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We show that in a spontaneously broken SU(2) gauge theory there are no field configurations with magnetic
charge >1 which are both spherically symmetric and of finite energy.

Some time ago, ’t Hooft' and Polyakov® showed
the existence of nonsingular solutions with unit
magnetic charge (in units of 1/e) in a spontaneously
broken SU(2) gauge theory containing a triplet of
scalar mesons.® By choosing to look for spher-
ically symmetric solutions, they were able to
effect an enormous simplification of the field equa-
tions; it seems quite natural to employ the same
strategy in looking for solutions with higher mag-
netic charge. The purpose of this note is to show
that any such attempt is futile. More specifically,
we shall show that in a spontaneously broken SU(2)
gauge theory there are no field configurations with
magnetic charge >1 which are both spherically
symmetric and of finite energy.

We begin by considering the case where the
scalar mesons belong to the triplet representa-
tion; the extension to other representations will be
discussed later. We first define spherical sym-
metry more precisely. In a gauge theory, the
transformations of the fields under rotations will
in general be a combination of a “naive” rotation
and a gauge transformation. Thus, the scalar field
¥ and the gauge field \7\7, should transform under
rotations about the ! axisaccordingto*(vector no-
tation refers to internal indices)

5, %) =D, x(®) + A, B) X X(F) 1)
8,W,(H)=D,W,®) +€,;, W,
+E,@) X W,(F) - (1/e)8; K, (), )

where we have defined
®l=€lmnym an' (3)

We shall say that a field configuration is spher-
ically symmetric if there is a choice of K, such
that 6, and 5, W, vanish,

It is worth noting the inhomogeneous term in
(2). If this term is absent, a spherically sym-
metric configuration can be obtained by taking the
asymptotic forms of the fields (presumably sym-
metric) and multiplying them by a function of 7;
this procedure can be used to obtain the ’t Hooft-
Polyakov ansatz. However, if the K, are not con-
stants, the transformations are nonlinear and this
simple procedure is not valid.

14

It will be convenient to work in a particular
gauge; we do not lose any generality by doing so,
since our result is a gauge-invariant statement.
We begin by specifying, as a gauge condition, the
isotopic-spin direction of the scalar field at each
point in space, i.e.,

X(@) =k, ¢), @)

where the unit isovector ¥ is a definite function of
angle having the topological properties appropriate
to magnetic charge n. A convenient choice is

siné cosn¢
¥=| sindsimo |. (5)
cosé

For ln[> 2, this choice leads to singularities in
the spatial derivatives of ¥ along the z axis; for
this reason, we impose (5) only for 6< < 7- 9,
and assume a smooth continuation along the z axis.
In our arguments, we will avoid the region near
the z axis, so the explicit form of the continuation
will not be needed. We note for later reference
that this choice of ¥ has the property that

> 7 \
8,V x8,7 F=ney, F. (6)
We are still free to make gauge transformations
with A parallel to V; we use this freedom to re-
quire

7, W,; *¥=0, r>e. )

(We exclude a sphere about the origin in order to
avoid possible singularities.) There is still the
freedom to make 7-independent gauge transforma-
tions along the direction of V; we shall exploit this
later.

Now let us consider the asymptotic form of the
fields. Finiteness of the energy requires that as
7 - the magnitude of the scalar field approach a
constant, and that D,¥ and thus D,V tend to zero
(D, =9,+eW,;X). The last requirement leads to the
asymptotic form of the gauge field

- 1 . .
W; =EB,~V><V+C'.-V s (8)
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where the gauge condition (7) requires ¢;7; =0. We
now recall the gauge-invariant definition of the
electromagnetic field'®

Fu-ll =52.6u,11 - (1/2)5\( .DuiXDyi
=0, (R W,) -8, (- W,) - (1/e)R 9,8 % 3,8 ,
(9

where

E}.uv = au‘—ﬁu -9, Wu. + ewu X »v (10
and

g= X (11)

Ix]

[Note that the identity of the two forms of (9) does
not depend on the form of x.] Since we want our
configuration to be of magnetic charge »n, (6) and
(9) show that €;,,8,c,=0, at least outside the ex-
cluded solid angle near the z axis. But c¢; must
then be the gradient of a function of angle, which
we can eliminate by using our remaining gauge
freedom.

Now let us determine the K, which appear in (1)
and (2). By requiring that the gauge condition (4)
be preserved, we find

R, =D, T xT+£,®F. (12)

Further, the second gauge condition (7) leads to
requirement

of; _
—87’-0. (13)

Since the f, are independent of 7, they may be fixed
by requiring that the asymptotic form W7 be left
invariant under rotations. Substitution of W‘f into
(2) leads to the requirement

0./, TX DT

n Y ovs
=2 (64,- o, (14)

where the second line is obtained by using (3) and
(6). Since the right side of (14) is symmetric in ¢
and /, f; must be curl-free; we can therefore write
f,=9,g, where g must satisfy

Vg =__,
g=-— (15)

The general solution of this equation consistent
with (13) is
=—nr-hjr,, (16)

where k; is an arbitrary constant vector. Hence,
fi==—t-h,. (17

Having determined the f;, we are now ready to

determine the requirements which spherical sym-
metry places on the form of the gauge field. If we
write

W,=W7+B;, (18)
then, since 5,‘75;" vanishes, we must require
0=9,B;+¢,;,B,+X,xB,. (19)

If we now make us of the identity »;»,=0, we find

B
=(n+ hiri)VXE. (20)

It immediately follows that

0=¢;y; LB, 7. (1)

J
This, plus the gauge condition (7), implies that
B,¥=0.
If we now square (20) and sum over both spin
and isospin indices, we find

- - 7, = \2 hi'r. 25
Bj'Bj-<—7L Bj> =<n+ 7——’) B;*B;. (22)
and hence
Vv, - 2 h.’}f. 2 — —
_(71 B,> - [(n+ 7—> _1} B,-B,. (23)

Clearly, (23) can be satisfied with nonzero ﬁj only
if the quantity in brackets is not positive. For n=0,
+1, this is easily arranged by choosing #=0. For
lnl =2, we see that there must be a hemisphere
in which &;7; is positive; in this hemisphere the
entire quantity in brackets must be positive, and
so ﬁ, must vanish (except possibly in the excluded
region about the z axis).

Thus, we have a region of finite solid angle in
which the gauge field must have its asymptotic
form for all »>¢€. Since V-V.‘f is proportional to 1/7,
this leads to an energy density which increases
near the origin as 1/7*. By choosing € sufficiently
small, the energy can be made arbitrarily large;
no finite- energy configurations exist.

These arguments can be easily extended to in-
clude the case where the Higgs mesons belong to
other representations [provided, of course, that
the unbroken symmetry group is U(1)]. The unit
isovector ¥ must now be chosen to be the eigen-
vector of zero eigenvalue of the vector-meson
mass matrix. With ¥ defined in this manner, the
expression for the electromagnetic field given
above is still valid, while the arguments of
Shankar® show that the asymptotic form of the
gauge field is unchanged. The remainder of the
argument given above is independent of the rep-
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resentation of the scalar fields.

To make these results more concrete, let us
consider the consequences of continuing the
asymptotic fields for finite », but with the fields
modified by functions of 7; i.e.,

X(®) =k, (24)
Wi(®) = (1/e)f (o, 7% 7.

(For n=1, this is just the 't Hooft-Polyakov
ansatz.) Clearly, the magnetic field, given by (9),
is spherically symmetric. Similarly, the energy
density can easily be seen to be a function only of
7. However, let us consider the tensor 7';

=Di'\7 -Dﬁ. This quantity is gauge-invariant and
must therefore be manifestly rotationally invariant
(i.e., without recourse to gauge transformations).
We calculate

1 2_1
Ty;=[1-Ff()F [;@ (8,72 =7 )+ 2—7-,—2—— u,-u,] s
(25)
where
u;= (- sing, cos¢,0) . (26)

Thus, T;; is an invariant tensor only if n=+1.
Similarly, one can show by substitution in the
equations of motion that this ansatz can yield a
static solution only for n=+1.

Now that we have eliminated the possibility of

spherically symmetric solutions, what are the
prospects for finding solutions with multiple mag-
netic charge? Any simplifying assumptions must
be consistent with the symmetry of the theory.
Thus, we may look for an axially symmetric sol-
ution, but in doing so we must consider the most
general axially symmetric form; if we also impose
the requirement of definite parity, we are left with
a set of equations involving five functions of » and
6. Even at this point, there is no guarantee that

a solution of the form we want exists; for example,
the only axially symmetric solution for =2 might
be a pair of infinitely separated unit monopoles.

On the other hand, a variational calculation by
Bais,” using the ansatz (24), leads to a value of

the mass of the double monopole which is 2.13
times that of the single monopole; a better choice
of ansatz might bring this value below 2 and thus
show the existence of a localized double- monopole
solution.

Finally, we note that if there are classically
stable solutions for monopoles with multiple mag-
netic charge the spectrum of the quantum theory
will be richer than that implied by the unit mono-
pole. Just as in the case of the unit monopole,
there will be a series of states labeled by different
values of the electric charge.®!° In addition, since
the classical solution will necessarily be non-
invariant under rotations, there will be a further
multiplicity of states labeled by different values
of angular momentum.
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