only a mathematical analogy between the pos-
sibility of scaling in the elastic case and scaling
in the multiparticle case, but perhaps there exist
deeper physical links between the concept of
scaling in both situations. Thirdly, the method
and the results presented here can be easily ex-
tended to the inelastic overlap function. "
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Furthermore, let us assume y„&0; then f'(z0)&0,
P„&0, P. , z-,P.&o

2. Classical orthogonal polynomials

a, f(z) is a po1ynomial

APPENDIX A

We study the transformation

f(z.) -f(z)
(,— )f'(,)

' (A1)

Let p„(z) be the classical orthogonal polynomi-
als, "with ( p„,p„}= 5„&0, and k„ the coefficient
of x" in p„. Let us assume p„(z0) x0 and define

)r„„(z,)(r„(r.,)l )r„( ' "" ),„)'

where f(z0) = 1 and f (z) is either a polynomial or
a sum of polynomials. First we want to get g
as a sum of Polynomials of the same tyje at those
of f. Secondly, we choose z0 such that the Poly-
nomials are maximum at z, for z in some inter-
val. Thirdly, we consider the case when the co-
efficients in the sum defining f are positive.

1. Power case

p. (z) - p. (z) p. (z.)
(z, -z) p„(z,) '

(A4)

The Christoffel-Darboux formula can be written

p. (z) p. +i(z)

Let us consider

f(z)=g y„z", f(z, ) =1, z, &0, n0&0.
np

We get for g(z),

g(z) = [f'(z, )] 'gy„(z,-" '+zz, " '-+ ~ "+z-"-')

n
tl (A3)

f'(z.)P. =z0 '"'" Q ypz0',
P= npt+I

Pn -1 zOPn yn0+nz0 [f'(z0)]

with n p
= 1 if np = 0, otherwise np' = np. Identifying

the two expansions, we get

n- N r=n-z
q„(z) = q„c, = p„(z) Q A.„q, .

p r- m

(AS)

It follows that if f(z) =P„(z)/P„(z,), then f -g
=p, (z())q„ /p„'(z, ), where q„ is given in (A4) and (AS).
In conclusion we have the following:

(i) If)(tnp„(z, ) &Oandq„ is independent of n (always
+ 1 or always -1), then q„(z)[p„'(z,)] ' is a linear
combination of P„, with coefficients having always
the same sign.

(ii) If, further, rt„P„'(z0)&0 and P„(z) in some
interval [Z, z0] has a maximum at z0, then the
same property holds for q„(z)/p„'(z0). If (i) and
(ii) hold, then the general results of Sec. V can
be applied; in particular, there exists the set of
lower" and upper bounds for p„(z) by retaining
an even or odd number of terms in the Taylor ex-
pansion at z,;

p„(z,)+(z —z )p'„(z )&p„(z)&p„(z )+(z —z,)p„'(z,)+ —,'(z —z,)'p„"(z,)
2e-1 z —z

z zp ~

p ( )+"'+ — ' p"' "( ) p ( ) p ( )+'"+ ' p"'( )n p (2q 1)l n 0 n n 0 n 0

(A6)

Let us discuss the assumptions (i) and (ii).
(i) For Jacobi (including Legendre, Gegenbauer,

and Tchebicheff) polynomials we find p„(z0)&0

for z, =1. [I,et us remark, for instance, that for
Legendre polynomials p„(z0)&0 (tz0&1.] For gen-
eralized Laguerre polynomials we find p„(z0)&0

for zp =0. For the Hermite polynomials we have
not found such values, and thus we exclude this
case in the following. (ii) For Sacobi (including,
Legendre, Gegenbauer, and Tchebicheff) poly-

nomials, q„=1, f'(z0) &0, and f'(z0)q„&0. For
generalized Laguerre polynomials p„=-1, but
f'(z, ) ~0, and so q„f'(z0) &0.

For the following polynomials we want to make
precise the intervals in which they have a dom-
inant peak with the meaning

for z~[z, z0].
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Generalized Laguerre polynomials L „(z). The
inequalities (AV) are satisfied for 0 &z &n+ —,.

Jacobi polynomials p! ' ~(z). If a& ——,', p& ——,',
then

I p.'""(z)l ~p.""(I)
for

~ Q
&z &1,P+a+1

—p!'"() =d 6f ~8
dz dz

r. P. , -p 1 1 P.+, &
)f'(z, )(

In some cases the expressions (AS) and (A10),
are simple and we write them down.

Legendhe Polynomials: In this case (AS) and
(A10) can be written for z, = 1

f(z) =p r.p. (z),
no

g(z) =g(2~+1)p. (z)P. ,

for

~ Qt
~&z ~&1

p+a+S
Gegenbauer polynomials C~(z). For A&0, (AV)

is satisfied for —1 &z &1.
Tcbebicheff Polynomials (Th. ey correspond to

particular cases of Jacobi or Gegenbauer poly-
nomials. ) We have two cases. U„(z) =C„'{z)and
(A V) are satisfied for - 1 &z &1; T„(z)= cosn8,
z = cos8, (d/dzT„(z) =nU„,{z), and (AV) are sat-
isfied for -1 &z &1.

b. f(z) is a sum of orthogonal polynomials studied in a

Let us put

f(z) =Q r.
p "( ),p. ( )

g(z) =Q p, (z)p, .
Substituting q„given by (A5) in (Al), we get

(AS)

g( )f'(,) =g r. g p ( ) gr=m
(A9)

If we identify (AS) and (A9), we get

Pof '(zo) = ypPO+ ' ~ +y„(qoAO+ ~ +q„,A.„,) +

P, f'(z, ) =y,rig, + ~ ~ ~ +y„(q,Z, + ~ ~ +q„P„,)+ ~ ~ ~,

Pnf (zo) y)) (Vn-x~))-z)+yn+). (Vn-a~n-1+ Vn~n) +

(A10)

f'(z„) ())„,
~n j. n $ $=n

(All)

ytt tl

f'(z ) A,„,q„, n
~

~ n

~

n ~l ~ n ~I ~

n

~~
nI I

1 1 p„„

Let us assume now that y„&0 vn. In all considered
cases, Jacobi, Legendre, Gegenbauer, Tchebi-
cheff, and generalized Laguerre polynomials,
we have f'(z, )q„&0. It follows that P„&0, P„,&P„,
and another inequality given by (All)

1 1 1
+ ~ ~ ~ + ~ ~ ~ +"" n n+1 n+p '

I aguexxe Polynomials I 0~ and z =0.

f( ) =Jr.L'."(z),

. 1-P f'(o)=r — + "'
1 1 1
n n+1 n+P

In all other cases, P„can be calculated easily
from the expression 5„,b„,p„(zo), given in text-
books, ' if we take for z, the value z, =1 for Jacobi
polynomials or z, =0 for generalized Laguerre
polynomials. But our results can be applied for
other zo values such that the p„satisfy assumptions
(i) and (ii) of 1, for instance, for the I egendre
polynomials with zo&1.

I.et us recall that the Bessel function J'0(z) can
be obtained as a limit of Legendre polynomials,
and, consequently, "there exists also for J,(z),
z&0, the set of lower and upper bounds when we
retain an even or odd number of terms in the
Taylor expansion around z =0. More generally,
from 1.imit of Jacobi polynomials it is wel. l known

that we can obtain functions linked to other Bessel
functions, and so our results can be also applied
in these cases;

lim n "p~„"'8~ cos — = — J„(x).
n~~ n x

APPENDIX 8

1. Absorptive part of spinless elastic amplitude

In order to simplify the calculation we replace
(2l+1)a, by la, in the partial-wave expansion;
similarly, for the derivative we retain only the
leading l-power behavior. We define
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(P l""a,)(P l" 'a, )
(Pl2 +&

(PP" 3a, )(P la, )
q

(P P )q+1

We want to show D, ~ C, by many uses of the
Schwarz inequality. Let us define

(Q P' 'a, )(+Pa,)"'
(P Pq+ la )2(g la )

(B1)

It follows that g, ~ 1 and D, ~ C,.
We want to show that C, &C,„' '+' for q~ 1,

where Q, is given in (B1): First, for q =1 it is
easy to get C,'& C,. Secondly, we get

(5 la))" ~ p,+3
)2a+ &

and

D, =C„

(QP' "a,)(gl'a, )
(Pl""a,)(+la, )

'

or C, & C, ,C,+,. Assuming that the inequality
is true for q —1, we get C,'& C, ' ' /'C, +, and
C &C '/('+')

q q+1
We study one case of strong scaling. Let us as-

sume
Firstly, we want to show that e, & 1,

(PP' 'a, )' (PP' 'a, )(P l'a,

I'max

(i) I&a, -0, pl~a, = pl~a„

I,„&~e, s'~'( l. ogs)& ~', p integer, y & 0,

(B2)

The first term in the product at the right-hand side
of (B2) is less than 1. It follows that

(g l'a, )'

g, can be written

(ii) e,(lo sg)&&s ' +la, &e,(logs)&,

where

e1 & 0 and e, & 0 are constants,

(...) l ( )l g Itl" (const)" gP""a,
sll

( ()2 Ql

(B4)

Using the Schwarz inequality, we get

~q ~q-l~ q-1 ~q-1 & ~q-2~q-2

(+Pa, )'
92 (g l5 )2(Q l )2

First we want to show that

&=s ' ' = constx(logs)&.,~ l'a

+la,
p l a, & e,'s'(logs)'& has an upper bound; it has
also a lower bound, as we shall see,

I'e1s( 1 og s ) /2]

la, & —2e, ( logs)& ~ s '
&els(~ogs) ~/2]' ' la, & —,'e, ( logs)",

oo oo 2 2g l'a, & g l'a, &s—,e, (logs)& g la, &(—,'e, )'s'(logs)'"~ ' (logs)& &g& ' (logs)&.
fe s( logs)&/2] [e1s(1ogs) /2]

Secondly, with (B4) and (B5) we show that g, is
bounded for any q finite

2q+ 2

C, « ' (const)'.
1

Thirdly, we get an upper bound (t complex around
t = 0) for

l a(s, t) l,

QP~+~a /+Pa )~' =C'n-~l
+la, E +lag j

and it follows that

l a(s, t) l
&Q, , = exp( const [w l

'~ '),( l- constb)"

with 7 =tb.
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2. Multiparticle generating function

Let us define for q=1, 2,

(n" ')(n~-') (n" ')
q q 2 0 q q+1'

We want to show D, & Q, using the Schwarz in-
equality. Let us define

D. (n)"'(n'-'&
7c ( e)2

(n' ')(n)
(n')

Firstly, we want to show that e, & 1,

&
' ')'

q q q-2 q-1 q-1 1

Secondly, g, can be written

(n'-')' (n' ')'(n)"'
(&

' '&)' (B6)

The first term in the product at the right-hand
side of (B7) is bounded by 1. It follows that

& ~ ~ ~ &g, =1~D &C,.

The property C, & (C,„)'~"'~ for q ~ 1 is very
well known. Firstly, for q=1 we get C1 &C2 and
secondly,

. &n"')' &n"')&n')
( )"" ( )"'()'

and assuming that the relation is true for q —1, we
get the same for q.

H. Cornille and A. Martin, CERN Report No. TH. 2130,
1976 (unpubl. ished); talk presented by A. Martin at the
Orbis Scientae, 1976, Coral Gables unpublished),
H. Cornille and A. Martin, Saclay Report No. DPHT-
76-72 (unpublished) .

2G. Auberson, T. Kinoshita, and A. Martin, Phys. Bev.
D 3, 3185 (1971).

3H. Cornille and F. R. A. Simao, Nuovo Cimento 5A, 138
(1976).

4J. Dias de Deus, Nucl. Phys. B59, 231 (1973);A. J.
Buras and J. Dias de Deus, Nucl. . Phys. B71, 981 (1974).
For other references see V. Barger, in Proceedings of
the XVII International Conference on High Energy Phys-
ics, I ondon, 1974, iedited by J. R. Smith (Rutherford
Laboratory, Chilton, Didcot, Berkshire, England,
1974); and J. Dias de Deus, talk presented at the XV
Zakopane Summer School, Poland, 1975 (unpub-
lished). It seems to me that there exists a confusion
in the literature concerning the existence proof of
geometrical scaling. People [see for instance
V. Barger, J. Luthe, and B.J. N. Phillips, Nucl. Phys.
B88, 237 (1975)] quote the paper by V. Singh and S, M.
Roy [Phys. Bev. Lett. 24, 28 (1970)] establishing an
upper bound for the elastic absorptive Ipart in the pa-
rameter —to+ o,~ . However, the existence of an upper
bound alone does not necessarily imply the existence
of a limit function or the existence of nontrivial scaling
properties. To my knowledge, up to now [if we except
the case o'z(logs) 2- const], the proof of such a type
of scaling requires further assumptions (like those in
Ref. 3 for instance).

~Z. Koba, H. B. Nielsen, and P. Olesen, Nucl. . Phys.
B40, 317 (1972).

R. Courant and D. Hilbert, Methods of Mathematical

Physics (Interscience, New York, 1953), Vol. 1, p. 59.
H. Cornille and A. Martin, Nucl. Phys. B101, 411 (1975).
E. Predazzi, Lectures delivered at the Basko Polje
Summer School, 1975, Torino (unpublished), Fig. 8.

W. Grein and P. Kroll. , Phys. Lett. 58B, 79 (1975).
Higher Transcendental I"unctions (Bateman Manuscript
Project), edited by A. Erdelyi, (McGraw-Hill. , New
York, 1953), Vol. 2, p. 153.

1~S. W. MacDowell and A. Martin, Phys. Bev. 135,
B96 (1964).

~2The case go= 2 and o',I replaced by o'~ in A, (s) has been
widely studied in the past because it contains the case
of the violation of the Pomeranchuk theorem [R. J. Eden
and G. Kaiser, Phys. Rev. D 3, 2286 (1971);R. C.
Casell, a, Phys. Rev. Lett. 24, 1463 (1970)], but it con-
tains also other cases like o'z, = (logs) [H. Cornille,
Lett. Nuovo Cimento 4, 267 (1970); see also Ref. 2] .

'3A. Martin and S. M. Roy, quoted by S. M. Roy, Phys.
Bep. 5C, 191 (1972), for the case of the violation of
the Pomeranchuk theorem; A. Martin, Lett. Nuovo
Cimento 7A, 811 (1973) for o'~(logs) 2 const; J. Dias
de Deus, Nuovo Cimento 28A, 114 (1975) for the
geometrical. seal. ing case. (We remark that in this
last paper the proof of the existence of zeros for the
real part is not rigorous. I thank Dr. J. Dias de Deus
for a correspondence on this point. )

~40. Haan and K. H. Mutter, Phys. Lett. 52B, 472 (1974).
ASH. Cornille and P. Kro11, report (unpublished).

I thank S. M. Boy who kindly informed me that for
Legendre polynomials the first lower bound in Eq. (A6)
was established previously by V. Singh, Phys. Rev.
Lett. 26, 530 (1971).

~~I thank Andre Martin, who kindly pointed out to me
this result.


