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This paper (the second in a series) reports our recent progress in the study of strong-coupling quantum field

theories on a lattice. In particular we study theories involving fermions and gauge fields and pay special

attention to the peculiar problems encountered when one formulates theories of fermions on a lattice. It is

unique to our approach that we preserve local chiral symmetry and at the same time correctly count the

number of fermionic states. We demonstrate how our formalism works with the lattice Thirring and

Schwinger models, whose continuum limits are solvable in one space and one time dimension. We show in

the strong-coupling limit that these theories are equivalent to a Heisenberg antiferromagnetic chain. We also

discuss briefly some general features of non-Abelian gauge theories of quarks and gluons in three space and one

time dimension. The most interesting results we have to report at this stage are as follows: (i) The only

"gauge-invariant states" which remain at low mass in the limit of very strong gauge coupling have the

quantum numbers of physical hadrons. (ii) The resulting "efFective strong-coupling" theory preserves the full

chiral symmetry of the exact theory [SU(3) )& SU(3) if we introduce three flavors of quarks each with three

colors] and describes a theory of "massless bare hadrons" interacting with one another through a quark

interchange mechanism of finite strength.

I. INTRODUCTION

The goal of explaining the observed properties
of hadrons starting from a field theory of elem-
entary quark constituents has motivated the search
for reliable ways to study strong-coupling field
theories. This paper is number two in a series
reporting our efforts along these lines.

In our earlier paper' we applied variational
methods to study low-lying states and possible
phase transitions of boson field theories that are
rendered finite by formulating them on a spatial
lattice. In particular in order to learn about the
reliability of our methods we analyzed in some de-
tail the conditions for the occurence of spontaneous
symmetry breakdown in scalar Q' theory in one
space and one time dimension. This model has
little physical content and so, building on this ex-
perience, we now turn our attention to theories
involving fermions. Since current opinion holds
that non-Abelian theories of quarks coupled to
color-gauge gluons comprise the class from which
"the theory" will emerge, these models are of
particular interest. The most interesting general
results we have to report at this stage in our
studies of such gauge models are as follows:

(i) The only "gauge-invariant states" which re
main at low mass in the limit of very strong gauge
coupling have the quantum numbers of physical
had rons.

(ii) The resulting "effective strong-coupling"
theory preserves the full chiral symmetry of the
exact theory [SU(3) && SU(3) if we introduce three
flavors of quarks each with three colorsj and de-
scribes a, theory of "massless bare hadrons" in-

teracting with one another through a quark-inter-
change mechanism of finite strength.

In formulating gauge theories of fermions on a
lattice two kinds of problems are faced. First
there is the general question of how one introduces
gauge fields on a lattice so that the theory has
full "gauge invariance. " Our approach to this
question is to adopt the prescription of Wilson'
and Kogut and Susskind, ' according to which the
gauge field is defined not at the individual lattice
sites but on links joining lattice points.

The second problem concerns the prescription
for describing the fermion field on a lattice. In
this we differ from previous approaches in a way
which is crucial for obtaining the two general re-
sults given above.

This difference is a consequence of our way of
resolving a problem peculiar to theories of fer-
mions on a lattice; namely the usual transcription
of the gradient in the Dirac Hamiltonian as a dif-
ference operator (let A= 1/a be the reciprocal lat-
tice spacing)

(vy),. = &(q(~+ 1) —4(q))

leads directly to a doubling of the fermionic de-
grees of freedom. In particular for a free Dirac
particle the energy-momentum dispersion relation
based on (1.1) in one space and one time dimension
ls

Z(k) =[I'+ A'sin'(tr/A)]' t',
where -m~&A(m. As illustrated in Fig. 1, this
formula shows that to each eigenvalue E there
correspond two distinct states of k &0 and taro of
k &0; hence the spectrum of states possesses a
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doubling of levels not encountered in the continuum
theory.

Kogut and Susskind' have proposed one technique
for avoiding this problem in two dimensions. They
simply put the upper (lower) components of Dirac
spinors on even (odd) lattice sites. The advantage
of their procedure is calculational, in that oDly
nearest-neighbor sites are coupled together by the
gradient operator (1.1). The disadvantage of this
procedure is that it makes it impossible to write
down locally chiral-invariant interactions since
one does not have both particles and antiparticles
at the same point. In higher dimensions their
procedure is very contrived since it becomes also
necessary to split spin components in two space
and one time dimension and to double the number
of fermions (say proton and neutron) in three space
and one time dimension. An alternate projection
operator technique recently introduced by Wilson'
in his action formulation also destroys local y,
invariance.

We avoid this difficulty by defining the gradient
operator via the prescription of Ref. 1; i.e., for

f(~) Qf(i )eIRJIA

we define

(vf),. = g iaaf(a)e'""

~ik( j-j') /&
(2N+ 1)

(1.4)

where (2X+ 1) is the number of sites in the lattice.
In three space dimensions (1.4) becomes

(v.f),„,„,.= gf(~.',~„~.~l-5'(g. ~.'8

As in the case of the free boson field discussed
in Ref. 1 this prescription yields the exact rela-
tivistic Einstein energy-momentum relation for

(1.5)

FIG. 1. Energy-momentum dispersion relation for a
free Dirac particle with the gradient replaced on a lattice
by the difference operator.

a free fermion of mass m,

z(u) = (u'+ m')'".
Thus, the only difference between the lattice "free
fermion" theory and the continuum theory is that
in the lattice version we have a maximum allow-
able momentum, ~k

~

=mA. On the basis of (1.5)
and (1.6) there is no doubling of energy levels and
no need to split field components onto different
lattice sites. We ean therefore easily incorporate
exact y, (chiral) invariance into theories with this
formalism. The only cumbersome feature of (1.5)
is that it couples all lattice sites along the direc-
tion of each component of- the gradient instead of
coupling only nearest-neighbor sites as in (1.1).

Since our formulation and conclusions depend
crucially on the way in which we define the gra-
dient operator, we turn first to the study of simple
soluble models with fermions. These are the
Thirring model, ' both in one space and one time
dimension and three space and one time dimension,
and the Schwinger model. ' We isolate the impor-
tant features and compare the results of our for-
malism with the known properties of these models
in their continuum version. In addition we show
that the fact that our formulation of the lattice
theory preserves full chiral invariance leads to
very different results in the strong-coupling limit
from those based upon (1.1) and the method of
Kogut and Susskind.

In Sec. II and III we develop the general formal-
ism and discuss the spectrum of low-lying states
for the Thirring models. In particular, in Sec.
II we show that for the strong-coupling theory the
effective -potential method introduced by Nambu
and Jona-Lasinio, ' in their pioneering work on de-
veloping a dynamical model of nucleons, fails to
describe correctly the symmetry properties of
the theory. This is in agreement with similar
conclusions made much earlier by Ichimura,
Kikkawa, and Yazaki' using different techniques.

In Sec. III we relate the strong-coupling two-
dimensional Thirring model to the linear Heisen-
berg antiferromagnetic chain with more than
nearest-neighbor interactions. We discuss some
general properties of the ground state building
upon the wealth of knowledge developed about this
spin system starting with Bethe in 1931. In par-
ticular the crucial role of being able to locate fer-
mions and antifermions at the same lattice site
will be apparent in this model. Bound pairs of
fermions and antifermions on individual lattice
sites are present in the ground state and their
"spin waves" form a massless excitation spec-
trum.

In Sec. pl we turn to the simplest Abelian gauge
theory —i.e., the Schwinger model, or @ED in
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one space and one time dimension. In the strong-
coupling limit we find for the low-lying states
essentially the spectrum of the Thirring model.
In addition there are the high-lying excitations
when flux links, corresponding to "massive pho-
tons, " are present. This spectrum again depends
crucially on (1.4) and the fact that our formula-
tion permits locating fermions and antifermions
on the same lattice site. The relation of these re-
sults to the continuum Schwinger model for weak
and strong coupling is also described.

Finally, Sec. 7 is devoted to some preliminary
discussion of non-Abelian color-gauge theories
for which we have not yet carried out a detailed
analysis.

L = (2N+ 1)/A,

V- L~
(2.1)

Time remains a continuous variable and p=1, 2,
or 3 is the dimension of the lattice in the model
being analyzed. The lattice points are labeled by

f= (j„.. . ,j q), -N j;—+N— (2.2)

and as in Ref. 1, the momentum variables are
labeled by

II. FERMION MODELS ON A LATTICE

We introduce a spatial lattice as in Ref. 1 by
replacing the continuum variable x by points on
a discrete lattice of linear dimension L and min-
imum spacing a= 1/A, chosen so that there are
2N+1 points in each direction, i.e.,

where u (k) [v„(k)] are the linearly independent
positive- (negative-) energy solutions to the Dirac
equation

(n k+Pm)u (k)=&(k)u (k),

(Z k+ Pm)v. (-a) = -Z(u)v. (-a),
(2.8)

with

E.(u) =- (u'+ m')'". (2.7)

A. Lattice Thirring models

We first study lattice versions of the continuum
models based upon the chirally invariant Hamil-
tonian

H= x
2 y5 . 28

In one space and one time dimension (2.8) de-
scribes the massless Thirring model, ' H can also
be Fierz-transformed into a current-current in-
teraction

H dPx tQ v+~1 y
2 yy 2

(2.9)

In either version H is invariant under the trans-
formations

Equation (2.7) gives the correct energy-momentum
relation up to the lattice cutoff

2m 2'
&max= N=

(2.8)

(- e' g, (- (I(e ',
(2.10)

The gradient defined in (1.4) sums over lattice
points only along the direction of its vector com-
ponents.

The Hamiltonian for a free massive Dirac field
is in this notation

where 8 is an arbitrary constant. Hence their
generators

N=— ~ d~x,
(2.11)

+IP ('(i)8'(/)I,
7

(2.4)

commute with H. It is also the usual conclusion
that the local currents

(2.12)

p( )k= g [ u(k)b (k)+ v (-k)d„(-k)],

(2.5)

where n, P are anticommuting Dirac matrices.
As discussed in Sec. I, H, is diagonalized in

a basis

js, = O', Ws4

are conserved. The Hamiltonian (2.8) has dimen-
sions of energy, and the canonical dimension for
the field( is (mass)~~', where p is the lattice dimen-
sion. The coupling constant g, has dimension
(mass) ~". In transcribing to a lattice version of
(2.8) we introduce dimensionless variables y(j ),
y(j), and g via
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4(T) = A'"x(i),

V(T) -=A" x(i), (2.13)

Appendix A. As defined j (j) and j, (j) satisfy

mojo+ & ' j (j)= &oj, ()+ & I,= 0, (2.20)

go=RA

with the canonical anticommutation relations

(x'(I, ) x(i,)]=»I,.;, (2.14)

In terms of these variables we write the lattice
Hamiltonian

,
X I && & 3g -32 X 32

—) Q((x())x(i)P -(x())~.x(i))')) .

The lattice "conserved charges" are

(2.15)

+ S 3t3&~32 X 3g &X 32 y

i,(i) = X'(I')~r, X(j)

(2.18)

+ s(i; i„i.)x (i,)~r.x(j.)

S(j;j „j,) is uniquely defined in terms of the gra-
dient operator (1.4) by the condition that for any
two functions

& f(T)a(T)+ g S(i; i „i.)f(i,)g(T.)

= ['V(T)h(i )+f(i )[&g(i )].
(2.19)

An explicit formula for S(j; j „j,) is derived in

X'3 X3

(2.16)
Q, =g x'(i)r, x(i),

and the field equation for the lattice field X(j ) as
computed directly from the Heisenberg equation
)X(I)=t.&, X(i)] is

)(r,s, + Ar &)X(I)= -2AgI. x(l)x(l) -x(i)r&x(I )r,]x(i),
(2.17)

with )('X(j) defined by (1.4). We ean also construct
conserved but nonlocal currents on the lattice

j.(i) and j,.(i)
which are given by

j.(i)=x'(i)x(i), j..(i)=x'(i)r, x(i),
i (i) = x'(l)~x(i )

and the charges (2.16) are conserved. The non-
local terms in the space components of (2.18) arise
from the free-field gradient terms in II. If we
evaluate commutators involving time and space
components of these currents we obtain a non-
local term which, in the continuum limit, becomes
the familiar Sehwinger term.

B. Variational solution in a momentum-space basis

Our goal is to develop reliable methods for
diagonalizing (2.15). In particular, we wish to
calculate the ground state and low-lying excitation
spectrum of H. We have already seen in (2.4)
and (2.'I) that the g-0 free-field limit of this theo-
ry is readily solved by diagonalizing II in a mo-
mentum basis. Becalling the analysis of Bef. 1,
we anticipate that it might also be a valid approxi-
mation to perform a variational calculation for the
upper bound of the ground-state energy in a mo-
mentum basis with the mass as variational param-
eter if we are in the weak-coupling limit of g«1
in (2.15). However, in the light of Ref. I, we also
may expect this approach to fail for intermediate
or strong coupling g & 1. Just as the spontaneous
symmetry breaking was found to be incorrectly
represented in the scalar (t)' theory by such an
approach, it would come as no surprise to find
here that momentum-space variational methods
fail to describe the y, -symmetry properties of
the ground state for (2.15). In fact the principal'con-
clusions of Bef. 1.are that we should work in a
configuration-space basis to construct reliable
approximate solutions to (2.15) for intermediate
and strong couplings.

Nambu and Jona-I, asinio' constructed an approxi-
mate solution of this problem in their pioneering
attempt to develop a dynamical model of elemen-
tary particles based on a cutoff version of (2.8)
or (2.9). In their calculation the one-loop contribu-
tion to the mass operator was computed, and a
finite nonvanishing fermion mass was shown to
exist when certain inequalities on the coupling
parameter g were satisfied. Their approach is
identical to performing a variational calculation
for a bound on the ground-state eigenvalue of (2.8)
in a momentum basis. To obtain their equation
for the mass gap we take the expectation value
of (2.8) in the trial ground state ~4'„,.„(m)) defined
by

(2.21)
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where the b„(k) and d„(k) are the fermion and an-
tifermion annihilation operators defined by the
plane-wave expansion (2.5), (2.6), and (2.7) in
terms of a mass parameter that is chosen ar-
bitrarily. Either the continuum theory with a

= mA cutoff or the lattice theory can be used
since, as formulated, they lead to the same dis-
persion relation (1.6). Minimizing this expecta-
tion value with respect to the variation parameter,
m, leads directly to

1
IP 2 (y2 B)1/2 (2.22)

Following from (2.22) either m= 0 or the "gap
equation" of Nambu and Dona-Lasinio must be
satisfied. Whenever g has values such that there
exists a solution of the gap equation, the mt 0 solution
corresponds to the energy minimum and m=0 to
a local maximum. In particular (2.22) has an
nz 0 solution for all finite values of the volume
V. For p&1 (i.e., for a two- or three-space-di-
mensional lattice model) there is a critical value
of g such that as V-, for g&g„«=1, m=0 is
the only solution, whereas for g~g„,.„nzc0 is
the true minimum. In general for g=1, this value
of nz satisfies 0 &m«A; on the other hand, m -gA
wheng»1. When p=1 (i.e., for the one-space-
dimensional Thirring model) there is a finite-
mass solution of the gap equation (2.22) for all
values of g. In particular for p= 1

techniques, which have been proposed for studying
spontaneous breakdown of y, invariance and the
formation of dynamical Goldstone bosons, is open
to challenge. To see why this is so recall from
Ref. 1 that this technique for calculating the
ground-state energy in 0 space diagonalizes the
gradient term, but makes a Hartree-Fock approxi-
mation to the quartic self -interaction potential,
Vlz. ~

(2.24)

In our earlier study of the scalar p' theory we
found that such a variational analysis was reliable
for weak coupling, where the gradient term is the
more important one, but can be very misleading
when applied in the strong-coupling regime, which
requires a more accurate treatment of the non-
linear potential effects.

We turn therefore to a configuration-space ap-
proach to construct reliable approximate solutions
to (2.15) when g& 1. It will turn out that a site
basis gives lower (i.e., better) ground-state ener-
gies than the above method, and, furthermore, we
realize the y, symmetry of the theory in the "nor-
mal way"; i.e., we find a spectrum of massive,
parity-doubled bosons and fermions rather than
massless Qoldstone bosons and infinitely de-
generate ground states. Similar conclusions were
stated by Iehimura, Kikkawa, and Yazaki' in 1966
using a truncated Hamiltonian.

g-1/ln(&/m) for &/m» 1,
g-m/A for m/A»1.

(2.23) C. Configuration-space analysis of the "Thirring model"
in three space and one time dimension

As argued in Ref. 8 when mW 0, corresponding
to the existence of massive fermion states, the
ground state of (2.8) is (continuously) infinitely
degenerate, implying the existence of massless
Goldstone bosons. However, this result is in con-
flict with Coleman's theorem" for p = 1. Hence
this technique, which is identical to the one-loop
effective-potential method, must be misleading
for determining chiral properties of the ground
state. It is evident that the application of such

We begin by studying (2.15) in the strong-
coupling limit in three space and one time di-
mension because it is formally simpler, though
less interesting, than the Thirring model in

one space and one time dimension. The subtleties
of the latter and a comparison of its continuum and
lattice versions are explored in Sec. III. A con-
venient representation for finding the ground state
and excitation spectrum in the strong-coupling
limit, g+&1, is

(2.25)

(0 1, tt' 0 &x') (I 0

(I 0 ( c' 0/ -(0 -1

in terms of which
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H= 2g-AQ [(n, +n„—I}'+(n, +n, —I)'+2(bf,df,d, b, +dJ b~t b„d„)]

+A g [~a-, o ~'(I- I')ai, - zD, c ~'(~- I')D']

(2.26)

E,""= -8gA(2N+1)' = 8gA'V . - (2.28)

The corresponding result using (2.21}and filling
the negative-energy sea with fermions of mass m

and the conserved charges Q and Q, take the form

Q = N +-2—=Q (n~ +nq —n~ —n~ ),9+ 5- )+
3 j (2.27)

Qs = Q (Bb +sg +sg +sg —2) .
j

In the strong-coupling limit we diagonalize the
first or "potential" term in (2.26), denoted Ho, and
treat the kinetic term iteratively as a perturba-
tion. " H0 is diagonal in a site basis and the eigen-
states, energy eigenvalues, and corresponding
charges at a single site are listed in Table I. Our
first observation is that with the conventional
choice, g&0, there is a unique ground state with

Q =Q, =0. The gradient term commutes with Q
and Q, and mixes states only within the same
(Q, Q, ) sector of the Fock space. Hence it splits
the degenerate excited states but induces only
negligible corrections -1/g to the nondegenerate
ground-state structure. Table I also shows that
the lowest excited states are a chiral pair of spin-
zero "bosons" separated from the ground state by
a gap of 4'. There are also parity-doubled fer-
mion states separated from the ground states by
6gA. Evidently there is little content to this model
of physical interest since, for g»1, all particle
states are very massive, since m-gA which is
larger than the cutoff. The importance of our
conclusion that there exist no Goldstone bosons,
but a unique ground state plus massive degen-
erate chiral multiplets of bosons and fermions,
lies in its difference from the widely applied effec-
tive-potential technique. As noted, the loopwise
effective-potential expansion leads to (2.22) in the
one-l. oop approximation and to the prediction of
Goldstone bosons when g& 1 and m 4 0 for the ener-
gy minimum. Further evidence in support of our
analysis comes from the following two observa-
tions:

1. The site basis gives a lower value for-the
ground-state energy than the upper bound obtained
from (2.21) and (2.22). According to Table I the
ground-state energy for a cubic lattice of (2N+1)'
=VA' sites is, for g»1,

gives for the ground state

dsp
@mom (p2 + m2)1/2

0 (2m)'
(2.29)

In the strong-coupling limit of the gap equation
(2.22)

2m
m — gP »p

3

and (2.29}becomes

Emom gym J4ym 2"
0 9

(2.30)

(2.31)

which is higher than the site basis result (2.28) by
a factor of greater than 3.5.

In the weak-coupling limit of g«1, (2.15) be-
comes the Hamiltonian of free massless fermions,
and as a result of our treatment of the gradient
operator we obtain the correct relativistic energy-
momentum relation

No finite iterative treatment of the interaction
terms in powers of g can lead to the prediction
of Goldstone bosons. Although we have not at-
tempted a systematic study of (2.15) for g-1, it
is difficult to understand how the symmetry struc-
ture of the theory can change so radically in this
region, leading to Goldstone bosons that must
cleverly hide themselves in both the strong- and
weak-coupling regions.

III. T'HE THIRRING MODEL IN TWO DIMENSIONS

In this section we analyze the two-dimensional
lattice Thirring model defined by the Hamiltonian
(2.15) for the case P =1. This theory has impor-
tant features in common with gauge theories,
and so this analysis will prove useful to our sub-
sequent discussions. In particular we find that
the strong-coupling limit of this model in one space
and one time dimension, in contrast to the pre-
ceding discussion for P =3, describes a system of
massless fermion-antifermion bound states in
addition to supermassive charged fermions of
mass -gA» A. Hence this model provides a con-
crete example of a theory for which, as g-~, the
original fermionic degrees of freedom become
"frozen out, " but new massless degrees of free-



14 STRONG-COUPLING FIELD THEORIES. II. FERMIONS AND. . . 1633

TABLE I. A list of the eigenstates of &p defined in
(2.26) and their corresponding eigenvalues as well as
their Q and Q5 eigenvalues.

Substituting these formulas into (2.15) gives [using
() (j,- j,) =-()'(j, - j,)]

State

~(b+d++b d ) I0)
1

~(b,d+ —b d ) IO)

(per site)
Q5

0 0

0 0

Energy (Hp)

-SgpA

2 &'(ji - j2)(b, bi - d, ", )

—gg [n~(j) +n„(j}—1]')

=K + V, (3.4)

~(b+d +b d+) I0)

~ (btdt —b1'dr)
I 0)

dtdtl 0&

diplo&

d~
I 0)

d+b+b lo)
dtb+tbtI 0)
b Jdtdtl 0&

btd~dtlo)

0 0

0 0

0 -2
0 +2

2 0

+1 -1
+1 -1
—1 —1

-1 -1
+1 +1

+1 +1

-1 +1

-1 +1

—4gpA

-4gpA

-2g(,A

-2gpA

-2gpA

-2gpA

-2gpA

-2gpA

-2gpA

-2gpA

dom are left behind. In addition, we can "track"
these massless states into the weak-coupling re-
gion of the theory formulated on a few lattice
sites.

A. Strong-coupling calculation on a lattice

For g» 1 we follow our strategy of first diago-
nalizing the quartic part of the Hamiltonian (2 ~ 15)
exactly. For this purpose a convenient two-com-

ponentt

representation is

n, (j)=b'(j)b(j),

ng(j) =-~'(j}d(j)
(3.5)

are particle and antiparticle number operators,
respectively. As before, since the potential V is a
sum of commuting single-site terms we can dia-
gonalize each term separately and form a product
basis over all sites.

There are only four states for each g corre-
sponding to the different choices n, (j)=1,0 and
n, (j)=1,0. If we define I0(j)) by

b(j)I0(j)& =d(j)I0(j)& =0, (3.6)

we find the four eigenstates of the interaction term
listed in Table II. Even at the one-site level the
ground state is two-fold degenerate with

~.(j)=~,(j)=-gA (3.7)

corresponding to having nothing, with Q(j}=0,
Q, (j}=-1, or a particle-antiparticle pair, Q(j) =0,
Q, ( j)=+ 1, at a site. One also sees that the single-
site charged states, with Q(j) =+1, Q, (j)=0, lie
high above the ground state from which they are
separated by a gap -gA.

This two-fold degeneracy of the single-site
eigenstates, which did not occur in the three-di-
mensional lattice, means that in the absence of the
gradient term, the ground state of the strong-
inte raction part of H is 2' "-fold degenerate,
since there can be either nothing or a "bound"
fermion-antifermion pair at each lattice site.
The total electric charge of these degenerate states

and

0) (0 Il
(0 -11 (, 1 01

(3 ~ 1)
Q = P [no(j) —n, (j)]

is zero, and their y, charge

(3.8)

x(j) = I' "'
kd'(j)

(3.2)

with b(j) and d(j) satisfying the standard anti-
commutation relations, viz. ,

9 (j), b'( ')k = (d( ),d'( ')]=; ~,

fb (j),d(j')] = 0, etc

Q, = P [n (j)+n (j)—1] (3 ~ 9)

can take any odd-integer value from -(2N+1) to
+(2N+1} depending on the number of sites occupied
by pairs. Note that any neutral state which con-
tains an unbound pair with a fe rm ion and an anti-
fermion split to different lattice sites will lie
higher in energy by an amount equal to 2gA for
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TABLE II. The eigenstates of V defined in (3.4), their corresponhg eigenenergies, and
eigenvalues of Q and Q5.

State Q( j) =—&y(j) —&g(j)
Eigenvalue

of —gA t ~t, ( j) +~,(j) —yl'

each such split pair. The states in this sector and
their eigenvalues are listed in Table III for a
three-site lattice, where we have introduced the
notation

States for three sites E~ong .Q Q5

(1,0,
0) (0

1
0) (O,

O,
1)

—Ag 0 -1

TABLE III. The eigenstates of Vdefined in (3.4) for the
special case of a three-site lattice. The states are la-
beled according to the notation of {3.10}and list the
eigenenergies E,„«s——(V) as well as the Q and Q& eigen-
values for each state.

(3.10)

to label a given state.
Our key interest here is to analyze how K, the

kinetic energy term in (3.4), splits the degenera-
cies among the low-lying Q =0 states. Since it
commutes with Q and Q„K connects states within
each Q and Q, sector only. Thus, we will treat it
as a perturbation for g»1, and work within the
Q =0 sector to construct the low-lying energy
spectrum. It is clear from the form of (3.4) that
K, which moves a single fermion or antifermion
from one lattice site to another, gives no first-
order energy shift to the low-lying states. The
state splitting therefore requires that we do sec-
ond-order degenerate perturbation theory in the
ground-state sector of (3.10) with n~(j) =n„(j) for
each site J. Since all energy denominators be-
tween the ground state and an excited state with
one unbound pair are the same, E„—E~ =2gA, the
intermediate-state sum can be performed and we
obtain an effective second-order Hamiltonian for
the ground-state sector

—Ag 0
&s

yj I/2

—Ag

0 +1

0 +1

Equation (3.11) expresses the fact that both a
fermion and an antifermion at the same initial site
must be transferred to a common final site.

A simple and suggestive "spin" formalism can
now be introduced, since at each lattice site only
two eigenstates, !0) and!+ ), which correspond to
"spin-down" and "spin-up, " respectively, occur
in the Q =0 sector. . We identify "spin" raising
and lowering operators

(111 —3Ag 0 +3

such that

(3.12)
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and introduce

n, (j) =n, (j)= S,(j) +-,'

in terms of which (3.11) can be rewritten

(3.13}

Except for the relative minus sign between the
spin-spin terms H,ff describes the Heisenberg
antiferromagnetic chain, about which a great deal
is known. "

In order to understand this analogy let us, for
the moment only, abandon our definition (1.4) of
the gradient and return to its definition in (1.1) as
a difference, in which case (3.13) contains only
nearest-neighbor interactions. If we now make a
unitary transformation changing the representa-
tion (3.12}by rotating through angle v about the
three-axis at every other lattice site, i.e.,

the effective spin Hamiltonian becomes

Hff = — S j 'S j+1
g' (3.14)

Equation (3.14) now describes the well-studied
linear Heisenberg antiferromagnetic chain with

nearest-neighbor interactions. The eigenstates
of H, ff can be classified into degenerate multiplets
of the total spin as well as of its three-component,
2 Q, =++,S,(j). If we further assume that the sum
over j extends over a linear chain with an even
number of sites and impose cyclic boundary con-
ditions, we can refer to two exact theorerns for
important information on the ground state and ex- '

citation spectrum of (3.14):
Theorem 1. When A/g&0, corresponding to an

antiferromagnetic interaction, the ground state of
(3.14) has total spin S =0 and is unique. "

Theorem 2. The theory has no mass gap in the
limit as the length of the linear chain becomes
infinite; i.e., there is a state orthogonal to he
ground state having vanishingly small excitation
energy x4

There is a minor difference in theorem 1
for a lattice with an odd number of sites arising
from the fact that it is impossible to form a state

of 8, =0. In this case S, =+2 is the lowest possible
value and the ground state is two-fold degenerate
corresponding to the invariance of the massless
theory under Q, - —Q, . This doubling of ground
state is also suggested by the careful study of the
infinitely long linear chain. "

The original solution for the ground state and
excitation spectrum of (3.14) is due to Bethe" in
1931, In agreement with the general theorems
his analysis of the lowest-lying excitations in each
sector of definite S, showed that the ground state
of the system is unique (for even numbers of sites)
and corresponds to a state having S, =0 (i.e. , in
the language of the Thirring model one has alinear
superposition of states having half of the lattice
sites empty and half occupied by fermion-antifer-
mion pairs). His methods also show that the exci-
tation spectrum starts off linearly in 4, corre-
sponding to a massless particle spectrum. If
these results carry over to the solution of (3.13),
which we constructed using (1.4} to avoid the
doubling of the free fermion states on a lattice,
we see from the above theorems that to leading
order in I/g there exists a low-lying spectrum
of massless excitations of the Thirring model in
addition to the arbitrarily massive (-gA) normal
fermionic excitations. This low-lying excitation
spectrum corresponds to bound fermion pairs but,
like a fermion, obeys the exclusion-principle lim-
it of no more than one pair per lattice site. This
spectrum is built upon a unique or doubly degen-
erate vacuum (depending upon whether we use an
even or an odd number of sites}, and there is no
spontaneous breaking of y, invariance leading to .

Goldstone bosons. Recall that recently Coleman
has obtained a similar result for the strong-cou-
pling limit of the massive Thirring model. "

The above insights into solutions of the nearest-
neighbor problem (3.14) are useful guides, al-
though we have been unable to generalize Bethe's
technique to solve completely the problem at hand
in (3.13). In particular the sectors with S,
=w —', (2N+ 1), corresponding to all sites empty, or
occupied by a pair, are eigenstates of H,«with
eigenvalue 0 and are evidently the nondegenerate
ground states in their respective sectors of Q,
=w(2N+1). These states are eigenstates of the
total Hamiltonian of energy —gA(2N+ 1) accord-
ing to Table II and (3.7).

A less trivial case is the exact solution of (3.13)
in the sector Q, =w (2N —1) which corresponds to
constructing appropriate superpositions of (3.10)
with a single bound pair present (or absent). The
ground state in this sector lies below the above
result for the Q, =v(2N+1} sector, and the exci-
tation spectrum is found (see Appendix B) to start
off linearly in the total momentum k: i.e.,
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JkJE(k)g ~(2))) i):A g(2 N+ 1) 7f

=A -g(2N+ 1) — + —lkl- lkl
3g g 2gA '

(3.16)

where k,,= 2~/L &
l
k

l

& 7)A = k ~. With suitable
wave-function renormalization (3.15) describes a
relativistic massless particle spectrum since in
the limit A - the k' term vanishes. Except for
a numerical factor resulting from the definition
(1.4}, the spectrum (3.15) is identical to that found

by Bethe" for (3.14).
In all other sectors containing (or lacking) two

or more bound pairs the analysis becomes much
more formidable since it becomes necessary to
solve a quasiparticle scattering problem for two
or more spin waves. This is the problem solved
only for nearest-neighbor interactions by Bethe
in his remarkable 1931 analysis of (3.14}. In Ap-
pendix C we describe the formulation of this scat-
tering problem in the Q, = —(2N —3}two-pair sec-
tor.

On the basis of the analysis of (3.14) we expect
the ground-state solution of (3.13}with the lowest
energy to lie in the Q, = + 1 =+ 2S, sector. We have
explicitly verified this on a three-site lattice, but
for the general case must rely on a variational
calculation to construct upper bounds on the ground-
state energy in each Q, sector. This bound can
then be compared with the known Bethe solutions
for H,«. In particular for the sector, Q,
=-(2N+1)+2p, with pairs at 0 &p & (2N+I) sites
we use a fully symmetrized trial state

~@( ))
1 (2N+1)'~ I ~ ~ ~

) )
1 ~P

=lcm — exp o. S~ 0

p
(3.16)

The latter form automatically does the bookkeeping
of summing over all ways of choosing p different
lattice sites since (S;.)' = 0. The upper bound on the
total energy as a function of the number of occu-
pied or spin-up lattice sites is evaluated directly
as a function of p,

E...(P) = —(2N+1)Ag A,

p =0, 1, . . . , 2N+ 1.
(3.1'I)

The bound in (3.17) is also the exact result for
P = 0 and for P = 1, coinciding with (3.15) for the

ground state with k= 0. Equation (3.17}describes
a parabola as a function of p with a doubly degen-
erate minimum at p =N and %+1 corresponding
to S,=w —,'. This suggests that (3.13}has the same
general structure as the theory defined by (3.14):
namely, the ground state is a p, doublet, and the
spectrum has no mass gap. "

As a further calibration of the guess (3.16) for
the ground state we can use it to calculate an up-
per bound on the ground-state energy of (3.14) and
compare the answer with Bethe's exact result.
Since (3.16) is symmetric in all 2N+ 1 sites the
expectation value of the sums over sites in (3.13)
and (3.14) can be performed explicitly, and their
ratio

Z [6'( A -i.)1'

(3.18)

gives the factor by which the bound on the 1/g
terms in (3.17) has to be reduced to compare with
the exact energy. In particular the ground state
of (3.17) when p =N gives for the nearest-neighbor
case

E, (N) = —(2N+ l)Ag- —(N+ 1),
A

(3.19)

This comparison suggests that the guess (3.16) of
a symmetric spin function without correlations is
a reasonable representation of the low-lying states,
and also that the general structure of the spectra
for (3.13) and (3.14) is similar.

B. Weak-coupling analysis

As we have defined it on the lattice the Thirring
model realizes its y, symmetry in the strong-cou-
pling region in the normal way —i.e. , a singly or
doubly degenerate vacuum but not an infinitely
degenerate one with Goldstone bosons. The bound
pairs obey the exclusion principle and, at least for
the case of nearest-neighbor interactions described
by (3.14), are massless. We want to show that is
entirely consistent with what is known about the
weak-coupling limit of the theory. As an explicit
example we also construct the exact solution of the
simple three-site example and track the low-lying
states from the g«1 to the g» 1 region.

Since our definition of the gradient reproduces
the relativistic free-particle energy-momentum
relation, it is not surprising that our formulation

which is to be compared with the exact ground-
state energy of

Es„„,(N) = —(2 N+ l)Ag- —(N+ 1)2 ln2 . (3.20)
A
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joins smoothly to the known results of the conti-
nuum model for small g, and that we arrive at the
usual weak-coupling Feynman rules. In contrast,
the procedure based on the definition of the gra-
dient operator by (1.1) and the splitting of fer-
mions from antifermions onto alternate lattice
sites leads to a very different low-lying spectrum
as a result of violating local y, invariance. We
shall discuss this and its implications for gauge
models in the analysis of the Schwinger model in
the next section.

To study the weak-coupling behavior of (3.4) it
is convenient (as usual) to diagonalize the kinetic
energy term in momentum space. We do this by
introducing

d(k) P (2 N l )1/2 d(~)
(3.21)

which satisfy the familar anticommutation rela-
tions, {bh(k'},b(k))= 5»,, etc. We obtain

K= Q k(bh(k)b(k) —dk(k)d(k))
k= n'A

(3.22)

Q= P [n,(k) -n, (k)],
(3.23)

Q, = g [n,(k)+ n, (k) —I],

5 (k +k —k —k)= 1 &i&4+~2-~3-~4» i &
4

is the periodic 5 function which vanishes unless
the sum of the momentum vectors is zero or a
multiple of 2w. It is apparent from (3.22) and
(3.23} that for g-0, the lowest eigenstate of k
corresponds to filling all 0 (0 states with fer-
mions and all positive-energy states with anti-
fermions, i.e.,

n, (k) = 8(- k),

n, (k) = 8(k) .
(3.25)

V=gAQ, —
)

5p(k, + k, —k, —k~)
2gA

2N+ 1

&& bh(k, )dh(k, )d(k, )b(k,),
(3.24)

where

This leads to a doubly degenerate ground state in
the neutral Q =0 sector, depending on whether the
4=0 state is empty or occupied by a pair, with
energy

EQ-0 Q — 1 —2 k'
~ (3.26)

and to two states of the same energy and with
charge Q =+ 1, Q, = 0 corresponding to a fermion
ox an antifermion present in the state k = 0. The
neutral Q =0 ground states in the different Q, sec-
tors can also be deduced from (3.22). For Q, =2P
—(2N+ 1) the ground state corresponds to a state
having p fermion-antifermion pairs chosen suc-
cessively to have the largest negative (for fer-
mions) and positive (for antifermions) available
k values, i.e.,

l4{Q=0 Q. =»-(2N+»&&'='
~~m. a=~ma

n=(N+X-P) oman

(bh,dh)l 0},
(3.2V}

E.(p) =-2
~=&&+i-&»min

b) -dh~, Q Q,
d)-bhq, Q, -—Q, ,

(3.29)

the spectrum in the Q=0 and Q, =+1 sector is
identical. The sectors with Qe0 all lie higher in
energy. We found this to be the case in the study
of the strong-coupling behavior in the preceding
section and can readily confirm it here by direct
calculation. In particular the low-lying states,

So far we have just been labeling the eigenstates
of definite Q and Q, for the theory of a free mass-
less fermion. An iterative weak-coupling treat-
ment of (3.24) modifies this spectrum but does
not change the nature of the Q, symmetry. Thus
we find that the massless free fermions of the
g=0 limit bind in pairs and become the massless
states of strong-coupling limit. Although there
is no spin degree of freedom in the linear lattice
chain in one space and one time dimension, both
the weak-coupling g-0 and the strong-coupling
1/g-0 limits, the lowest-lying objects are "fer-
mions" in that they obey an exclusion principle.

It is instructive to trace the low-lying levels
from the weak- into the strong-coupling region by
exactly diagonalizing H in (3.4) for a lattice of a
few sites only. In particular choosing a three-
site lattice with K=1, there are four possible
states at each lattice site as in Table II or a total
of 64 states in terms of which to diagonalize H.
However, only the nine-dimensional sector with
Q=O and Q, = —1 needs to be considered. Since
(3.4) is invariant under a parity transformation
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k)=0

~kmin

~kmin

li

kmin
'

krnin
&I

kfA In
ii

&Nln

g=0 g~
FIG. 2. Low-lying states of the Thirring model for

vreak coupling.

with Q, =O and @=a 1 formed as described below
(3.26) by putting a single fermion or antifermion
in the k = 0 momentum state, are all pushed up in
energy relative to the ground state for g&0. With-
in the Q=O sector itself the nine-dimensional
problem is further reduced to three tractable
three-dimensional ones by classifying the states
according to their total momentum k/A = 0, 2~/3,
or —2g/3 [modulo 2p due to the umklapp processes
in (3.24), i.e., 4g/3 = —2g/3+ 2g~ —2~/3]. The
corresponding nine eigenvalues are

E= ——g+ — —g + —a cos-ta 8A
3 3: 3- 3

Q=O, Q, = —1 (or+1) sector, and that within this
sector the lowest-energy state of momentum 4
= (2p/5)A follows the 0=0 ground state down in
energy as g increases staying a distance - k
away. As in the exact three-site analysis (3.31),
it starts off for small g«1 like a massless spec-
trum and acquires a wave-function renormaliza-
tion. All other states are pushed up in mass so
that the gap between them and the ground state is-gA.

In summary we have found on the basis of our
lattice formalism that the free massless fermions
of the g-0 limit form into bound pairs obeying
an exclusion principle for each lattice site for
strong coupling g» 1. For the case of nearest-
neighbor interactions in (3.14) there exists a proof
that these bound pairs are also massless. We have
no proof of the massless nature of the low-lying
excitations in the actual case with long-range
interactions described by (3.13). However, we
found the excitations to be massless for a lattice
with a few sites (3 or 5), and the similarity in
the structure of the states as discussed earlier
leads us to conjecture that the low-lying excita-
tions of the Thirring model (3.13) are indeed
massless.

SgA+ g + —a cos —+—
IV. THE SCHVfINGER MODEL

= ——gA+ — g + —a cos
3 3 )

(3.30)

where

2 2 -3/2
ccst = (1+ 3g

a=1 in the zero-momentum sector, and a=+ —,
' in

the sector of momentum + (2g/3)A. The small-
and large-g limits reduce to previous results.
For small g the spectrum is as shown in Fig. 2.
In the limit g= 0 there is a gap of k „=(2p/3)A
between the energy of the lowest-lying zero-mo-
mentum ground state (a=1) and the lowest state
with momentum (2p/3)A (a = —', ). As g increases
these states are shifted downward in energy,
tracking one another linearly corresponding to a
massless excitation spectrum, but there is a
wave-function renormalization —i.e.,

We turn now to the simplest model of interacting
fermions plus gauge fields —i.e., the Schwinger
model, ' or @ED in one space and one time dimen-
sion. The new ingredient here is the gauge field,
which we treat in the same way as prescribed by
Wilson' and Kogut and Susskind'; namely, we as-
sociate the gauge field with the links between lat-
tice points. Hence, each link corresponds to an
independent degree of freedom (i.e., the gauge
field) in this formalism. The Schwinger model is
a "warm-up exercise" preparatory to tackling the
full four-dimensional "color-gauge theory. " We
will show that it is soluble for strong coupling
since then we can reduce it to a variant of the
linear Heisenberg antiferromagnetic chain studied
in Sec. III.

The Hamiltonian of the Schwinger model on a
lattice in one space and one time dimension is
written as

P 3 2
Eo(a= —,') —&,(a=1)=0 „1,+ ~ ~ ~r'

(3.31) +-,' g E'(I} (4.1)
A similar analysis of the five-site problem has

been carried out for g«1 as a perturbation ex-
pansion and shows that the ground state lies in the

in terms of the charged fermion y, and the gauge
field E(l}= -A, . We define' U(j, —j,) as
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U(j, —j,)
-=U(l)

j~&g&j2

turns out to be useful to rescale the gauge fields to

n(l) —=goA(l),

(4 2)

where the product is to be taken over all links, I, ,
between the lattice points j, and j,. For a unit link

g (I) =-—Z(I),
1

gp

so that in place of (4."I) we have

[g(n), U(m)]= U (n)5„„.

(4.8)

(4.9)
U(l)=e' "~'~ a=—1/A

with the convention

(4.3)
Now, if U(n) operates on an eigenstate of g con-
taining S units of gauge flux on link n, i.e.,

A(E, ,) = -A(l, ,) = -A(- l, ,), (4.4) g(n)l s(n)) = sl s(n)), (4.10)

so that it increases the flux by one unit, i.e., by (4.9)

U(l, ,) =U (l, ,) =U (- l, ,) . (4.5) U(n)IS(n)) =
I (S +1)(n)) . (4.11)

Note that the electric flux has a direction associ-
ated with it so that U(l, ,) is to be thought of as
creating a unit flux (of magnitude —,g') oriented
from site 1 to site 2.

As indicated the first term in Eq. (4.1) is
summed over lattice points, while the second term
is over all links. We have sealed all degrees of
freedom by the appropriate powers of A so as to
work with dimensionless fields. The coupling con-
stantg has dimension A, and we introduce the di-
mensionless constantg, =ga. Formally (4.1) re-
duces to the usual continuum Hamiltonian of the
Schwinger model in the limit a —0. Finally we
assume that canonical commutation relations for
the fermion field are given by (2.14), and for the
gauge field by

[A(n), Z(m)]= fb„„. (4.6)

=g,U(n)5„„. (4.V)

We are interested in setting up an approximation
scheme that is reliable for studying the strong-
coupling behavior of (4.1) wheng, -~. Note that
this limit means thatg=g, ja»1ja as a-0. It

This completes our specification of the theory.
One useful fact which follows from (4.3) and (4.6}
is that the operator U acts as a ladder operator on
the eigenstates of E shifting them by the value gp,
since

[E(n), U(m)]= [E(n), e"o"~"~]

+ ADA(n)~
0 n, m

The virtue of this rescaling is that we recognize
immediately that the free gauge field energy is
the dominant term in H for large gp»1:

H= A —,'go' —Q g'(l)

gg j j ~ S(l)

= BD+E . (4.12)

It is therefore natural to divide H into the large
energy

H, = —g,' Q g'(I)0 2 0 (4.13}

associated with the flux links, plus the perturbing
effects of the fermion sources in the kinetic term,
K. The ground state of Hp is evidently the state
of zero flux with eigenvalue 0, and all other states
containing one or more flux links lie higher by at
least &gp'A» A.

As Hp contains no x'eference to the fermionic con-
figuration, all zero electric flux states l(, 0),
where p is any fermionic configuration, are de-
generate. The kinetic term K' will lift this degen-
eracy; however, since U(j, -j,) creates flux links,
by (4.11) connecting l g, 0) to states with flux whose
energy is —,

'
l j, —j,lg0'A, there is no energy shift

in first order. Second order is the lowest order
in which the flux links cancel by (4.5}. Using the
matrix representations of Sec. QI we find the effec-
tive second-order Hamiltonian to be

~m

[.—f ~'(ii -j2)1[-f~'(i. i~}] Q (bg'b-g -d~ d,') U(ji- j.)ln)
jgj2j3j4 n

&& —(n l (b,t b, —
d& dzt ) U(j, —j.~)

n
(4.14)
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The only intermediate states which contribute in (4.14) are those in which the electric flux created from
IO& by U(j, -j,) is annihilated by U(j, -j,). Hence the sums are restricted to j, =j„j,=j„and the energy
denominator, E„, is determined by the fact that

a,[U(j, —j,)lo&]=a, U(t)lo&

A=
2 go'lj, -j.lU(j -j,)10&. (4.15)

The intermediate-state sum can now be performed leading to an effective Hamiltonian for the fluxless
gauge-invariant sector which is very similar to (3.11) for the Thirring model

H„, = ——,g . ' . ' [n~(j, )[1-n, (j,)]+n~(j,)[l -n~(j, )]+2C& C& J,
go ~1 ~~2

(4.16)

where

C,. =-d,.b, .
As for the Thirring model we can also define con-
served fermion charges Q and Q, . Since we limit
out discussion to "gauge-invariant" «ro-flux
states, there must be either a fermion-antifer-
mion pair or nothing at each site. Once again
these are neutral states, Q =0, which differ in

their Q, eigenvalues depending on the number of

sites, p, occupied by pairs, i.e., Q, = —(2K+I)
+2P. Within this subspace n, (j) =n~(j) and (4.16)
further simplifies to

H, ff = ——,Q, ' . ' [n. (I n)+-C. C. ]
[5 (j, -j.)]

1 2

4A ~ [~'(j, -j.)]'(i S,S, ,
)g'~ Ij -jl ' 'x" 'x'2 '

0
y g 1 2

(4.17)

where we have introduced the spin operator in the
same way as for the Thirring model. Therefore,
for gauge-invariant states in which no flux links
are excited, the Schwinger model is equivalent to
the linear Heisenberg antiferromagnetic chain and
the analysis of Sec. III can be applied. "

The continuum Schwinger model has been solved
exactly, so it is of interest to compare the spec-
trum of low-lying states obtained in the lattice
formulation with the spectrum of the continuum
theory. It is a feature of the Schwinger model that
for the sector of gauge-invariant states only fer-
mion-antifermion bound states exist which cannot
be pulled apart. This result is of special interest
in connection with efforts based on field theory to
understand color or quark confinement. We also
find this result in the strong-coupling limit of the

lattice model: All gauge-invariant states formed
from the vacuum must have zero total charge, Q
=0, and the lattice sites containing particles must
be joined to those with antiparticles by flux links,
each of which costs an energy 2g,'Ij, —j,lA.
Therefore, no separated individual charges exist
at finite energy for A-~. In that (4.12) and (4.17)
are equivalent to the strong-coupling Thirring
model (3.13), aside from the extra factor I/I j, —j,l

in B,«, plus extra massive "photons" our conclu-
sions are similar to those described in Sec. III.

The major difference between the low-lying
spectrum in our lattice formulation and the usual
description of states created by the "gauge-invari-
ant observables" from the vacuum in the contin-
uum theory is that we discuss as physical the
massless neutral states of zero flux /inks. We do
this because these bound particle-antiparticle
pairs at a lattice site (as listed in Table II for
example) can be created by a well-defined gauge-
invariant operator. In contrast to this one does
not consider the massless solutions with zero flux
links" in the continuum spectrum because the bi-
linear operator is singular and not included among
the "gauge-invariant observables" of the Schwinger
model. In the continuum, gauge-invariant opera-
tors are defined by a point-separation method, which
in the lattice language corresponds to h= ving parti-
cles and antiparticles to different lattice sites
with gauge field links between them. Therefore,
a neutral pair created in this way contains an ex-
cited flux link and so is massive.

States made by joining a quark and an antiquark
via a massive flux link are preserved by Kogut
and Susskind in their lattice formulation. In par-
ticular Banks, Kogut, and Susskind" show that
the gauge-invariant state
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[q)= Pb,'V(t, ,„)d,.'„[O)

represents a massive "photon" with zero momen-
tum; however, since they split particle and anti-
particle unlike our formulation, they find no addi-
tional low-lying states of interest. To summarize,
having formulated the fermion theory so that par-
ticles and antiparticles can exist at the same lat-
tice point without doubling the number of degrees
of freedom, we show that in addition to massive
states there exist low-lying massless and gauge-
invariant states formed of bound pairs without flux
links in the strong-coupling limit. Moreover,
these correspond to the massless states of the
Thirring model. "

Throughout this discussion we have restricted
our attention to gauge-invariant states. While it
is consistent to work within only this sector since
H in (4.12) is gauge invariant, we cannot prove in
general that this sector contains the state of low-
est energy. This is because there exist low-lying
gauge-noninvariant states containing particles
and/or antiparticles on different sites, but no
flux links. However, these "unshielded particles"
cannot move according to (4.12) without the kinetic-
term g creating massive flux links. As a result
of this restriction it is reasonable to conjecture
that the gauge-invariant states will have their en-
ergy lowered by the action of K relative to the non-
gauge-invariant states. This conjecture has been
shown to be true for the case of three sites by ex-
plicit calculation, but no general proof has been
found.

Depending on how one defines the fermion gradi-
ent, one is evidently led to two different formula-
tions of what one means by the Schwinger and
Thirring models for strong couplings. The ques-
tion of which is the "right" one cannot be posed in
terms of observation since these are no more than
mathematical models. We have presented a formu-
lation that preserves the local chiral invariance of
the model and which in addition meets the following

criteria:
(1) It is well defined and self-consistent. There

is a mell-defined procedure for defining the con-
served charges associated with local symmetries
such as chiral invariance, and, moreover, the
free-field limit of any theory formulated in our
way is guaranteed to be sensible.

(2) The fact that our free-field Hamiltonian leads
to usual Feynman propagators says that for weak
coupling our version of the theory looks, in per-
turbation theory, like ordinary renormalizable
field theory.

(3) There is a well-defined procedure for de-
riving equations of motion and commutation rela-
ations for conserved currents and, for example,
the commutators of time and space compounds of
conserved currents contain the appropriate "Sch-
winger terms. "

The real question which remains to be answered
is whether a four-dimensional non-Abelian color-
gauge theory interacting with quarks can reproduce
the observations of quark and color confinement
as well as of hadronic spectra. At the same time
the formalism applied to Abelian QED must lead
to Coulomb's law and the observed properties of
"unconfining" Maxwell-Dirac theory.

V. THE NON-ABELIAN COLOR GAUGE THEORIES
IN THREE SPACE AND ONE TIME DIMENSION

The results obtained in the preceding discussion
can be directly generalized to non-Abelian gauge
models in higher dimensions. As in the preceding
discussion, because our formalism includes gauge-
invariant states with fermions and antifermions at
the same lattice site and no flux links, there are
low-mass states in the strong-coupling limit. We
follow the same prescription of Wilson and Kogut
and Susskind for the gauge field in three space and
one time dimension. For the fermion field the
gradient operator as defined in (1.6) leads to the
Hamiltonian

lt (t (eiectric part cf gau=ge field)+)Pr (jt)(rrr)r()) [Tl !();),)tt(i, —t', ')]+ 0(—,)
—= Ho+%+ O(1/gg), (5.1)

where

(5.3)

where A. (l) are the canonical link fields, and a
are c-number matrices belonging to a specific

5,'(I -I) =- &'(j, —I, ) &, , 5. . . etc. , (5

and U(j, —j,) is a product of terms of the form

II( f) igX ~ A(1) ~ 1

(N, N) representation of the gauge group as de-
termined by the choice of representation for the
fermion fields. Equation (5.2) defines the obvious
straight line path on the lattice for the flux links
joining j, to j,.

In the strong-coupling region of large g, the
important properties of (5.1) are as follows:

(1) The low-mass states are those with zero
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flux links and an arbitrary configuration of fermi-
ons. All others are pushed up in energy above
-go'A.

(2) When U(l) hits an unoccupied link —i.e., one
for which no gauge field has been excited —it ex-
cites the link and increases the energy of the state
by -go A.

At this point we proceed in close parallel to the
discussion of the Schwinger model with strong cou-
pling. Focusing our attention on the sector of
gauge-invariant states, we study the way in which
the fermionic part of H mixes all the zero-energy
eigenstates of H, (gauge) that have no flux links to
split their degeneracy. In a theory with the SU(3)
&& [SU(3)]„„,symmetry of the quark model all states
with (qq) or (qqq) at a lattice site in color-singlet
states are included in the low-lying sector of
gauge-invariant states. These are the states hav-
ing the quantum numbers of ordinary hadrons.

If we choose the same spinor representation in-
troduced in (2.25) and (2.26) we can rewrite the
fermionic part of II as

(5.4)

As before & moves a quark in a straight line from
j, to ),0i, (or an antiquark from j, to j,) and at
the same time excites a uni, t of gauge flux on each
intervening link. Therefore, we must go to sec-
ond or higher order in E in order to mix the de-
generate color-singlet fluxless states.

Furthermore, since 5'(0) =0, the action of K in
second order allows scattering and interaction
among these states, but it introduces no self-mass
term involving only quarks all at the same lattice
site. Hence our effective Hamiltonian for the low-
lying gauge- invariant states of "bare colorless had-
rons" corresponds to a theory of bare massless
strongly interacting particles. Our starting point is
a strong- coupling theory with the full chir al SU(3 )
x SU(3) symmetry if we choose a fundamental quark
triplet. Instead of having to drive the pion mass down
to zero to ensure partial conservation of axial-
vector current (PCAC) we have a zero-mass start-
ing point and must solve the problem of generating
the hadronic masses either by a dynamical break-
down mechanism yet to be explored or by explicit-
ly introducing chiral-breaking interactions into H
ab initio.

The real work of solving for the hadronic spec-
tra and interactions still remains to be done.
%hat we have formulated here is a starting point

in terms of a chirally invariant gauge theory (of
color) which reduces in the strong-coupling re-
gion to a system of interacting "bare" particles
with hadronic quantum numbers. In the gauge-in-
variant sector the quark and gluon degrees of free-
dom are frozen out since such states with excited
flux links are pushed up to very high energy above
=g,'A&A. This is a very different starting point
from earlier formulations that destroy local chiral
invariance by splitting fermion field components
onto different lattice sites.

In conclusion we make some general observa-
tions:

(I) According to (5.4) K, acting on a fluxless
gauge-invariant state, moves a quark or an anti-
quark, creating the associated flux link. To sec-
ond order it can either move a quark (or antiquark)
from an initial site to an intermediate one, and
then move it back again to where it started, there-
by canceling the flux link, since U( j, —j,) U(j, —j, )
= 1, or it can move both a quark and an antiquark
from site j, to j, without creating flux links in the
final state. This is illustrated in Figs. 3(a) and
3(b). This amounts to a kinetic energy term as we
saw in the analysis of the Thir ring and Schwinger
models.

(2) If there are two hadrons present on different
sites, the second-order application of K can lead
to a quark-interchange interaction between them,
as illustrated in Fig. 4. Starting from color-sing-
let states the hadrons will also end up as individual
color singlets if no flux links are created in the
final state. However, SU(3) quantum numbers can

first order Ip

second order ]p

(b)

first orderk 4
x x x x x

second order Jp

FIG. 3. Motion of a qq state on a lattice to second
order 1/g 2. (a) q (or q) moves to a different lattice site
exciting the intervening flux links and then returns; (b)
q moves to a new site and is then followed by the q.
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first orderjp

(')~ (+),
X ~ X

(+), -( ),
(+),

be changed.
(3) A single three-quark baryon can move from

one site to another on the lattice only as a result
of third- and higher-order applications of g. This
is because each order of K can move but one quark
at a time. This means that baryonic masses are
displaced relative to the zero-order degenerate
eigenvalue of H, by factors of order I/g, ' in con-
trast to the I/g, ' shift from second-order applica-
tion of K to the meson states. The significance of
this for hadronic mass spectra and. for the choice
of coupling strengths g,' remains to be studied.
So does the entire question of how our bare mass-
less mesonic states become dressed to form the
true physical states containing (qq) clouds with
which they can interact via the quark-interchange
mechanism.

(4) In the gauge-invariant sector, all exotic
states of nonzero triality contain flux links and
are therefore pushed very high up in energy above

g p A . Exotic states of the second kind —namely,
states such as [(qq)„„„(qq)„„„]„.„„,with (luarks and
antiquarks finally coupled to color-singlet config-
urations, but not contained in the normal quark
model —do occur. However, whereas the vacuum
and ordinary qq mesonic states will have their
degeneracy split and can be pushed down in energy
with second-order application of K, these exotics
of the second kind are shifted only in higher order
since it takes fourth-order application of K to

second order
X X X X X

(+), ( ),
(-), -('),

plo. 4. Quark-interchange interaction between ~esons.

move them on the lattice. Hence, if they were
stable, we would expect to find them lying higher
in the energy spectrum. In fact, it is easy to see
that such states can decay, in second order, to
ordinary separated qq states.

(6) States of pure gluon, or flux link, configura
tions lie very high in energy above our low-mass
gauge-invariant sector since they will have the en-
ergy of at least four flux links, 2g,'A.

d(fg) =fdg+df g. (A2)

In particular E(I. (A2) implies that (choose f=g
= const)

d(const) = 0.

From E(l. (A2) it follows that for integer n

(A3)

d(ein»/A) ii(es(n-I)»/A)d(ei»/A) (A4)

where k is one of the allowed momenta on the lat-
tice k=(2m/1)m. Choosing n=2N+ 1= LA in E(I. (A4)
and using (A3)

d(e I») =d(1) =0= 1.(e ' )d(e'"/ ). (A6)

Hence

(A6)

which cannot be true.
Next we would like to derive the correct form of

the chain rule with our definition of the gradient.
By definition

We have introduced the gradient operator on the
lattice in the following way:

(Vf)(, )
= Q ike'~' f(k). (A1)

k

This definition of the gradient does not satisfy the
Leibnitz product rule. As a matter of fact we can
prove the following theorem.

Theorem. No definition of a gradient operator on
the lattice satisfies the Leibnitz product rule.

Proof. Assume conversely that one can define a
derivative operator which does satisfy

-iag'/A
v/(fg) = g ike' / »(fgA)(k)= g ike' /'»g f(j ')g(j ')

j
is~/A -say'/A ~ eilij'/Af . ei)2i'/&g

A, j' ly&2

(A7)

It is clear that

p e (n iz. '2)&'/A=6(k-—-l, —l,)+5(k —l, —l, —2n'A)+5(k —l, —I, +2nA)
gt
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Hence,

V(fg)=Q &(l, +l )e'" "«&'f„g„)g(g~ l
—Il, +) I)

+ Q i(t, +l,, —2wA)e'~' ")~2'~ f g, 8
2m'N

l j.&2

2, +l, —27T

+ Q &(l, +l, + ge«)e «'" & «&f, g, ,e(g~
lgl2

which can be rewritten as

(A8)

v(fg) = g i(t, + l,)e' ')"2 f f(l,)g(l,)

+ 2niA Q e'&'g')2'jf~'f(t, )g(t, )0
2m'N

l~l2

lx + l, + 2g

—P e"' '""l f(l ) (l )g(
s &

l, + l,
(A 9)

Note that in the first term on the right-hand side of Eq. (A9) the sum over l, and l, is unrestricted due to
the sum of contributions coming from all three terms on the right-hand side of Eq. (A8). It is easy to see
that the first term in Eq. (A9) gives the usual Leibnitz product rule. The other two terms are the modifica-
tion to the usual chain rule

v(fg) =fvg+ (vf)g+ g s(j; t„t.)f(l )g(l ), (A10)

where

S(j;)„),) ge«& e'&' '=e'«e ' "*,g, ,«, &,«eg
(

ge~

I 2 l1l2

(A 11)

It is important to note that the support of S comes
from the regions (for large I(I) l, + t, & nA and l, + l,
& —nA. This immediately implies that S does not
have a 4=0 comPonen~ in its Fourier decomposi-
tion

Thus,

eiAJ/A
I(j;l,l,) = Q . S(k;t„t,)

s(u=o) =—g s(j) =o.1
L

(A12) et ay/A

~ P e ""~'s(f;t„t,)
Hence we can define a function I(j; l, l,) through the
relation

vI(j) =s(j)

In momentum space Eq. (A13) implies that

i'(k) = S(k).

(A13)

and so

elk(g- j') /A
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jeff Ig(k)& H ff I g e'"'"s+(&)
r

as desired.

APPENDIX B

The object of this appendix is to find the spec-
trum, t(k), of the second-order Thirring Hamil-
tonian in the sector g, =2S, = —I + 2, and compute
the I.= 2N+ 1-~—limit of the expression for E(k).
Recapitulating, we have (3.13)

x [5, ,s„(f,)+(I)+5, ,s,(j,)]ly,&.

(B5)

The proof is completed if we then observe the two

facts

P [5&(I
. )]2

' 1 2 i(kf+k2)(l-f2) /A

L
J2

Al,g], = —Agg [n,(j)+n, (j ) —1]'.

(Bl)

(B2)

and

=—Pk'

&r r /A earth, /A

[5'(j, —I)]'= X(k),

(B6)

(B7)

If we let I)I),& be the state of all spins down, so that
where, for L-~, X(k) takes the form

(BS)
s (j)1$.& =o (B3)

for all "j", then we can define L=(2N+1) linearly
independent states

Before proving (B7) and (BS) we see that direct
substitution of (B6) and (B7) into (B5) yields

e„,Iq(k)& = -——g k'+ X(k) Iq(k)&
A 1

Q *""s.(I)l&.& (B4)

which span the subspace Q, = —L+2.
It remains to show that the 1$(k)&'s are eigenstates

of II,ff. To do this, evaluate

which agrees with (3.15) if you add back the com-
mon energy of —gI.A coming from Hp.

The proof of (B7) proceeds as follows:

e'"'/ ~ k k~ 51( I)2 ~ 1 2 ef(Af+k2)(j l) /A +(a-f/A

r r r, rt~, rf2

(B9)
,,/, 5p(k —k, —k,)e'

(I)
lk2

where 5~(k, + k, —k) is the periodic 5 function defined to be zero unless k = k, + k, + multiple of 2)fA. Since
k, +k, =k+(2ffA)x, Eq. (B9) becomes

&frtr / A fag, /A

[5'(j f —&)]' = X(k)

where

X(k) =———Q k,k,5~(k, + k, —k).
1

rt~s&2

To evaluate the explicit form of X(k) we observe that due to the periodic 5 function there are three regions
which contribute to the double sum, namely:



1646 D RE L L, O'E IN ST E IN, AND YAN K I E LOG IC 2

k, =k-k„e(~- ik-k, i),

k, = k —k, —27), 8(k —k, —)) ),
and

k, = k —k, + 2w, 8(- n' —(k —k,)).

Hence,

—Q —).,k, 5~()t —k, —)t,) =—Q q' —Q .('[8().'- k, -w)8()) —8(- w —().' —k, ))8(- I)]},
Algr2 C a,

and so as L, -~ this becomes

) A-e
q'dq+ — qdq 8(k)—

277 j p 7T2

p2
qdq 8(- k) =—+-', (k' 2k~-)

"n'-0 3

2

=-,'(Jki ~)'

APPENDIX C

In this appendix we formulate the problem of diagonalizing the effective second-order 'Thirring Hamilto-
nian in the sector Q, =2S,= —I.+4. As before, since II, = —IAg1 for all of the Q, sectors we will measure
all energies with respect to E,= —Lgh and so we want to solve the equation

(Cl)

II„,—g [5'0,-j.)]'[s.(j,)s.(j.) —s, (j,)s (j.) —-']. (C2)

It is clear that the most general state with Q, = —I.+ 4 can be represented as

}y) = g e„.S, (n)S, (m)iy, &,
n, m;n &m

~~~~~ ly. & is the unique state of Q, = 2S, = —I.. As in Appendix B we evaluate

II.fr lg& =&I)& = Q ~...[ff.ff S+(n)s+(m)]lq. &

n, m;n &m

Using the usual commutation relations for spin matrices we obtain

[S,(j,)s (j,), s+(n)s+(m)]i/, &
= [ —2S+(j,)s, (m)5„5, „+S,(j,)S,(m)5, „+S+(j,)s, (n)5, „]i/,&

and

(C3)

(G4)

[S,(j,)s,(j,), s, (n)s, (m)]i(, & =[S,(n)S, (m)(5„,. 5„~ +5
& 5„~ +5„z 5„~ +5„~ 5 ~ )- —,'(5„,. +5„~ +5,. +5

~ )]i(,&.

(C6)

Substituting (C4) and (C5) into (C3) and equating coefficients of S, (l)s, (p) we obtain

(& —2c)&„=—5'(I -j )'8» ——g l5'(I —n)1'&.,, ——g [5'(P -m)]'&,
cf m

where

(C6)

A, 2 A1 2 Azc=-— [5'(/ —p)]'= —— k'
g g L,- L~~g 3

l, P

If we think of 8, & as a two-variable quasiparticle wave function (C6) describes a scattering problem in a
potential (A/g)[5'(l -P)]'. Going to momentum space

Q, =- Q a(k„k,)ik,k, &, p= " ' e'"&'e' 2,ak k
(C8)
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and E(1. (C6) becomes

E —2c+— X ' ' + g ' '
g(k„k ) = Q V(k, k~; k,'k~)a(kg, k„'),t ~ k ~ ~t ~ k ~

~

~
t j ~

~~

~ ~

~ t ~ Ij tI ~I ~I t ~I t2 2

where

(C9)

kt = k1 + k2 ~ k7r = k1 k2 r

(C10)

and

(C11)

Hence the center-of-mass motion separates, up to an umklapp, and one is left with a nontrivial quasi-
particles scattering problem.
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