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Models with quark confinement and linear trajectories without parity doubling*
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We consider simple dynamic models where the quarks satisfy the Dirac equation with a confining potential.
We show that if the confining potential is a Lorentz scalar, the solutions to the Dirac equation satisfy the
MacDowell symmetry. We discuss the slope of Regge trajectories in these models and show that in order for
the trajectory to be linear (in s = Z ) the potential must have a specific j dependence, which produces a cut in

j of the type first proposed by Carlitz and Kislinger. In other 'words, the same mechanism which produces
linear trajectories in the first place also produces the cut which removes the parity partners. The specific j
dependence is expected in "bag" models, as well as relativistic soliton solutions.

I. INTRODUCTION

The quark model has been very successful in
predictions for hadron spectroscopy, high-energy
and large-transverse-momentum behavior of cross
sections, and current algebra. In any consistent
theory of hadrons based on the quark model the
question of quark confinement is of crucial im-
portance. That there may be a sufficient infrared
catastrophe to provide confinement in an asymptot-
ically free gauge theory of quarks and gluons with
an exa.ct SU(3) color symmetry, remains a most
exciting possibility. ' On a more direct level the
dynamic models proposed by MIT' and SLAC'
groups, in which the quarks are confined to a re-
gion of space called a "bag, "provide new insight
into the question of confinement as well as into the
properties of the hadronic states.

In these "bag" models the quarks satisfy Dirac's
equation with either covariant boundary conditions
at the surface of the bag or a self-consistent con-
fining "potential" through their interaction with a
scalar field." So far, exact solutions have been
obtained only for the lowest hadronic states. In
order to study the Regge trajectories in these mod-
els, however, we shall need solutions for the high-
er excited states, which are much more difficult
because of the lack of spherical symmetry in gen-
eral, as demanded by the self-consistency or the
boundary conditions. As a first step in studying
this problem, we therefore limit ourselves to a
much simpler problem here, namely, what gen-
eral properties the confining "potential" should
have, without worrying about the self-consistency
or the boundary conditions, if the resulting Regge
trajectory is to be linear in s =E', especially near
E=0.4

It has been pointed out' that if the confining po-
tential is a Lorentz scalar, there is no Klein para-
dox as occurs for sharp localization of a Dirac
particle in a strong vector (Coulomb) potential. '

We find that the scalar potential, surprisingly,
also ensures that solutions of the Dirac equation
would satisfy the MacDowell symmetry, ' which de-
mands the partial-wave amplitudes of opposite
parity are related through f&'(E) =f (-E), where
the plus (minus) sign denote j=l+ —, (j=l ——,'). It is
well known that MacDowell symmetry together with
linear (in E') baryon trajectories would seem to
imply parity doublets, which are experimentally
absent. ' The Dirac equation with a scalar confining
potential therefore provides a simple dynamical
laboratory to study this question.

We find that in order for the trajectory to be lin-
ear near E = 0 the potential must have a specific j
dependence, which produces a cut in j of the type
first proposed by Carlitz and Kislinger' and the
trajectory moves to another sheet. In other words,
the same mechanism which produces linear tra-
jectories in the first place in the Dirac equation,
also produces the cut which removes MacDowell
partners. Furthermore, the specific j dependence
is not unexpected in the more realistic "bag" mod-
els that have been proposed.

In Sec. II we show that the solutions of the Dirac
equations with a scalar potential satisfy the Mac-
Dowell symmetry. In Sec. III we discuss the slope
of a Dirac trajectory and demonstrate that a linear
trajectory is inconsistent with a simple j-indepen-
dent potential and show the j dependence demanded
by linearity. In Sec. IV we give some simple ex-
amples with this specific j dependence and discuss
the possibility that such j dependence might emerge
in more realistic models.

II. MacDOWELL SYMMETRY AND SCALAR POTENTIAL

Consider the simple dynamic model in which the
quarks satisfy the Dirac equation with a static con-
fining potential. In order to have infinitely rising
trajectories' and to avoid Klein's paradox, ' one
finds that the confining potential should be a Lo-
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rentz scalar rather than the fourth component of a
four-vector. A perhaps unexpected advantage ~f a
scalar potential is that the scattering matrix in
such a model automatically satisfies the MacDowell
symmetry. Thus we have a model to study the
question of linearly rising trajectories and how the
experimentally unobserved parity partners are re-
moved.

First, let us establish the MacDowell symmetry
of the scattering amplitude. Consider the Dirac
equations for both parity states with a spherically
symmetric scalar potential:

four-vector, the scattering amplitude is obtained
if, in (2.6), we replace y by [(j+2)'+ o(2]'~', and
interchange q and g'." We see that only the scalar
Coulomb potential gives MacDowell- symmetric
scatter ing amplitudes.

III. THE SLOPE OF THE RKGGE TRAJECTORIES
FROM THE DIRAC EQUATION

It is instructive to examine the scattering am-
plitudes for the scalar Coulomb potential in a little
more detail. The leading Regge trajectory

—(rf, ) — '(rf, ) —(m+E —V)rg, =0,

j =~+4 (2 1)

E2 2 1/2&

o(,(z) =o( (Z) = .'+-iq-= & (3.1)

—„(rg.)+ '(rg. ) —(m E V-)rf, -=O,
d j+g

„(rf)+ —'(rf ) (m+E- V)rg =O,

j = I —2 (2.2)
~ 1

(rg—) ~'-(rg ) (m —Z——V)rf =0.

Comparing Eqs. (2.1) and (2.2) we immediately get

E—g+, 2 2„/2, E m
(m -Ej

does not have MacDowell partners because of the
factors (j+ 2 +ig) in the numerator of the partial-
wave amplitudes. In fact the "trajectory" n.(E)
does not exist at all. Unfortunately, this particu-
lar mechanism for removing the parity partners,
although it depends only on the existence of a spin-
orbit coupling, obviously does not apply to the case
of an (idea1ized) trajectory that is linear in E'.

f, (q, z, r)=g (q, E, r),
(2 3) u(E) = o(, + a 'E' (3.2)

g, (j,z, r) =f (j, z, r}
to within a normalization constant.

The partial-wave scattering amplitude is ob-
tained from the asymptotic behavior of the f 's and
g's (see Ref. 9):

f-N(E+I)'~'sin[kr —2lv+ 6(j,E)—],
g N(z -M)'~'-sin[kr -', I'v+-5(j, z)], I'=2j -&.

Using the relation (2.3), we have

In fact we can prove a pedagogical theorem which
shows the impossibility of having an idealized lin-.
ear trajectory at least near E =0 in models based
on the Dirac equation with an ordinary (namely, j-
independent, see below) potential but at the same
time suggest how, in the more general bag models,
parity partners of linear trajectories disappear
through cuts in the angular momentum plane. '

Theorem. The slope of a given Hegge trajectory
is given by

or (2.6) hE J"r'dr(f"g+fg*)/r (3.3)

s,(j,z) =s (j, -z),
which is the MacDowell symmetry.

As an explicit example, the scattering amplitudes
for the scalar Coulomb potential V= P/r is given by

S.(j,E) = ' . ,
" y .'", exp[in(j+2 - y)],

(2 6)

S (j,E) =~+'+. ," y .'", exp[i'(j +-,' - y)],

where y=[(j+~)'+P']'~2, q=PE/(E~ —m')'~~, and
'g' = pm/(E' —m')'~'. For the ordinary Coulomb po-
tential V= n/r, which is the fourth component of a

Proof. Consider the case j = I + 2. Letting

(fi

be the solution of the Dirac equation of a given E
and j, we have after a little rearrangement

d j+g( "
dr ~ (w) (&)

=E I !. (3.4)~

~ ~

~

~

~

d j+-,'
( )f

irg( (vg/'
dr

Treat the change in j, 4j, when we go to a neigh-
boring state on the trajectory, as a perturbation
and calculate the corresponding change in E. To
first order, one can use the unperturbed solution
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Hence we have (g, (AH)g) =(g, (~)|i/) or

h'Ch g+g* — = ~E h'dh +g*g .

potential. In the scalar Coulomb case we identify
L with the "Bohr radius, "which then should have
the form (3.10)

Using the normalization condition

f r'dr(f*f+g*g) = 1,
0

(3.5)

(3.6)

a, =—= constant x (j —n, )'/',

which implies a j-dependent P:

P =g'(i —~.)"'.

(3.11)

(3.12)

we have

hj 1
&E I,"r'dr(f*g+fg*)/r

To calculate the slope we only need infinitesimal
4j; thus the first-order perturbation result is
exact. The same calculation goes through for the
j=l —& case.

Results similar to the above in the case of the
Schrodinger equation are well known. "

Now if the trajectory has the idealized linear
form (3.2)

The top trajectory will now be even in E, but the
absence of parity partners along that trajectory
does not violate the MacDowell symmetry, because
the residue of n is now proportional to

(/ +L)1/2 +g2E/(m2 E2) I /2

and vanishes for negative E. In other words the
trajectory moves to another sheet for negative E,
as in the models of Ref. 8.

An alternative way is to consider a bag model
with I identified as the bag size that is j-depen-
dent. Both these possibilities will be considered in
the next section.

hj
80 (3.7) IV. MODELS WITH QUARK CONFINEMENT AND

LINEAR TRAJECTORIES WITHOUT PARITY DOUBLING
Hence, the integral in the denominator must di-
verge as E-O. This is impossible because g is
nor malizable.

Thus the problem of removing MacDowell part-
ners for a linear (in E'} trajectory is not so much
the removal of the partners, which are generally
absent for top trajectories in the Dirac equation
(because of the spin-orbit coupling), but the prob-
lem is the creation of linearly rising trajectories,
which near E =0 impossible with a conventional
static scalar potential.

To see how we can realize the idealized linear
trajectory in more general models, we notice that
we might consider (3.3) as defining a length of the
system, especially if we write (3.3) as

, &0"r'«(f*f+g*g}
&E I,"r'dr(f g+g f)/r (3 6)

The condition (2.V) seems to suggest that we con-
sider models with a length L proportiona, l to E:

I -constantx ~E~. (3.9)

L -constant x (j —oo)' '. (3.10)

We may consider, for instance, a j-dependent

The absolute-value sign is necessary because of
the MacDowell-symmetry condition (2.3). This
violates the analyticity requirement. An alterna-
tive, however, suggests itself, by considering the
inverse of the trajectory function, j = c/(E), given
by E= o. '(j). For the ideal linear trajectory (3.2),
the requirement (3.9) becomes

The simplest model turns out to be exactly solu-
ble and is again the scalar Coulomb potential with
a j-dependent coupling constant. We find from (2.6)
the leading trajectory, with p g'(j —n, )'/', n,
= —~, is given by

(g')'E'
ck(E ) no+ 2 2yy/2y E +m

(m -Ej (4.1)

We can obtain a linear trajectory and quark con-
finement if m» 1 GeV and g'» 1, with o.(E') = —2

+ n'E-' and

t/g2 2

n'=~ —=1 GeV ' (4.2)

It is interesting to note that if g'137, then m
=13V GeV. Together with the 1/r behavior of the
potential they are very suggestive, although it is
not clear at all how a magnetic charge could lead
to a scalar potential.
» any case, while one must not take the particular

form of the potential that leads to the partial-wave
scatteringamplitudes (2.6) too literally, the explicit
form withe ~g'(j —n, }'/', g'/m-o. ', and m-~
could have useful phenomenological applications.

The second way of introducing j dependence is by
making the bag size a function of j. For simplicity
we shall assume absolute confinement by having
V(r) =~ for r&R. To discuss the MacDowell sym-
metry in this case we need to use a limiting pro-
cess. Let V(r) =M for r&R, and join the interior
(r&R) solution rf, and rg, to the exterior solution.
For the case j=l+&, we have
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f, = [A'a,'"+. .'(K-R) +B'h,'"+. ,'(K-R)],
(4.3)

g, =
i i

[A'h"' —~ (KR) +B'h'" ——(KR)]

where h"', h"' are the spherical Hankel functions
and K2=E2 M2

For large M the S matrix is given by

B' »„;,U.,&» f.(j,E,R) +[(E—m)/(E+m)]'~'g, (j,E,R)
A' f„(j,E,R) —[(E—m)/(E+m)]"'g, (j,E,R) (4.4)

L =—R = constant x (j —oo)'~', (4.5)

actually is not unexpected. Using semiclassical
arguments, one can show" that in the MIT bag
model, for large j,

L = (6/v'g'B)'~'V j,
with g'/4v the color gluon coupling constant and B
the magnitude of the volume tension of the bag. Al-
though in this case, the hadrons are of tubular
shape and rotating in space with a uniform angular
velocity, one may consider the spherical static
bag with a j-dependent size as a (time-averaged)
approximation to the more realistic situation.

For the simplest case, when

x&R

(4.6)

—nz, r &R

we have

,,(,„i,)Z~„(ER).+Z,(ER).
J,„(ER)—J;(ER)' (4.7)

where J„is the Bessel function of order v. With

R =R,(j + 1)'~'

when M-~, S'-0, reflecting the fact that the par-
ticle is confined. The function

S'—= lime " S'

remains finite and correctly gives the bound states
of the problem. The case of j =l —

& can be handled
the same way. The MacDowell symmetry is satis-
fied by the functions S' and S .

The requirement of a bag size,

we have for ER «1
ER/2+j +1 E+(2/Ra)(j +1)' '
ER/2- j —1 E —(2/R, )(j +1)"' (4.8)

or
2

n(E') =1+ —' E'.
2 (4.9)

Again the degeneracy between opposite parity
states is removed.

The Mj dependence of the potential must be the
reflection of a fully relativistic theory. In this
connection it is informative to consider the "poten-
tial" V(r) in the discussion so far to be the func-
tional form arising from a fully relativistic self-
binding nonlinear spinor field"'; i.e., a soliton
field. In this case 0' or some other bilinear com-
bination plays the role of the potential. Thus, the
length L in (3.8), which is closely related to the
range of the potential, is in turn closely related to
the "radius" of the solution.

Using a variational approach the classical field
equations can be solved for large j in the limit of
large bare spinor field mass and strong self-cou-
pling. The solutions peak sharply at the Compton
wavelength of the soliton providing a narrow spher-
ical shell of potential of radius L =vj . The tra-
jectory is indeed linear and given by E = constant
xvj .

Soliton solutions are outside of the scope of this
paper and will be discussed in the future.
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