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A simple lower bound on the ground-state energy density is derived for a scalar field on a lattice. This bound
is applied to ¢* theory in one space and one time dimension and the results compared with available upper

bounds.

I. INTRODUCTION

There has been in the last several years an in-
creased interest indeveloping nonperturbative meth-
ods for computing the properties of field theory.! This
is based on reservations one has about the applica-
bility of perturbation theory in certain regions of
choice of parameters, especially in regions where
the theory in question may undergo a phase transi-
tion, and generally in any strong-coupling region.
To this one may add the uncertainty regarding the
existence of a convergent perturbation expansion
for any value of the parameters. (As simple a
problem as the anharmonic-oscillator Schrddinger
equation fails to have a convergent expansion.) One
general class of approaches to nonperturbative
treatment begins with the simplification of placing
the field theory on a discrete lattice. Within this
class there are two broad subclasses. One may
rotate the time axis into the complex plane and
make both space and time dimensions discrete,
achieving a certain similarity to lattice spin sys-
tems, about which a great deal has been said.? Or
one may make only the spatial dimensions discrete,
and leave time as a continuous parameter.® The
latter approach seems more natural when the
Hamiltonian is the central object of study, the for-
mer when considering generating functions. This

paper is concerned with the second of these altern-

atives.

After the initial concession of the lattice approxi-
mation, it is up to one’s ingenuity to obtain com-
putational methods which exploit the simplification
while giving up as little further ground as possible.
Towards this end it is advantageous to have at
one’s disposal rigorous bounds against which one
may compare one’s latest favorite approximations.
Some progress can be reported here. In a closely
related paper, Drell, Weinstein, and Yankielo-
wicz,* henceforth DWY, describe a variational
upper bound on the ground-state energy density of
¢* field theory in 1+1 dimensions. Here we shall
describe its natural partner, a lower bound for the
same quantity. In concert these bounds, at least
for large values of the coupling, are capable of

giving an absolute limit on the energy density of a
few percent.

In Sec. II we will briefly introduce the notation
and define the problem, and then derive the lower
bound. In Sec. III we will describe some numerical
results for the energy density.

II. THE LOWER BOUND

Suppose we are given two operators H and H°
acting in the same Hilbert space. All of the eigen-
values of H® will be lower bounds to the corres-
ponding, i.e., ordered, eigenvalues of H if their
difference A = H —H° is a positive-semidefinite
operator. This is too strong a condition to be of
use, though. Since we are concerned with the
ground state the much weaker condition (0|A|0) = 0
will give the bound E > EJ, where H|0) =E ;|0) and
E} is the lowest eigenvalue of H°. This is easily
shown, for if (0|a|A) = 0 then

E,=(0|H|0) =(0|H°|0) +{0|a|0) = EQ. 2.1)

We shall exploit the bound (2.1) by constructing an
H° corresponding to the lattice Hamiltonian H in
such a way that the degrees of freedom are sepa-
rated into identical but uncorrelated blocks, and
hence an H® which is diagonalizable by numerical
methods. Before doing this we must set up the
formalism of a field theory on the lattice.

We begin by setting up notation. Supposing that
the spatial dimensions are discrete, we may as-
sociate a field strength ¢3(f) with each site of a
Cartesian lattice. The sites are labeled by a d-
tuple of integers N, with d the number of space di-
mensions. We will choose units such that the lattice
spacing a is unity, so we may also identify 1 as the
coordinate. The conjugate momenta to the field
strengths will be donoted by w3 (#), which in the ex-
ample we consider will be given by doz (£)/dt.
Quantization is to be accomplished by [m3(2), ¢ (2)]
=-403 7. Since we are only interested in the static
properties of the ground state, we will drop the
time dependence after this.

The particular model we consider is ¢* field
theory, for which we choose the Hamiltonian in the
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form
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The D? term represents the gradient term in H.
Following DWY we find the form

D% =D"’(ﬁ—

(2 B f dk ke F 6T 2.3)
to be most convenient. It possesses several de-
sirable properties which are discussed else-
where.*® This leads in a natural way in the limit
to the usual continuum form. When the cutoffs are
removed (i.e., a—0) D? essentially becomes
-V%(x —y). Happily, we may construct the analog
of the usual momentum operator

——zZﬂ*D P (2.4)
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and discover that it is the generator of, at least,
discrete translations. One has

e y.n¢ eiP n‘¢m+n (2.6)

This momentum is nof generally conserved (it does
not commute with the ¢* term in H), but it is con-
served up to integral multiples of 27 (or reciprocal
lattice vectors).

At this point we have a well-define problem to
solve. The Hamiltonian (2.2) has an infinite num-
ber of degrees of freedom, though, and so some
further approximation is needed. This approxi-
mation we now make by modifying the derivative
term in H to give an H° satisfying the bound (2.1).
Consider H° given by

H°=Z[%1r;2+h(¢;2— 7] +—ZD2;.,;¢ rom
i . @.7)

or

A=3 ,Z (D*3-% -D*3

T dm, (2.8)

where D2 is a real symmetric block diagonal ma-
trix with identical blocks. In the remainder of
discussion we will restrict ourselves to one space
dimension for clarity. There is no restriction in
principle, though, or in practice for one willing to
do the calculations. This H° by design is numeri-
cally solvable (in principle at least) since it is the
direct sum of “effective Hamiltonians” on a finite
number of sites. If we can choose D? in such a way

This will turn out to be important.

that (0]A|0) = 0, we are done. {0|A|0) depends on
the two-point function (0|¢,p,,|0). We can, by our
previous discussions, write a spectral representa-
tion for this matrix element. Saturating in a com-
plete basis of momentum eigenstates and demand-
ing that the vacuum be invariant under discrete
translations, one may obtain

(0] 0m|O) = f dp p(p)e ™" . p(p)=0. (2.9)
Thus (0|A|0) = 0 if

emm(p2 _B2. )>0. (2.10)

myn

This is probably not the weakest available con-
dition on D that one may obtain. For free field
theory one discovers that

= 1
Dz,,m=m;'<2e‘“(""”)’ Kk =2mj/(2N +1),

-N<j<N,
(2.11)

when z» and m are in the same block of size 2N +1
and zero elsewhere, will in fact satisfy (0|a|0) =0
by explicit construction of the spectral weight p,
but fails to satisfy the inequality ( 2.10). Thus D?,
moreover, gives better (higher) lower bounds as
well as having interest as the natural generaliza-
tion of (2.2) to a finite lattice. We have been un-
able to show under what conditions, if any, (2.1)
provides a lower bound for an interacting field
theory.

The program is now clear. One selects a block
size for H° which one can deal with practically,
and chooses the elements of D? in order to satisfy
(2.10). How to do this is a matter of numerical
analysis, and taste, which we now discuss.

ITII. APPLICATIONS

One has complete freedom in choosing the ma-
trix elements of D2, and in the most general cal-
culation one could vary over the matrix elements
subject to the constraint (2.10) so as to maximize
the ground-state energy of H°. We have chosen to
consider a well-defined prescription for D? which
satisfies (2.10) and seems to be justified intui-
tively. In particular, we first suppose that within
each block of size B D?, ,, only depends on |z —m].
Equation (2.10) as a function of p is periodic 27,
and we only need to consider the interval -7 <p
<7. Thus it may be rewritten as

B-)
p2%=D?*0) +2 Z B-n
n=1 B

D?*n) cos(mp), O<ps<m
3.1)
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where the sum over D? may be done explicitly from
(2.3), and D?, ,,=D*(|n —m|). Supposing that for the
ground state it is important to treat the small-p
region as well as possible, we expand the right-
hand side of (3.1) in a power series in p? of B
terms and demand equality, thus fixing D% The
remainder in the expansion can be shown to be neg-
ative, and so this choice for D? satisfies (2.10). In
Table I we present for the first few values of B the
matrix elements of D? within a block.

The H® we have constructed may now be diago-
nalized numerically for different values of param-
eters giving lower bounds for the energy density in
the ground state. The way in which this has been
accomplished is to first diagonalize the “local”
operators in H°, i.e., those which only depend on
the degrees of freedom at one site, in a large har-
monic-oscillator basis so as to generate a basis
of anharmonic-oscillator states, and compute in
these states the matrix elements of the coordinates
¢,- This procedure is straightforward. The “local”
Hamiltonian may be constructed as a matrix of
size NXN directly from matrix representations of
¢, and 7, of size (N +4)X(N+4). This is necessary
to eliminate wrong matrix elements from appearing
on the edge of the matrix. The oscillator frequency
may be considered a variational parameter. This
procedure is very easily made to give precise re-
sults. If the oscillator frequency is adjusted cor-

" rectly a 3% 3 matrix will give a ground-state eigen-

TABLE I. D %;’s for block lower bounds.
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value which is accurate to within 0.1% for all values
of the coupling constant. In the numerical results
here a 50X 50 matrix was found to give the first 20
or so states (i.e., eigenvalues and eigenvectors) to
about eight significant figures. The total effective
Hamiltonian in a block is then rediagonalized in a
basis of the first M anharmonic-oscillator states
at each site. Its lowest eigenvalue is then studied
as a function of M, and M is increased until it has
converged to a desired accuracy. This lowest
eigenvalue divided by B, the number of sites in a
block, is then the desired lower bound on the en-
ergy density within the above-mentioned accuracy.
In practice the lower bound was required to con-
verge to within a small fraction of the distance of
the lower bound to the best available upper bounds.
For the one-site block one is already finished when
the local Hamiltonian is diagonalized. For more
sites in a block (here we have computed for B =2
and 3) the effective Hamiltonian is again con-
structed as a matrix which is a direct product of
single-site operators. To obtain results which are
accurate to three significant figures over the range
of parameters considered it was necessary to keep
four or five states per site in the two-site case and
six or seven states per site in the three-site case.
The contribution from states when all of the local
oscillators are highly excited was not important,
and comparable results were obtained in both cases
when only states were kept for which the total num-
ber of excitations was limited, with much smaller
matrices to diagonalize. The rate of convergence
for this procedure was found to be very crudely
exponential, with about two states per site per
significant figure required in the three-site case.
The methods for obtaining upper bounds to this
particular problem have been discussed in detail
by DWY.

In Fig. 1 we present a set of bounds for the Ham-

Best Upper Bound ----
Lower Bounds —--—
Free Field Theory Bound

15+
a) massless —----— .
A b) massive ------- g
Jsite
g ane/ I site
1
00 -1.0 -05 00 0.5 1.0

2
f
FIG. 1. Plots of bounds on the ground-state energy
density of the Hamiltonian (2.2) forA=1.



14 PRACTICAL LOWER BOUND FOR SCALAR FIELDS ON A LATTICE 1689

iltonian (2.2) as a function of f2 with A fixed at 1.
The shaded region is that between the best upper
and the best lower bound. Indicated as well are
three trivial lower bounds for comparison. One is
the classical minimum energy density, one is the
ground-state density of massless free field theory,
and last is the ground-state energy density of mas-
sive free field theory with a constant potential
chosen so that A(¢? —f?)%= 3u%p2+C. By computing
with only three sites per block the energy density
is constrained to'within several percent of its val-
ue over the indicated range.

IV. CONCLUSIONS

The bound which has been presented is useful as
a diagnostic tool for investigating other less con-
servative methods of computation. With consider-
ably less justification one may attempt to extract
information from the approximate ground-state
wave function which results from the calculation.
For example, the vacuum expectation value of lo-
cal operators may be computed in the approximate
ground state. Some further information of the

same kind can be obtained by studying for both up-
per and lower bounds their dependence on a term
like JO(¢) added to H, where O is some operator.
This is because (0]0(¢)|0); =de/dJ, and by study-
ing both bounds one may constrain de/dJ.

The issue of renormalization is an important
one, but has been ignored here. One must of
course have some justification for computing on
the lattice in a given range of parameters. The
present method cannot shed any light in this direc-
tion, but rather comes into use after one has at-

"tempted to dedl with this problem. One hope is

that by appealing’to renormalization-group argu-
ments one can extrapolate to a strong-coupling
regime where the approximations become valid.
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