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It is shown that one cannot artifically establish a gauge hierarchy of any desired magnitude by arbitrarily

adjusting the scalar-field parameters in the Lagrangian and using the tree approximation to the potential;

radiative corrections will set an upper bound on such a hierarchy. If the gauge coupling constant is

approximately equal to the electromagnetic coupling constant, the upper bound on the ratio of vector-meson

masses is of the order of a ", independent of the sclar-field masses and their self-couplings. In particular, the

usual assumption that large scalar-field mass ratios in the Lagrangian can induce large vector-meson mass

ratios is false. A thus far unsuccessful search for natural gauge hierarchies is briefly discussed. It is shown

that if such a hierarchy occurred, it would have an upper bound of the order of a

I. INTRODUCTION

A gauge-symmetry hierarchy is said to occur if
some of the gauge symmetries of a theory are
much more strongly broken than others. The
importance of such hierarchies is that they are
essential to making sense out of attempts to embed
the weak and electromagnetic interactions', or,
more ambitiously, the weak, electromagnetic,
and strong interactions into spontaneously broken
gauge theories based on a simple gauge group. '
In addition to their aesthetic virtue, such theories
offer objective advantages. For example, since
such theories possess only one free gauge coupling
constant, the mixing angle of the gauge coupling
constants of an SU(2) U(1) weak-electromagnetic
subgroup is determined. However, such theories
demand the presence of superheavy vector bosons
in order to suppress unobserved interactions.
Thus symmetry breakdown occurs at two mass
scales, one associated with the W and Z bosons,
the other with the superheavy vector bosons.

In a theory where the gauge symmetry is spon-
taneously broken by the vacuum expectation values
of a set of weakly coupled elementary scalar
fields, it has traditionally been assumed that one
could artificially arrange for any desired gauge
hierarchy by arbitrarily adjusting the scalar-field
parameters in the Lagrangian and using the tree
approximation to the effective potential. ' How-

ever, the precision with which one can specify the
scalar self-couplings is limited by the effects of
the one-loop contributions to the effective poten-
tial. Our main result, contained in Sec. II, is to
show (in the context of a simple model) that the
radiative corrections set a bound on the tree-ap-
proximation gauge hierarchy, independent of the
scalar-field masses or their self- couplings. If
the gauge coupling constant is approximately equal
to the electromagnetic coupling constant, then the

upper bound on the ratio of vector-meson masses
is shown to be of the order of n '~'. In particular,
contrary to what is usually assumed, a large ratio
of scalar-field masses in the Lagrangian cannot
be used to induce a large ratio in the vector-meson
masses. The problem of gauge hierarchies is
steeped in the radiative corrections: The larger
the gauge hierarchy, the greater the number of
loop diagrams one must include in the approxima-
tion. The question of whether there is an inherent
bound on the gauge hierarchy for any particular
model is very interesting, but completely open.

In Sec. III, we discuss a thus far unsuccessful
search for naturally induced gauge hierarchies.
It is shown that even if such hierarchies were
found, they would have an upper bound of the order
of n '~'. We explain why pseudosymmetries do not
lead to such natural hierarchies. Section IV con-
tains our conclusions.

II. CONTRIVED GAUGE HIERARCHIES

A. The bound on tree-approximation hierarchies

Consider the following simple model: The gauge
group is O(n), and the scalar fields transform as
two n-vectors, y and g. If the values of X and q
at the minimum of the potential (designated y„and
t)„) are such that one of them has a component
which is orthogonal and small compared to the
other, then there is a gauge-symmetry hierarchy:
O(n) is strongly broken down to O(n- 1) and weakly
down to O(n- 2).

For simplicity let us assume that the theory pos-
sesses the discrete symmetry y-- X. The tree
approximation to the effective potential is

(2.1)

Since only the last term depends on the relative
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and
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(2.2a)

(2.2b)

(2.2c)

with X,
'

q&
= 0 (i =a, b, c). Of course only the third

solution can produce a gauge hierarchy.
To quantify the gauge hierarchy, we consider

the vector-meson masses. We have calculated the
zero-loop approximation to the gauge-field mass-
squared matrix, and the result for y g =0 is that
the nonzero eigenvalues are

orientation of X and q, it is obvious that a minimum
of Vo for f~&0 will occur at X„ II q„, whereas if
f,&0, it will occur at X„J.q„. But only the latter
can result in a gauge hierarchy. In order that t/0

be bounded from below, one must have f, & 0 and

f, &0. (Of course the effective potential could be
bounded from below even if its zero-loop approxi-
mation is not, but for now we are interested in
minimizing Vo. ) Thus we shall assume that f„f„
and f, are positive. The minimization of V, is
somewhat detailed and thus outlined in an appendix.
We will freely refer to the relevant results of that
appendix.

The symmetry-breaking stationary points of Po
are

S(X„'/q„') f,m, ' —f,m,~

(2.6)

Thus the gauge hierarchy increases monotonically
as f, increases. Also,

to induce a large gauge hierarchy. However, this
conclusion is false. The reason is that the hier-
archy in tree approximation is critically dependent
upon the value of f„but since the one-loop gauge-
field contribution includes a term of the order of
g'X~q', it sets a limit (of order g4) to the precision
with which the term proportional to f, can be speci-
fied. Thus it is the radiative corrections that de-
termine the gauge hierarchy.

To understand how this occurs, one needs to con-
sider the minimum of V, as a function of f, . The
result is graphically presented in Fig. 1, where
V, (X,', q,') is plotted against f, . The values of
V,(X,', rI,') and V, (X~', q~') are indicated by dashed
horizontal lines. The only values of f, for which
the minimum of t/', occurs at y,', g,', with both

X,
' and rl,

' positive, are —(f,f,)'~'& f, &f,m, '/m, '.
Thus only in this domain are gauge hierarchies
possible.

The magnitude of the gauge hierarchy was de-
fined in terms of X„'/q ' (= X,'/rI,

' in the domain
of interest). Note that

l eigenvalue =g'(X '+r)„'),
yg- 2 eigenvalues =g'X ',
v —2 eigenvalues =g'g ',

(2 3)

(2.4)

where g is the gauge coupling constant. If X 2»q '
(or vice versa), then there is a gauge hierarchy.
If we define the magnitude of the hierarchy to
be the ratio of the heavy-vector-meson masses
to the light ones, then
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where the equality is exact for all but one of the
me sons.

Let us first focus on the case f, =0. With this
constraint X '=~2, q '=g, ', so that

2 2
X fmmi~ 2 2 'f,m~

(2 6)

We assume that m, '~m, ' and that f, and f, are
always chosen such as to enhance the hierarchy,
i.e. , f,~f, . Thus we have the conventional wisdom
that a gauge hierarchy of any magnitude can simply
be induced in tree approximation by an appropriate
choice of the scalar masses and self-couplings; in
particular, a large scalar mass ratio can be used
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FIG, 1. In region I, X, and q, are negative. In re-
gion III, X, or q, is negative. In both regions II and

IV, X~2 and g~ are positive, but in region IV, the maxi-
IQQxn of Vp occurs at X &,p ~, whereas in region II it
occurs at y~, q~ . Thus only in region II are gauge hier- '

ar chies possible.
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2 2f,m, —f,m,
f m f m /2 f)m22/m)

3 1
(2 7)

To see how this bounds the gauge hierarchy in
the tree approximation, note that

Hence (ignoring for the moment the validity of the
approximation) the zero-loop potential is unbound-
ed. Let us investigate this situation more carefully.
It is convenient to express f, as f,=f,m—,'/m, ' —r f,
(where b f2& 0). Then

2 ' 2
X f 1, fm (2f (2 f

nf2' f2m) ref2 n f~~~)
(2.9)

In order to maximize the hierarchy —subject to this
constraint —consider the following three cases:

and

afem, '
Qm f f f2 (2.8a)

(1) 1»f » n~ V"' =O(f ')~/2f"' =O(f ')

~ 1m ((g(n ))
~tel

f m2, [21 —f,m, '/f, m, '+ (hf2/f2)m2'/m, 2j (2)f =n~V") =O(n')~nf"' =O(n')

(2.8b)

As nf2-0, )I 2-0 and the symmetry-breaking
pattern goes from O(n) -O(n —2) to O(n) O(n-1).-
This might seem to be inconsistent with the
Georgi-Glashow theorem, 4 which can be restated
as follows: Suppose that V(y) = V,(p)+ 5V(p) and
that V,(y) has a minimum at y =A, and V(y) has
one at y = X+ 6X. Next assume that for (qr), = X,
the symmetry of the theory is spontaneously
broken, but an unbroken subgroup persists. Then
if 5V(p) and the induced M. are small, and if all
the zero eigenvalues of the lowest-order scalar-
field mass matrix of the asymmetric theory,
&'U, (X)/Sp,.&p„are associated with Goldstone
bosons, the exact vacuum expectation values, A. + 5A.,
will leave unbroken the same subgroup as A,. It
is this theorem that justifies using lowest-order
perturbation theory to establish the symmetry-
breaking pattern of a theory. The exceptions to
the theorem are determined by the lowest-order
scalar-field mass matrix. %e have evaluated this
matrix in our model for ref, =0 and have found that
it has 2n —2 zero eigenvalues. But in spontaneous-
ly breaking the theory from 0(n)- 0(n —1), there
are n —1 Goldstone bosons. Thus V, is flat at
its minimum in n -I non-Goldstone directions,
so that one should not be surprised that an infi-
nitesimal change in f, can alter the symmetry-
breaking pattern.

Now we focus on the effects of the radiative cor-
rections. The one-loop gauge-field and scalar-
field interaction contributions are such that (in the
Landau gauge) V"'=O(ge) and V,"'=O(f'), ' re-
spectively. U g approximately equals the electro-
magnetic coupling constant, then the tree approxi-
mation to the potential is only valid for n' «f«1.
But more importantly, the radiative corrections
set a bound on the precision with which the term
proportional to f, can be specified in a valid tree
approximation. In particular, there is an effective
lower bound on /) f„which we shall denote as

(e)

~ 2~""2(O(n '),
~m

(3) n» f »n2~V(&) —g(n2)~nf(e) —g(n2)

~ 2
«O(n-')

This implies that

(2.10)

So within its range of validity, the tree-approxi-
mation gauge hierarchy has an upper bound of the
order of n '~', independent of the scalar masses
or their self-couplings; an arbitrarily large scalar
mass ratio cannot be used to induce a correspond-
ingly large gauge hierarchy.

Though our results were derived for a specific
model, they can be generalized. In general, if one
tries to establish a gauge hierarchy by adjusting
the parameters of a Lagrangian with scalar fields
transforming as more than one irreducible repre-
sentation of the symmetry group, there will always
be terms proportional to the product of two qua-
dratic invariants of different representations (e.g. ,
the f, term of our example). These terms connect
the representations in the potential. The radiative
corrections place an effective lower bound on the
precision with which one can specify the scalar
self-couplings. Thus, as in our example, the no-
tion that one can arbitrarily specify the scalar pa-
rameters of the Lagrangian so as to construct any
desired gauge hierarchy in tree approximation is
false. One would, quite generally, expect a valid
tree-approximation gauge hierarchy to have an
upper bound of the order of n '~'.

B. The inclusion of the radiative corrections

Let us now approach the problem of the radiative
corrections. It is convenient to refer to the scalar
fields collectively as p. The one-loop approxima-
tion to the potential is V(p) = V,(y)+ V, (y); as-
sume that the minimum of Vo occurs at po, while
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that of V occurs at y, + 4y, where 4p is small.
Now consider the following schematic (all indices
suppressed) Taylor's series expansion:

—0 (2.11)

The first term of this expansion is zero. Recall
that V, need be included only when of, en f,"', but
then by an appropriate choice of the renormaliza-
tion point one can always absorb the term propor-
tional to nf, into V, . If one makes this choice,
then (as stated in part A of this section) O'V, (q,)/By'
will have (n —1) zero eigenvalues in non-Gold-
stone directions. Thus, solving our equations for
these directions (in our schematic notation),

M p, O'V, BV,(pJ)'i' (2.12)

In general, if one were to apply arguments similar
to those following Eq. (2.9) to this result, one would
expect a maximum hierarchy of the order of n ' '.
However, it might be possible to vary the scalar-
field parameters such that the denominator of Eq.
(2.12) goes continuously to zero, in which case
there is no bound on the hierarchy in the one-loop
approximation. (To actually determine whether
this is possible, even in this simple model, would
be quite messy. ) If one cannot vary the scalar-
field parameters in such a manner, then the theory
has an intrinsic upper bound on the gauge hierarchy
of theorder of a . Qn the other hand, even if
one could so vary the parameters, the two-loop
contribution to the potential would bound the one-
loop hierarchy. That is, we could recycle our
arguments to show that within its range of validity,
the one-loop approximation gauge hierarchy has
an upper bound of the order of n '. One would
then have to sto, dy the two-loop potential to see
whether the theory has an intrinsic upper bound
on the hierarchy of order n '. The argument can
be continued ad infinitum.

Thus any attempt to perturbatively establish a
gauge hierarchy whose magnitude is greater than
the order of n ' ' by adjusting the scalar-field
parameters in the Lagrangian is rendered fruitless
by computational complexity. The question of
whether such a hierarchy is possible is completely
open.

+ ~f4(x ''V0 ~ (3.1)

It has been shown that the symmetry can be broken
only if Vo has minima along a ray in field-strength

III. NATURALLY INDUCED GAUGE HIERARCHIES

A. A possibihty

A.s disturbing as it is to realize that one cannot
simply set up an arbitrary gauge hierarchy by ap-
propriately adjusting parameters in the Lagrangian,
a gauge hierarchy would be physically compelling
only if it occurred naturally. We are familiar with
mechanisms that lead to a natural hierarchy of
global symmetry breakdown; approximate isotopic-
spin conservation can be explained by such mech-
anisms. ' In such models, a zeroth-order sym-
metry is a symmetry of only part of the I agran-
gian, and thus broken in higher orders. Such a
scheme cannot be adapted to produce gauge hier-
archies, since a gauge symmetry must be a sym-
metry of the entire Lagrangian.

The possibility that radiative corrections could
alter the symmetry-breaking pattern of the tree
approximation, producing a gauge hierarchy, is
severely constrained by the Georgi-Glashow theo-
rem (discussed in Sec. 11). We conclude from that
theorem that the only hope for a radiatively in-
duced gauge hierarchy is that the lowest-order
potential be so flat in non-Goldstone directions as
to imply zero-mass Higgs bosons in lowest order.
To just impose such a condition would be very
artificial. However, there is a symmetry-break-
ing mechanism which suggests that such a pos-
sibility might occur naturally. If one considers a
region of field-strength space where the classical
scalar fields are much larger than any masses or
dimensional coupling constants, then the one.-loop
approximation to the effective potential is the same
as for the massless theory. It has been shown
that for this case symmetry breakdown can be
radiatively induced, "and it was suggested that
such a mechanism provides a natural explanation
of superstrong symmetry breaking. ' Since the
symmetric theory is effectively massless, it in-
spires the hope that the desired zero-mass Higgs
bosons occur naturally, and that a gauge hierarchy
results. In fact, a zero-mass Higgs boson associ-
ated with the radial direction does always naturally
occur,"but the symmetry-breaking pattern is in-
dependent of the radial coordinate. For the mod-
]els considered in the original paper, no natural
gauge hierarchies occurred. '

Now let us very briefly consider radiatively in-
duced symmetry breaking for the model of Sec.
II.' For large field strengths, we have
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space, and that this condition imposes one con-
straint on the coupling constants. " However,
such constraints are not unnatural; the evolution
of the coupling constants (in the sense of the re-
normalization group) make it probable that such
constraints are satisfied in some region of field-
strength space for a wide class of theories. ' For
our particular model, V, has four types of station-
ary points, each with its corresponding constraint
on the couplings:

Stationary point Constraint

For case (1), the symmetry is broken down to
O(n —2) in zeroth order, with no particular reason
for the O(n- 1) subgroup being broken less strongly
than O(n) The. other three cases reduce O(n) to
O(n —1) in zeroth order. However, if one evaluates
the eigenvalues of the second-derivative matrix
of Vo, one finds no eigenvalues that are zero in a
transverse, non-Goldstone direction. Thus this
model cannot produce natural gauge hierarchies.
We have investigated several other models, bui
our results have been negative.

If such a natural hierarchy were found, it would
suffer from one severe constraint: It would have
an upper bound of the order of u ' '. This bound
can be determined by arguments that parallel those
leading to and following Eg. (2.12).

B. Pseudosymmetries

There is a well-established mechanism that very
naturally introduces zero-mass Higgs bosons in
the tree approximation: that is, for the scalar-
field polynomial in the Lagrangian to be forced by
gauge invariance and renormalizability to have a
larger group of symmetries, C, than the gauge
group G. Such a theory will contain pseudo-Gold-
stone bosons associated with the broken generators
of C which are not contained in G.' Though the
zeroth-order mass of the pseudo-Goldstone bosons
vanishes, it picks up finite contributions from
higher-order effects. An obvious question is
whether radiative corrections can induce a shift
of the minimum of the potential in the pseudo-
Goldstone direction such as to produce a gauge
hierarchy; the unfortunate answer is no. The rea-
son is that although the second derivatives of the
potential at the minima are zero in pseudo-Gold-
stone direction, what one actually has is a contin-
uous set of degenerate physically inequivalent
minima, generated by applying the elements of

0 that are not in G to one of the minima. ' Thus,
the effect of the one-loop contribution to the po-
tential (which is symmetric under the gauge group
only, not C) is not to induce a slight shift of the
zeroth-order minimum in some pseudo-Goldstone
direction, but rather to pick the correct vacuum
from. this over-rich set.

IV. CONCLUSION

Our analysis undermines the traditional assump-
tion that one could always establish a gauge-sym-
metry hierarchy of any magnitude by arbitrarily
adjusting the scalar-field parameters of the La-
grangian and then considering the tree approxima-
tion to the potential; the radiative corrections will
set an upper bound of the order of n ' on the
tree-approximation gauge hierarchy. Of course,
such an artifical approach to gauge hierarchies is
not physically compelling. Unfortunately, the hope
of radiatively inducing a natural gauge hierarchy
has been frustrated by our attempts. But even if
a model with a natural hierarchy were found, we
have shown that it would have an upper bound of
the order of ~ '~'.

This bound presents a barrier to understanding
the attempts to unify the weak, electromagnetic,
and strong interactions into a theory based on a
simple gauge group, since for such theories super-
strong symmetry breakdown typically occurs for
masses in the range of 10"-10"QeV,"and the
W and Z bosons have masses of about 50 GeV, so
that the magnitude of the expected gauge hierarchy
greatly exceeds our bound. There are natural
symmetry-breaking mechanisms which have been
speculated about which are not limited by our
bound. For example, the superstrong symmetry
breakdown might occur via some as yet urAnown
mechanism (perhaps gravitational" ) and result in
an effective field theory" at "ordinary" energies
with only massless scalar fields', the second-stage
symmetry breaking can then be radiatively in-
duced. "Or perhaps one must abandon perturba-
tion theory and assume that the weak symmetry
breakdown is dynamical, despite the problems
implied by this possibility. " The problem of gauge
hierarchies is perplexing but central, for once
one has chosen a model based on a simple gauge
group to unify the interactions, the core of the
physics lies in the spontaneous symmetry break-
down.
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APPENDIX: THE MINIMIZATION OF Vo

In this Appendix we outline the minimization of
the potential (2.1). (Recall that we assumed that
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'f (x')'-+-'f. R')'+ 'f.x'&-», (Al)

f„f„and f, are positive, that m, '~m, ', and that

f, ~ f, .) If f, is also positive, then V, is bounded
from below, and one can conclude that the station-
ary point of V, for which Vo is most negative is
the minimum of V, . For f, negative, V, will be
bounded from below if

further restricts the domain of interest. It turns
out that one can conveniently express V, evaluated
at each of these three points as

If f, = f,m 22/m, ', then y, '=y~' and q,'=q~'. One can
compute the following results:

for all values of X and q. This holds if and only if

(~f X'- ~f.n')'+ 2X'6'(&f,f.+f.) & o, (A2)

which in turn maintains if

8 Vo(y,', 'I),') '

' f3'&m22/mj2
(A8)

&Vo

, '=x&(-~,'+A7+f.n') =o (A4a)

and

—' = q,.(- m, '+ f,q'+ f,P) = 0. (A4b)

The three symmetry-breaking solutions of these
equations are those of (2.2).

Only for f, 's such that X,', q,' is the minimum
of Vo is there a hierarchy. By manipulating in-
equalities, one can convince oneself that the con-
straint that X,

' and g,
' be positive implies that

f '&fif2 ~

Our argument has, of course, been such that this
condition is sufficient, but not necessary. %e have
purposely singled out this constraint because it
will be required shortly for other reasons.

For X, Lg„ the stationary points satisfy

x' ~') = (f'f~+f~ ~ '/~~ ) &o.
f3' g,.g, ,a( p fl(fif. —f,' m:/ mi')'

(A9)

Combining these facts one can then argue that for
—v'f, f, &f, &f,m, '/m, ', the minimum of Vo does in
fact occur at y,', q,'. (The results of this para-
graph are graphically represented in Fig. 1, which
in turn should make the omitted arguments mani-
fest. ) Similarly, if f,=f2m, '/m22, then y,2=y,2

and g,'=g,'. Because of the symmetries of the
problem, the following results can be obtained by
interchanging f, -f, and m, ' —m, ' in Eqs. (A8)
and (A9):

(A10)

and

or

—lf,f, &f, &f,m, '/m, ' (A5)
f3 f~ f~m~2Im22: :f2(flf2 f2 ~1 /~2 )'

(All)

f,&f,m, /m, . (A6)

The requirement that V, evaluated at X,', g,' be

These results imply that for f, &f,m, '/m, ', the
minimum of V, occurs at y,', g,'. Thus our con-
clusion is that only for —v'f,f, &f, &f,m, '/m, ' are
gauge hierarchies possible.
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