
PHYSICAL REVIE% D VOLUME 14, NUMBER 6 15 SEPTEMBER 1976.

Collective phenomena in X$ field theory treated in the random-phase approximation*

Fred Cooper
Theoretical Division, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87544

Gerald S. Guralnik and Stuart H. Kasdan
Physics Department, Brown University, Providence, Rhode Island 02912

(Received 12 February 1976)

We investigate X$ theory in the random-phase approximation as a prototypic model for understanding the
formation of bound states (here 2-meson bound states) and the nature of the effective interaction between such
states. We give the random-phase approximation a functional-derivative interpretation which allows us to
determine the effective expansion parameter of the random-phase approximation t'o be (A,z'/N)Dz(q'), where

DJ, (q') is the propagator of the collective mode. The field theory in this approximation has both mass and
coupling-constant renormalization, and we derive expressions for unrenormalized and renormalized 2-, 4-, and
6-point functions for the original scalar field, and determine the 4-point function for bound-state-bound-state
scattering as well as the effective coupling between bound states. We show the relation between the random-
phase approximation and the O(N) model for large N and prove that without single-field symmetry breaking
there is a range of renormalized coupling constant where there is no ghost.

INTRODUCTION

In trying to understand the structure of hadrons
as seen in deep-inelastic electroproduction, and
high-transverse-momenta phenomena in PP colli-
sions, many of the features present are qualita-
tively described in terms of a parton (say quark)
substructure, where quarks are acting indepen-
dently but are never seen as out-states. The
particles seen in the laboratory are presumably
bound states of some underlying quark-gluon
theory, and in a different regime, such as low-
energy hadron scattering, one can describe the
physics in terms of phenomenological fields for
the physical particles such as pions and nucleons
(say, as in the o model). What is missing is a
bridge between "parton" phenomena and particle
phenomena. That is, one would like to start with
a quark-gluon Lagrangian, find the bound states,
see how they interact, and determine a phenom-
enological Lagrangian to describe that interaction.
In this paper we emphasize that there exists a
new form (for quantum field theory) of perturba-
tion theory, where, to lowest order, bound states
already exist. This approximation allows one to
look at bound-state interactions in a rather
straightforward fashion. The perturbation theory
is defined by assuming that a certain variational
derivative is of order E. That is, we will make
an expansion in the third fluctuation of the under-
lying quantum field.

The problem we have in the back of our mind is
studying the bound states of a quark-gluon theory
with non-Abelian couplings using this new pertur-
bation theory. However, for the sake of clearly
illustrating our technique, we confine our consid-

erations in this paper to a self-interacting scalar
field. This model, despite its simplicity, will
demonstrate the feasibility of the approximation
techniques. We will study more realistic applica-
tion elsewhere. We begin with the Lagrangian for
a scalar field with XP' interactions in the presence
of external sources S(x) for Ps(x) and J'(x) for P(x).
We shall show that the introduction of two sources
makes itpossible to obtain either of two different ap-
proximations. This illustrates one of the impor-
tant points of this paper, which is how naturally
the choice of external sources leads to an approx-
imation scheme. Here we will primarily be con-
cerned with one of these approximations, the ran-
dom-phase approximation (RPA), which is ob-
tained by taking the "normalized" vacuum expecta-
tion value of the field equation and replacing the
term of the form

(Oo, ) Ps ( Oo,)
(Otr,

i
Oo,)

(Oo, )
P' Oo,) (Oo, P ( Oas)

(0(r,
(
Otrs) (Og, (

Otr, )

Having made this approximation, all lowest-
order Green's functions may be derived by func-
tional differentiations of the resulting equation.
It is reasonable to expect that a scheme based on
a lowest-order approximation which is simple
with respect to the source S of P' (as this approx-
imation will be shown to be) would tend to pick out
any highly correlated excitations of the field P'.
Corresponding to this expectation we show that
this RPA approximation leads to bound states of
Qs and that the scalar-scalar scattering to lowest
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I +

The equations of motion are

(cP+ mo ) Q + xoxQ =J" (2)

2 I

FIG. 1. Pictorial representation of bound-state —bound-
state scattering.

order is saturated by the exchange of the bound-
state propagator in s, t, u. We also find that
bound- state-bound- state scattering to lowest
order is not so different from usual naive models
in that one has contributions from the box diagram
and from bound-state exchange with a specific
form for the BBBvertex, and thus me get the
diagrams of Fig. 1. The straight line is the full
scalar propagator G(q') and the wiggly line is the
full propagator Ds(q') for X= Q'. We shall find
that X,'Ds(q') is effectively the expansion parame-
ter of this theory.

We show that our RPA is essentially the O(N)
(Refs 1 and 2) expansion although we are not con-
strained to take N large. We further show as a
consequence of this relationship that without sym-
metry breaking there is a region of the renormal-
ized coupling constant for both theories where the
results are not plagued by the ghosts character-
istic of the previous calculations.

I. APPROXIMATION SCHEME FOR X P~

The most familiar approximation scheme for
X,Q' theory is the normal perturbation expansion
in powers of A0. This is by no means the only ex-
pansion and, as we shall show', it is particularly
simple to generate other expansions by using func-
tional techniques. We will deal with an N-com-
ponent fieM P, but most of our arguments hold
when we have only one component. In order to
keep the results simple in appearance we usually
will use matrix notation and suppress the indices
associated with the different components. Thus
the Lagrangian density is

2 = g 9„$9„$—2mo'(t)'+ a x,x'

'x.x4'+ J4+ sx-

Here

( '+~o')(t) +~o(0 0')0 —2se =J . (4)

Here, this one time, we have displayed all the
internal indices.

The external sources S(x) and J(x) are introduced
for convenience in deriving Green's- function equa-
tions for the fields X(x) and (It)(x). Our choice of
source couplings here will lead to Green's-func-
tion equations which clearly suggest approximation
methods particularly tractable with this type of
source coupling and interaction.

The generating functional for the vacuum ampli-
tude is

Z(J S) eiw(z, s)

=,(o(o) .
Here

W( J,S) =—.lnZ( J,S)

generates the connected n-point functions for (t)

and X and

)'(5,) =—W(J, S) —fd xZ(x)-
5$'

generates the one-particle irreducible graphs.
In what follows we will often use for the n-

coordinate Green's functions the notation

gtl ~
6J (1)6J(2)6J'(3)

6"W

6S(1)6S(2) ~ ~ ~ '

6S(l)6J'(2)

We will also use the equivalent notation

28
x=4 0 ——.

0

The field y will turn out to excite in a simple way
the bound state that appears in our scheme. When
Eqs. (2) and (3) are combined we obtain the usual
result,

~(1)
6il'

@ (1) &0(1)&
6J(1)

(x(1))
6S(1) ' (I) '



14 COLLECTIVE PHENOMENA IN X/4 FIELD THEORY TREATED. . . 1609

W(12)
@.( ) G(12),. ( (0( )0( ))) @(1)@(2)
5J(2) (I &

(10)

AA O'W
W(12) = D~(12) 5S(l)5S(2)

(~) Xe Xc
(T(X(1)X(2))),(1),(2) . (11)

5W (X( )) (~ (x)) 1

(13a)

We can also write (12a) as

'+ m02+ —.0 trG(xx) + X04,'(x) —2S(x)+—.o 5S, 4,(x)

In these equations 4,(1) means 4,(x,), G(12) means
G(x,x,), etc. , and (A) means, (01AIO) . The rea-
son that we use two equivalent notations is that the
Green's functions expressed as G and 4, are gen-
erally more familiar, but the W notation empha-
sizes symmetry and often makes intermediate
steps more transparent. Consequently, through-
out the paper we write results in either or both
forms or in a mixed form depending on subsequent
manipulations.

Taking the normalized vacuum expectation of
Eq. (4) yields the equation obeyed by 4„

From Eq. (13a) it follows that

1 O'W, 2S
5S

' (5J)2 c

Differentiation of (13b) yields

15'W 1 ' O'W 15'W
i 5S5J' i 5J(5J) ' i 5J'5J

or

(12b)

(13b)

Since

H+ 0+—.—+X 4 =J.58'
z ~S

(12a)
1 5 1 1
—.—C = —. —trG+2C, .—.G.i 5S ~ i 5J

Inserting Eq. (14a) into (12a) we find

(14b)

X, O'W 2Z, 6 OW, — 1 'X,5'W
(5J) i 5J' 5J ' ' i 5J(5J) (15a)

or in terms of G and 4, only

2z~'+ mo2+ —.0 trG(xx) + . 0 G(xx) ~ + %04,'(x) —2S(x) + Xo 4,(x) =J(x) .
g

' 5Jx

Equations (15) are equivalent to Eqs. (12) but are
written entirely in terms of derivatives with re-
spect to the source J. Consequently, when approx-
imations are made which involve dropping deriva-
tives these sets of equations lead to different re-
sults. Equations (12) are appropriate for studying

the random-phase approximation (RPA) while Eqs.
(15) lead to the Hartree approximation.

By functional differentiation, with respect to J,
we can find the two field Green's functions. Equa-
tions (12) lead to

[CP + mo2+ XoW(1)]W(12) +—. W(112) + XoW(1)W(12) = 5(1—2) (16a)

or, equivalently,

Z

+2+ m 2+—.0 trG(11) + X04,'(1) + 2Xo4, (1)C,(1)~ —2S(1)+—.o G(12) +—. 4,(1)~ G(12) = 5(1—2),i 58 1 i ' 5J'1

(16b)

while Eqs. (15) result in



1610 COOPER, GURALNIK, AND KASDAN

0'+ mo' —2S(1)+—.o tr W(11)+ . ' W(ll) + 2Xo4,(1)C,(l) ~ + Xo4,'(1) W(12) +—.Xotr W(1112)+ . ',[tr W(112)]4,(1)
z 2. g'

= 5(l —2) — . o W(211) 4,(l)

(17a)

or perhaps, more transparently,

s+ pg s+ —.otrG(11)+ .oG(11) +2Ao4, (1)4,(1) + Xo4, (1)—2S(l)+ ho —.— G(12)

+ .o G(11) '4 (1)+—.o trG(11) 4 (1)= 5(1—2) .2%0 5 Xp

(17b)

The sets of Eqs. (12) and (16) or (15) and (17)
are, of course, as they stand utterly intractable.
In order to proceed we must make some sort of
truncation approximation so that at least one of
the n-field Green s functions is expressible in
terms of itself and various other Green's func-
tions of less than n fields.

The above equations are written in a form which
is particularly tractable for the truncations we
wish to study in this paper, but it is still not dif-
ficult to extract from the ones using J as the
primary source the usual approximation schemes
used in studying the XP' problem. For example,
we can obtain the results of the perturbation ex-
pansion in powers of Xo from Eq. (15b) in a direct
manner by substituting the expansions 4,(x)
=4o(x)+Xo4t(x)+ ~ and G(12)
= G'(12)+ XoG'(12) + ~ ~ ~ into this expression and
collecting terms of the same power in X, and
requiring that they vanish order by order. We
can also easily generate the loop expansion for
the Goldstone or o model from Eq. (15b). The
most direct procedure to do this is to rewrite
(15b) in the form'

Q+ moo- 2S(x)+—.o ~ 4,(x)+ .
)
4,(x)

5 2XO

2

(15c)

The tree approximation C'(x) is obtained by neg-
lecting terms appearing in (15c) that have an ex-
plicit variational derivative in them. It follows
that

0+m, +Z, W =J6W
(19a)

or equivalently

Q'+ moo+ —.o trGo(xx) + Ao(4o(x)) —2S(x) C,(x) = J'(x) .~o
Z

(19b)

With the sources off, this equation shows that

m, '+—.' trGo(xx) + X,rP q = 0,

symmetry-breaking condition. The other Green's
functions to this order are found by functionally
differentiating Eqs. (18). The one-loop approxi-
mation is obtained by substituting P, = 4,'+4', into
Eq. (15c) and discarding terms which represent
more than one loop [i.e. , terms containing (4',)',
(5/5J) 4'„(5'/5J )4'„and (6'/5J )4o]. l-loop ap-
proximations 4,' to C, are found by making the ob-
servation that C,"—4,~(6/5J)"P' is an n-loop ob-
ject if l, +l~+m+I =n. There are no common ap-
proximation schemes which come as naturally
from the Eqs. (12) and (16) which involve deriva-
tives with respect to the source S. We shall show
that natural approximations on these equations are
related to O(N) expansions. The approximations
used on equations expanded in this way are also
closely related to similar approximations used on
the Nambu model. '

The technique used with the loop expansion sug-
gests thai dropping variational derivative terms
is a straightforward and potentially profitable ap-
proximation technique. This leads us to write for
the zeroth approximation to Eq. (12a)

[CP+ mo'+ ~o(4o(x))s]4o(x) = J(x) .
With J'(x) = 0 we find [mo'+ A.oq']g = 0 where
g= (P(0))

~ z.o. This is the usual lowest-order

(18) where

(0)'
z= s=o

(20a)
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If there is no linear spontaneous symmetry break-
ing, g= 0 and this equation is automatically satis-
fied. If q 0, then the theory is constrained by the
requirement

approximation says that to lowest order the cube
of the fluctuation of the field away from its class-
ical value is negligible, while in terms of fluctua-
tions away from C, RPA is the statement, using
Eqs. (21) and (14a), tha. t

m, '+—.' trG(xx)+ X,g = 0. (20b)
(25)

Thus we have assumed in this lowest approxima-
tion that (X,/i)(6/6S)4, = &,(x) is ignorable so that
we may factorize the vacuum expectation value of
the field equation by the replacement

This approximation treats y= P' —2S/Ao as a field
in its own right on the same footing as Q for
truncation expansions. The approximation tells
us the theory is dominated by the disconnected in

g and y piece of the interaction. We would thus
expect this procedure to be appropriate where y
excites strongly bound states. Note that we have
now defined a definite calculational procedure and
that even if e,(x) is not a small quantity it might
be that this approximation scheme defines some
sort of asymptotic expansion for the theory. We
will discuss this point at greater length later.

The lowest Hartree approximation is obtained
from Eq. (15b) by neglecting the term of the form
[ i6/6J-(x)]'4,'(x) This. leads to the equation

CP+m, '+ . 'trG'(xx) —2S(x)+Z,(e,'(x)}' C', (x)=Z(x)
3/0

II. MESON PROPAGATOR IN RPA

Either by differentiation of Eqs. (19) or by
recognizing the implications of our approximation
prescription on Eqs. (16) we have to lowest order
in RPA that

[CI'+ m, '+ X,WO(R)) Wo(12)+ X,WO(1) W'g2) = 6(1—2)

(26a)

or

C]'+ m, '+—.' trG'(ll) + X,(4,')'+ 2X,4,'(1)4,'(1)~ —2S(1)

+—.040(1)~ GD(12) = 6(1—2) .

(26b)

Until we start examining higher-order approxima-
tions, we now drop the superscript 0 which indi-
cates we are dealing with the lowest approxima-
tion. If the sources are turned off, Eq. (26b) be-
comes

XoCI'+ mo'+ —.0 trG(11)+ 2Xogg + Aori G(12)

The dual notation is of no great aid for this ap-
proximation at this point so we have dropped it.
With the sources off, Eq. (22) requires that
[m,'+ (3X,/i)trG (xx)+ X,q']q=0, which if TWO

constrains the theory by the condition

3A.mo'+ .OtrG (xx)+Xoq' =0. (23)

Note that in terms of the fields the term we have
ignored is

J= S=O

= 6(l —2) .

(27)

(28)

Note that

In the case of primary interest throughout this
paper we choose to have no spontaneous symme-
try breaking and take g= 0 so that Eq. (27) becomes

(29)

(24)
using translational invariance. Thus we take

2 2 2
mo + 5m =m~, (30)

This emphasizes that as in the case of the RPA
the lowest Hartree approximation replaces the
vacuum expectation of Q' by combinations in-
volving the vacuum expectation of @' and Q, thus,
as we shall see, greatly simplifying the structure
of the Green's- function equations. The Hartree

where clearly m~' should be identified as the re-
normalized meson mass to this order of approxi-
mation. In terms of Fourier transforms we have
with n the dimensionality of spacetime

G(12) = „d"kG(k)e "'"j"2',1
(2n')"
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so that from (28) we find

5 8
G~()(k) =

2R—
where

(31)
G, (k) = 1

which explicitly shows the Goldstone boson re-
sulting from TWO. We will prove this result in
the next section.

Thus to lowest order the only effect of our trunca-
tion procedure on the scalar-meson propagator is
to renormalize the mass.

It is also useful to note at this point that if we
assume g=0, then we can make a stronger state-
ment than Eq. (28). In that case if J'(x) = 0, the
theory is invariant under the reflection Q- —P
and consequently all odd matrix elements of (t)

vanish. Then for J'(x) = 0, )I = 0,

++m '+—.G trG(11) —2S(1) G(12) = 5(I 2) .
Z

III. BOUND-STATE PROPAGATION

We have completely analyzed meson propagation
to lowest order for g=0 and found it to be essen-
tially free. However, it is clear from Eq. (26)
that the higher-connected Green's functions do not
vanish and that this theory has considerably more
structure than a free theory. We will now show
that, in fact, to this order the theory has a bound
state excited by the composite operator (([)'(x). To
do this we functionally differentiate Eq. (26a) and
look for closed sets of Green's-function equations.

We define

In the case where g 40 we do not have enough
information yet to solve Eq. (26) for all components
of G, because of the term involving (5/6Z)G. How-

ever, observing that the projection operator re-
presentation

G, (12)= (2„"',"~)G,(12)+ ', ~G, (12)

is valid and if we anticipate that

Note that W, (11') defined here is not the same as
W'(ll') when J' is not zero or when there is sym-
metry breaking. (26a) may be written as

d1'WG '(ll') W(1'2) + XGW(1) W(12) = 5(1 —2).

(26c)

Here we continue our practice of not labeling the
Green's function to denote that we are working in
the lowest approximation. It will often be useful
to write (26) in the form

)7 7J() ~(12)

Eq. (27) becomes two equations

( '+m~'+x, q')G, (12) = 5(1—2) (33)

W(1'1) = WG(1'1) —XG d2 WG(1'2) W(21)W(2) .

(26d)

Note that the equations are not soluble with sym-
metry breaking until we have an expression for
W(21). Differentiation with respect to S(2) of (19a)
results in

or (36)

(
' ' 3X q')G (12)+E(12)=&(1-2). (34)

Equation (34) cannot be solved until we know

E(12) but using (20b) Eq. (33) is

CI G, (12) = 5(12)

W(21)= —1 f dl'W (1V)W(('2)W(V). (21)

To solve this we need the four-field Green's func-
tion W(1'2). By differentiating (26c) with respect
to S(3) we get a related function

W(12()+1 f dl'W (11')W(1'2)W(1'2)+1, Jdl'W (1V) [W(('2)W(1')] —P

By setting 1=2, 'taking the trace, and using (13b) to derive

W(12) =—.trW(112)+2W(1) W(]2) —6(] 2)

Eq. (36) becomes
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W(1$) —2W(1)W(1$)+—$(1 2)+—.fdl'trW (1V)W(1$)W (Vl)+—,fdVtrW (11') [W(t't)W(t')]=0.
0

This equation can be simplified, using Eq. (26d) and

5W 11'
= —1,f W($2)W (12)W (21')d2, (39)

to become

W(1$) —2W(1) W(15)+—5(1 —3)+—.' dl'tr[WO(11') Wo(1'1)W(1'3)]+—.' dl' tr[W, (11 )W(1 l)W(lr)]- 0
0 2

(40)

The last term using (37) is

r
2

d1'd2 .0 tr[WO(11') W(1')Wo(12) W(21') W(2)]. (41)

We clearly cannot solve Eq. (40) with the term of
the form (41) present, but if it were gone, (40)
with the source off becomes a fairly simple inte-
gral equation for W(75) in terms of the Green's
functions of fewer fieMs. One easy way to avoid
having to worry about (41) is to take )7= 0, because
then clearly (41) vanishes if the sources are off.
This is, in fact, the method that we use in this
paper. However, there are other ways which al-
low us to argue that (41) is negligible. If we were
doing perturbation theory in X, we could have just
argued that the last term of (40) had one more
power of Xo in it than the other terms and hence is
small compared to them. We cannot do that
directly here, because Wo and W(1) are implicit
functions of ),. However, we do something that
has exactly the same effect and which is very
similar in many ways to what was done to achieve
the loop expansion of the o model. ' To this end,
note that as an exact relationship

5~,W(4) 5 5W(4)
5S(3) 5S(3) 5XoW(4) 5S(3) 5 W(4)

Xo W 43 d4+ ~43 d4
5A.OW 4

(42)

Thus Eq. (41) (continuing to use lowest-order
quantities) may be rewritten using (36) as

d1 d2 A(4 XOTV 3

(g)
— d5W()(54) W(4)

(5)

x tr[W, (11')W(1') W', (12)y,W(21') W(21)]. (43)

Since the variational derivative does not generate
any more isolated powers of A,, we see that the
term (43) is different from the other terms of Eq.
(40) by having one more term of form A.,'W(34).
We will develop this point further later in the
paper but since the term we neglected in (19a) is
(A.,/i) [5/5S(1)]W(l) (x: A.,'W(13) we see that X,'W(34)
is the basic structure in terms of which this the-
ory is expanded. An essentially equivalent, but
perhaps more familiar and explicit, argument can
be made if the number of fields N is allowed to
get very large. To see how this works we assume
that X, = ho/2N, where Xo does not depend on N.
Equation (22) shows that S, m, ', ', XotrG', and
A.,(CO)' are of order (N)0 and hence trGO and
(C)o)'(2- N. From

&4'(2)& 2S(2)
5S(1) (i)

trG(22), 2S(2)
5S(l) i

we see that W'(12)(2-N. Similar reasoning shows
that Wo(1)W0(13) (v-N and also that the third and
fourth terms of Eq. (40) are ~N. The last term in
(40), as is perhaps made clearer by representa-
tion (41), is of order (N)'= 1 and is consequently
negligible compared to the other terms.

Finally, note that these results for large N
agree with our previous observation that X,'W(12)
is the expansion parameter of this theory since
it follows that this quantity is of order 1/N. We
emphasize, however, that although the overlap
between our methods and the large-N expansion
is now apparent, we do not need N large to gener-
ate a definite clearly defined expansion procedure.
The question of convergence of such a series with
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or without N large is a much more complex ques-
tion which we cannot seriously attempt to answer.

We conclude that with any of the arguments
above, the correct expression for W(13) =De(13)
to this order with sources off is given by (40) as

D~(1 )2+ Njd —Vd(11')d (V()D~(V2)

+2K rP d1'g (11')D (1'2)

= ——6(l —3) . (45)
2

G.,(k)
-=W.,(k) = 6.,g, (k) . (52)

We have carried out the development of the RPA
approximation in this great detail in part to make
it clear to the reader how it corresponds to the
O(N) approximations in the case of linear spon-
taneous symmetry breaking. To complete the
comparison we make the following observations:

(1) The Lagrangian here becomes the Lagran-
gian of Ref. 2 with sources added if we make the
substitutions X,—X,/2N, and y- (y- I,')/X, .

(2) Corresponding to these substitutions we see
that

Here we have introduced the notation

(46a)G (12) -=6"g,(12).

Clearly go(12) = (1/N) trG, (12). In Fourier space
we have from (31) that

W(12)-(, ) W(12),

W(12), W(12) .
0

(53)

1
g.(k) =

8
(46b)

g,(k)„~,= G, (k) = 1
(46c)

using (35).
Equation (45) is easily solved in Fourier space.

We make the definitions

D (12)= d"kD (k)e '~'"2 "2'1
3 =

(2&)n B (4V)

which reduces in the case of symmetry breaking to

With the above identifications it is easy to see that
the lowest-order Green's functions given here
with symmetry breaking are exactly those of Ref.
2.

Finally, we should go through all the analogous
calculations in the Hartree approximation. Be-
cause of complications with renormalization the
details will be discussed elsewhere, but it is
straightforward to show, using the same tech-
niques as above, that W(11,2) in the Hartree ap-
proximation has structure very similar to the
RPA results.

IV. COUPI. ING-CONSTANT RENORMAI. IZATION

2(2')= 2„.fd (2+2)d (2)d.2;. "

Equation (45) becomes

1
x, 1 Xyrz(q')+2m, q'g, (k)

'

(46)

(49)

In the case which is of primary interest to us in
this paper g=0 and

2 1
1-XDNZ(q')

We can now solve for G(k) in terms of Ds(k).
Equation (26d) may be written as

G~q(1'1) = 6 qg, (l'1)

(50)

+ X() 'g~'gg d2 d3 go 1 2 D~ 23 go 31

or as a Fourier transform

G~q(k) = 6 qgo(k)+)).D'q qq[go(k)] De(k) . (51)

The form we will be primarily interested in with
g=o is

Equations (29) and (30) showed how the physical
meson mass to this lowest order is related to the
bare parameters Xo and m, . To complete the re-
normalization to this order we must rewrite (49)
and (50) in renormalized form. Since the symme-
try-breaking case has been fully discussed in the
literature we will not discuss Eq. (49) further.
We point out that in the interest of simplicity and
clarity we do not handle the renormalization for
(50) so as to keep the arbitrariness of the point of
subtraction of divergent integrals manifest. It is
not difficult to renormalize using the same pre-
scription as applied to (49) in Ref. 2 and to arrive
at the same physical results as with the scheme
used here.

Because De(k) arises from terms of the form
XD6/6S in Green's-function equations it always
appears in the form X,'De(k), as is exemplified by
Eq. (44). Since Z(q') is logarithmically divergent,
one subtraction makes it finite if we make the
identification

Z(q') —Z(0) -=Z.(q').

We have using (50),
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2
N 1 —X+Zz~q ~ N

Here the natural identification

(54)

XON

~,XZ(0) (55)

has been made. We have defined X~ so that the
dependence of Xo Dg on N is explicit. In order to
keep the N dependence of the renormalized com-
posite field y~ the same as g we define y„by D„

=-(1/N)(T(yzyz)&. Consequently it follows that &(z
= (X0Ã/X~) y. All questions regarding collective
excitation can be answered by an analysis of the
denominator of (54). This has been discussed in
detail in Ref. 5 and the discussion here is essen-
tially identical to the discussion there. The
natural place to subtract Z(q') to do an analytic
evaluation of the integral involved is not at q'= 0
but at the point q = 4m . Defining

Zs(q') ~ Z(q') —Z(4m'),

it follows that

2 1/2 g 4 2 1/2
Z 8~2 q'

4m~' '/'
m 4m '

+ e(q') e(4m+' —q')»~ —1 ——tan '," —1
Sm2 q2 2 q2

+q(—q*tq, (t—," ) oott'(1 —," ) (56)

From the above it follows that Zz(0) = 1/8v' and
hence, since Zz(0) =0, that

Z&(q') = Z~(q') —8,.
The condition for Q' exciting a bound state is

8m'
= 8w'Z~(q0)

~z

(57)

(58)

~~
8~2 Re E„

+ 0.5—

The right-hand side of (58) is plotted in Fig. 2.
For more details of this see the Appendix of

Ref. 5.
From Fig. 2 and (58) we can arrive at the fol-

lowing conclusions:
(1) For Xz &- 8m' a true bound state of mass

M~', with M~'&4m', develops. As ~~- —~,
M'- 0. Also, for this range of Xz, 1 —A.~ReZ~(q)
= 0 possesses a single root, so that a resonance of
mass u'&4m' develops. As X~- —,
u2 3 2767)& 4m2

(2) For 8v0&A.„&0, scattering is enhanced for
q'-4m' but there is no true collective behavior.

(3) For Az&0 (58) is satisfied for q'&0, denoting
the presence of a ghost in the theory if X„ is posi-
tive. Also, a resonance exists with u2& 3.2767
&& 4m'. This third conclusion shows that for rea-
sons of stability A.~& 0 must be excluded. We also
note that the asymptotic behavior of Ds(q') for
la.rge q' is Ds(q') - 1/lnq' and not 1/q'.

We conclude that our approximation scheme to
this order is not ghost-ridden, and that the theory
thus far is seen to be consistent. Note that the
symmetry-breaking case of the 1/N literature
has a ghost in Ds(k) which cannot be avoided re-
gardless of the sign of X~. In the next few sec-
tions of this paper we will work out the various
order Green's functions of the theory to lowest
approximation and demonstrate that the contact
interaction between four-meson fields no longer
appears. Consequently, all interactions will be
mediated by bound-state propagation much as if
the interaction was of the form ttt'}f.

V. BOUND-STATE VfAVE FUNCTION

We define the bound-state wave function in terms
of

FIG. 2. Plot of Sar ReZ&.

1 5W
i' 5S(1)5J'(2) 5J'(3)

since

—ll'(123)
I 1=8=0= &T(&'(1)4 (2) e(3))&

—&4 '(1)&&T(4 (2)e(3))&,

from which it follows that

(59)

(60)
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FIG. 3. Bound- state wave function.

cation.
The simplest way of evaluating the scattering

amplitude W(1234) and just confirming the above
statement is by differentiating the identity

(N(9)[rd(2)4(8)]9) f"d ((57, m, ')W(i23),

(61)

where 222 s2 is the solution of Eq. (58) for the
bound-state mass. In the case of J= 0 and no
symmetry breaking, Eq. (39) can be rewritten as

%12 8'~23d2=51 —3 .

When J=O we find

W(1234) = —)f W(17) W(82)dV d8.

(64)

(65)

W(123) = —X3 W(2V) W(37) W(fl)dV. (62)
But we find from the Appendix, where we have
tabulated easily derived results, that

We can pictorially represent this by Fig. 3.
Letting S = 0 and letting

W(i),9,9,) = f e'" * *'**"N'W(123)dd, d7,dh,

we obtain

W(k, k2k3) = —(2v)4X36 (k, + k, + k3)Ds(k, ) W(k, )W(k,),
(63)

where Ds(k, ) and W(k, ) are the bound state and
meson propagators given by Eqs. (50) and (31).
Here and in what follows we have confined explicit
consideration to four-dimensional spacetime.
Results in other dimensions are found by trivial
modification of the formulas presented. With the
identification of y„=(X,N/XJy„ the above leads to
the renormalized equation

W„(klk2k) = —(2v) A.„5„(k,+ k, + k,)D„(k,) W(k2) W(k3) .

VI. MESON-MESON SCATTERING

The simplicity of the random-phase approxima-
tion is that the unrenormalized meson-meson scat-
tering amplitude is just 2%3'[Ds(s) + Da(t) + D2)(u)],
and thus renormalization is easily achieved by a
coupling-constant renormalization (and simul-
taneously a wave renormalization for the bound
state). In the Hartree approximation, one also
gets a contribution from the original contact inter-
actions of four meson fields which is completely
absent in the BPA. This additional interaction
completely obscures the renormalization proce-
dure. Consequently, we leave further discussion
of the Hartree approximation to a separate publi-

4
=ROW(934)5(7 —8)

+ i,W(73) f W(749) W'(98)d9

+ X3W(74) W(739) W '(98)d9. (66)

where I'(5678) is the one-particle irreducible
four-point function. Consequently,

I"(1234)=X3'5(l —2)5(3 —4)W(31)

+ X3'5(1 —4)6(2 —3)W(21)

+ X,26(1 —3)6(4 —2) W(31) . (68)

Introducing the Fourier transform I'(P,PP+4) via

I7 (I 2 34) J 1 P2 P3 P4 e 2(3131422"2423"-3 2434)
I ~1p gp gp gp

(2v) 23

we find

X I (p,p2p3p4), (69)

Thus using Eqs. (62) and (66) we find

W(1234) =1 fd7d8 W(78)[W(17)W(72)W(18)W(84)

+ W(17)W(V3) W(28) W(84)

+ W(17)W(V4) W(38) W(82)] . (6V)

This can be represented schematically by Fig. 4.
The above can be rewritten as

W(1234) = f W(15) W(28) W(37) W(48)

x I'(5678)d5 d6 dV d8,

0 ac bf

1 [1—1 NE(s)] \ [1—1 NE( )] +1 [1 1 NE(1)] I
= (2W) 5(P, +P2+P3+P4)A(S, t, u) .

(70)
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2 4

I

2 4

I

2

L
4

2

= x,W(V2) 5(7 8),

= ROW(V23) 5(7 —8),

(V4)

FIG. 4. Scalar-meson 4-point function.

Defining the renormalized coupling constant as
in Eq. (55)

6X~c4(s=0 t=0 u.=0) =
N

We obtain

A(s, t,u) = s [D„(s)5,~5,~

+ Ds(t) 5,~5~+ D„(u)5„5M] .

VII. VERTEX FUNCTION FOR THREE BOUND STATES

We are interested in knowing the vertex for
three bound-state mesons since this is most im-
portant for phenomenological field theory. This
information is contained in

AAA 6'W
6S(1)5S(2)5S(3)

we find that W(123) obeys the integral equation

iW(123)

=-X,tr W15 W523 W51d5

+2yo'tr W15 W 56 W 61 W 52 W 63 d5d6.

(V5)

Pictorially we get Fig. 5, which sums to Fig. 6.
This is the basic vertex function for the composite
field y. Equation (75) is solved by the Fourier
transform. Letting

W(128) = „f e ~e * 'e *'e * 'W(hePP)dh, dh dl&

(V6)

we obtain

W(q, q,q, ) = 2X,'5(q, + q, + q,)D(q, )D(q, )A(q, ', q, ')

and, more appropriately for scattering, in its
Fourier transform

W(p,cd, ) = f e*"e e e* W(122*)d'x,*d'x eh', .
or

+ i ', W(q, —k) W(k)dk W(q, q,q, )2s '
(77)

For bound- state-bound- state scattering one needs
for single-bound-state exchange the quantity

»m (P,'- M,')(P,'- M,') W(M, 'M;P, ') .
N 2

B

From y= p' —2$/X, we formally obtain

W(123) =—.tr W(1123)

2XOW"""=1 ~.NZ(q, )

x 5(q, + q. + q.)D,(q.)D,(q.)A(q, 'q, ')

= X,'5 (q, + q, + q3)

x Ds(q, )Ds(q, )D s(q,)NA(q, 'q, '),
(78)

where

+ 2 W(31)W(12) + 2(k, (1)W(123),

so that for J= 0 we have

(72)
NA(q, 'q, ') = 8. tr W(q, —k2) W(q, + k, ) W(km)dkm

2 2 1

W(195) = —.trw(1125) .

For W(1195) we find by differentiating Eq. (64) that

5W-' V8
W(1122) = —fW(17) W(81)d7 d8

5W-' V8—2 W(173)W(81)d7 d8.
5S(2)

(V3)

Since from the Appendix we have

is the triangle graph. Renormalization follows
from X~'D= (Asm/N)D„, and ps= (X,N/X„)y, which
shows that we should form the three bound-state
propagators from y„so that Ws(123)

FIG. 5. Integral equation for three-bound- state vertex.
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= (XoN/Xz )W(123). With this (78) may be
written as

Ws(q, q,q, ) = —Xs'N6'(q, + q, + q, )

x D~(q, )Ds(q, )Ds(q~) ~(q, 'q2 ) .
(79)

A
l

PEG. 6. Three-bound- state vertex.

VIH. MESON-SIX-POINT FUNCTION AND MESON-BOUND-STATE SCATTERING

Meson-bound- state scattering can be found from

-1
W(1234) =f W(18) W(32)d8 d3— 6W '(89)

[W(184)W(92) + W(18) W(924) ]d8 d9. (80)

Using Eqs. (74) and (62) we obtain from (80)

W(3234) = —1 f W(8$4)W(18)W(82)d8

+ X02 W(83) W(94) W(89)

x[W(18)W(29) + W(82) W(19)]d9d8.

(81)

This can be renormalized as before by using

~ox= ~ Xz
8

to give

Ws(1234)=,0 W(1234)

so that

W„(1234)= ——" W„(834)W(18)W(82) d8

+ X„' W~(83) W~(94) W(89)

x[W(18)W(29)+ W(82) W(19)]d9d8.

(82)

A A ~(25

Since Wz(834)(x:N, the whole amplitude is propor
tional to No. Pictorially we get the diagrams of
Fig. 7.

By once again taking the functional derivatives of
Eq. (64) we find that the meson-six-point function
obeys the integral equation

6W '(78)
W(123458) = f W(17)

)
W(82)d7d8

[W(1V46) W(82) + W(17)W(8246) ]dV d8

[W(1V45)W(82) + W(1V) W(8245]dV d8. (83)

(84)

Using (A9) and (A10) we get

W(12845)=-1, W(17)W(27)W(M34)d7-1, fW(17)W(735)W(724)d7 —\, f W(17)W(745)W(723)d7

+ Xo W(3, 10)W(4, 10)W(10, 7)[W{175)W(72) + W(71)W(725) ]d10 dV

+ Ao W(78) [W(73)W'(48)+ W(74) W(38)][W(175)W(82) + W(825) W(71)]dV d8,

Since 6W '(78)/6Z(3)6J'(4)6J'(5)6J(6) from (A11) contains 6(7 —8)W(|3456) plus known terms, we need only

this expression to calculate the 6-point function. Now

2 6W-' 78
W{12345)= — W(17) W(82)dV d8 — [W(175)W(82) + W(825) W(17)]d7 d8.
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which pictorially is given by Fig. 8. It is easy to see that W(12345) or. 1/N.
Continuing to calculate (83) we find, using the expressions (A9) and (A11) found in the Appendix for

5W '(Vs)/5Z(3) 5J'(4)5J(5)5J(6) and 5W '(78)/5J(3)5J(5), that there are terms of the form

W 17 W 27 W 73456 d7 (86)

+ Xo W 1746 W 82 W 3~ 1p W 4) 1Q W 1pp 7 d7d1Q

Thus pictorially we get terms of Fig. 9 for W(123456). Renormalization is achieved as before. It is easy
to see that W(123456) or 1/N'.

IX, SOUND-STATE-BOUND-STATE SCATTERING

To determine bound-state-bound-state scattering we need to know

Since

2 [W(1754)W(81)+ W(173)W(814)]d7d8.
5S(2)

W(1234) =-. trW(11234) .
2

In terms of the inverse Green's function we have

5W-' 78
W(11,234) = — W(17)W(81) dV ds— 5W i(78) 5W '(V8)

5S(2)5S(4) 5S(2)5S(3)

(88)

and

W(173) =—

W(1734) =—

W(18) W(9V)d8 d9,
5S(3)

5w-'(s9)
(3)5S(4)W(18)W(97)d8d9

[W(184)W(97) + W(18)W(974) ]d8 d9,
5S(3)

(89)
= A,ow('8) 5(7 —8),

5W '(78)
() ( )

—X WV23)5V —8,
5W ~(78) ~A~

5S(2)5$(3)5S(4)

I 2 ===-=5 + permototlons on l254

4 3
1

2~
l
tt
ll

FIG. 7. Meson-bound- state scattering. FIG. 8. W{12345).
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we get the following integral equation for W(1234):

iW(1934) = Ao [trW(17) W(71)]W(7234)d7d8

+ 2Xo2 tr[W(1V) W(V8) W(81)]W(83)W(724)d7 d8

+ 2Xo2 tr[W(18) W(87) W(71)]W(84) W(755)dV d8

—2XO' tr[W(18) W(8V) W(79) W(91)]W(72) W(83) W(94)dV d8 d9

+ 2K,' W(72)tr[W(1V) W(78) W(81)]W(834)dV d8

2&p W' 72 W 83 W 94 tr W 17 W 78 W 89 W 19 + tr W 17 W 79 W 98 W 81 d7 d8d9

(90)

so

iW(1234) = Wo(1234)

Xp tr W 17 W' 71 W' 7234 d7 d8

Letting

W(12$4) = 1
&-k(p~x~+p2x2+p3x3+p4x4&

(2m)"

&& W(p,ppp, )dp, dp, dp, dp, .

We have

W(g] f24 3lg4) Wo(ggq, q,q, )

iA, p

(2w)' W(q, —k) W(k) dk
I

x W(g, g,g,g,) (91)

or

1
W(VVVC)=1 ~ ~~( )p

Wo(g~g~q~q~)

Xo 2 Wo(g~@2gsq4)
gkQy ] (92)

6
I l + permutations
4 5

This renormalizes in the usual way. W, (1234) is
schematically given by Fig. 1.

We have thus shown that bound states scatter via
the box diagram or via bound-state exchange or
production. The second process tells us that the
collective mode is also a collective mode of the
four-point scalar-meson system, since one ex-
pects that we get contributions to 4 mesons-4
mesons as illustrated in Fig. 10.

The preceding discussions should have more
than amply served to convince the reader that we
can handle in a straightforward way (at least to
this order) in a closed form all the Green's func-
tions of this theory and that renormalization pro-
ceeds without difficulty, while the theory is char-
acterized by having no explicit remnants of the
original contact 4- field interaction.

X. CORRECTIONS TO THE RPA

All results to this point have come from con-
sidering the truncation (19a) of Eq. (12) or equiva-
lently the truncation (26a) of Eq. (16). In this sec-
tion we will explicitly find the first-order correc-
tion to the RPA and in so doing indicate how to
find the corrections of any order to the theory. '

A straightforward way to proceed is by the fol-
lowing prescription. Expand all Green's functions
order by order so that we have for example that

4=C +C +C + ~

G=G +G +G + ~

+ perrnutat|ons

Flo. 9. W(123456}.
FIG. 10. Bound-state contributions of 4 mesons-4

me sons.
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We assume in addition that for any Green's func-
tions that W W ' ~ W~ js of order 5+g+ ~ ~ ~ +m
and, further, that (X06/5$)"W" is of order m+n.
We, of course, assume that 4 and G satisfy

Eqs. (19) and (26). Using this prescription it is
possible to calculate any order perturbation cor-
rection to &PA. For example, Eq. (12b) becomes

2 0 0 0 l. O l ~O ~
OCF+m0'+ —.'tr(G'+ G'+ ~ ~ ~ )+%0(40+ 4,'+ ~ ~ ~ )(40~ 4,'+ ~ ~ ~ ) 2$+ o (C0+ C,'+...) -J

From this we find to first order that

(93)

a'+m 2+—.0trG0+~ (O0)2+m e0e' 2S e'+ —.'trG' C0+—.' —O'=0.i 0 C 0 C C C i c i 5S c-

Using Eq. (35) this becomes

(94)

0'+ m0'+ —.'trG'(11) —2$+ X0(4,'(1))'+ 2&040(1)@0(1) 2$(1)+—.0C0(x) ~ O,'(1)=—.' W0(ff')C0(15) W, (151) .
~O 0 0 2 0 0 Xo 0 (5I) ) A,o

(95)

This equation is not closed and hence not solvable,
any more than Eqs. (19) were, until we find G'.
The important feature that is already clear here
is that the right-hand-side driving term of (95) is
proportional to the characteristic expansion factor
X,'W0(if. ') ~ 1/X.

We could proceed to calculate the meson and
bound- state propagators by differentiating Eq.
(95), but it is somewhat more convenient to ex-
ploit in a more explicit manner the fact that the
approximation is essentially an expansion in the
bound- state Propagator. For simplicity in the
following we consider only the case where Z(x)
and (Q(x)) =0. There is no intrinsic difference in
the techniques used for the more general case.
Under these conditions it follows that

or, equivalently,

W (12) = ——6(l —2) —A.0 ~ —.tr W(22)2 6X0W(1) i

Equation (97) may be further developed by
noting that

(98)

(99)

5W-' 34
6X0W(5) 6y0W($)

W(12) = — W(13) W(42)d3 d4

5
d3 W(15) 6(3 —2) A0 —.tr W(22)

2= ——6(1 —2)

6 6X0W(2)
6$(1) 6$(1) 6A.0W(2)

d2 W(12)
6A.0W 2 (96)

As an exact equation we can now rewrite Eq. (16a)
as

and defining a vertex function

( )
6W '(34)
5~,W(5)

so that an exact equation (97) now becomes

(100)

(101)

2
'+ m0'+ X0W(I) + d3 W(13) " W(12)

0

=6(1—2).
(97)

d4 Z+~,'+x,W4 O1-4

dl dl W(15) W(1$)I'(5; $4)
I

W(42) = 5(1—2)

From Eq. (44), which is an exact equation, we
see with Z=g=O that

W(1.2) = — —.tr W(22)—6$(1) z

W'(l4) =I[ *+I,'+5,W(5)]5(l —4)

0 d3d5 W $5 W $3 P 5w 34 ]O3

which using (96) becomes Going through the same procedure we find as an
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+—.'tr
Z -r

d3 d6 W(23) I'(I; 36) W(62)

(104)

exact equation that (99) becomes and claiming, for example, that a graph with two
bound-state propagators is of higher order than
a graph with one bound-state propagator. This is
because Dos(12) is in its entirety constructed of the
zeroth-order meson propagator Go(12), through
zeroth-order quantities of the form Xotr(Go G }
and A, Consequently, a term like

These techniques should be familiar to the reader
who knows how to calculate electrodynamic Green's
functions using source techniques. Now we will do
perturbation theory on Eqs. (103), (104), and (101),
expanding by this method the inverse propagators
instead of the propagators.

As before, we take

W'-'(14) = [O'+ X,W'(4)+m, ']5(1 —4).

Thus, we see from (101) that

lo (5;34) = 6(4 —5) 5(3 —4) 6 (105)

Consequently iterating to first order we have

(W')-" = [W'(14) + W'(14)]-'

=[ ~+m02+ZoW(4)]6(1 —4) — . Wo(14)WO(14).
2

(106)

We have used the fact that X,'W'(14) is a first-
order quantity. This equation is not yet solved
since W(l) = (I/f)trG(ll) —2S/X, and we must keep
trG' as well as trGO. To solve for W(l) take the
inverse of (106) and keep only first-order terms
to explicitly identify W'. This yields

W'(12) =-—. d3[trW'(33) ]WO(13)W'(32)
Z

+ —. d3 d4 dW'(13) W (34)W'(24) W'(43).

Setting 1 =2 and taking the trace of (107) and then

setting S =0 leads to the evaluation of the number
(Xo/i)tr W'(l l) = A. We find

X4"
W'(31)[tr W'(15) W'(14) W'(45)]

xW (54)d3d4d5. (108)

At several times we have stated that Xo'Ds(12) is
essentially the expansion parameter of this theory.
As we demonstrated, this quantity is of lowest
order, is proportional to 1/N, which is the large-
K limit, and explicitly displays a small parame-
ter. We see from (108), however, that this state-
ment is not accurate if applied in the simplisitc
sense of determining the order of a graph by just
counting the number of bound- state propagators

1
1 —X tr GOGO

0

is not first order but zeroth order. Of course, all
of this is clear in the 1/N language for large N,
but we do not restrict ourselves to this case. We
can see such a situation developing in the preced-
ing equations. The two terms on the right-hand
side of (107) are of first order since X,trG' and

X,'W'(34) are first order. In deriving (108) from
(107) we have taken a trace and observed that
Da~1/[I —X,tr(G'G')] so as to combine terms in
a simple way. The result is (108), which is first
order but has two bound-state propagators. Gf
course, when we generate the perturbation series
in the prescribed manner we do not have to ever
worry about this sort of explicit identification,
because once we have put in the lowest order, the
higher orders just fall out by simple iteration as
they, in fact, did in Eq. (108).

With (108) we have now explicitly determined
(106) to first order. Figure (ll) graphically il-
lustrates G'(l3). We will not explicitly renormal-
ize (106) by displaying the integrals, but it is clear
that with two subtractions (106) converges so that
in momentum space

W' = ' . (109)p'+ (m~s)'+ (XiR/N}2I'(P' (m' )')

Here we choose I'(P' = (mis)')= 0, with (m„')' the
renormalized mass of the pole approximate for the
first-order approximation and (A~s)' is also the re-
normalized coupling constant appropriate for first
order. We have also used the fact that the cor-
rections are already of first order so (X~s)' and
(m~s)' have been written in place of the zeroth-
order renormalized quantities for the isolated
(ms)2 term which occurs automatically in this
form.

We next determine the vertex function (101}to
first order by using (106) and noting that

FIG. ll. First-order correction to meson propagator.
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W (12)=——, fW (14)ti[W (45)W (55)W (45)]W (52)d4d5 (110)

so that to first order

I'(3; 12) = 5(1 2) 5(3 1) 4 "5W'(14)«[W'(43) W'(35) W'(45)] W'(52) W'(12)+—.' W'(i2) W'(13)Wo(32).
Z

(111)

It is clear that all the corrections are of first order or I/N. Thus accurate to terms of first order we have
from (104)

[W (12)] =—[W (12)+W2(12)]-2

=-—5(1 —2) +—.tr [W'(la) W'(21)]
2

d3d4d5d6 W (34)W (56)tr[WO(23)W (36)Wo(62)]tr[W (41)Wo(15)WO(45)J

d3d6W 36tr W 23W 31W 16W 62 (112)

The terms that contribute to this bound propagator in first order are represented pictorially in Fig. 12.
We will not go through the details of explicitly writing out the integrals involved but it is, nevertheless,

not hard to see how the coupling-constant renormalization works to first order. It follows from Eq. (112)
that D~ may be written in Fourier space in the form

1
X 'D2(p) = —2X' 1 —](.~Z( p', m', ) —](.,[](.'„A (P', m', ) + (]).',)'B (P', m', )]

' (113)

where X~ and mz are the zeroth-order renormalized quantities. m„' has first-order corrections relative to
rn'„, so to first-order accuracy we have freely interchanged these masses in terms already of first order.
One subtraction makes the denominator finite, so we have

]('„ I —Z2~g~( p', m'„) —(X2~)/N) [X2s A,„„(p',m'„)+ (X'„)'B,„„(p', m~)]

( s) ~, (p) (114)

Here we define A,„„and B,„„asA and 8 subtracted
at p'=0 and

XpN

1 —XQZ(0) —X [(X' )'A (0) + (X'„)~B(0)]

We have also changed X'„ to X'„wherever it occurs
in a quantity that already is of first order.

The above is not a complete analysis of this the-
ory even to first order, but it should now be clear
to the reader that the renormalization program can
be carried through a reasonably straightforward
fashion.

As the conclusion to this discussion of higher
corrections, we will examine the internal con-
sistency of the lowest approximation. The funda-
mental assumption of the RPA was thai to lowest
order the term ((t)'(t))/(i) in the vacuum expecta-

tion of the field equations could be replaced by
(((t)')/( i))(((t))/(i)). On the other hand, as an exact
relation of the theory we proved (14a), which is
equivalently written as

2

W(2) = — W(2) + 2i W(21) W(1).

(115)

Since the left-hand side of this equation contains a
contribution of the form ([(t)(1)'$(2)])/(i), which
is the term on which the basic approximation is
made, we would not expect (115) to be exact for
the lowest-order RPA Green's functions. Conse-
quently, instead we write

tr, W (211)=+iW'(21) —2iWQ(21) W'(1)+iC(12),

(116)
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FIG. 12. Graphs contributing to Dz to first order.

where C(12) is the correction to the exact relation-
ship (115) due to the approximation. We used (115)
for many manipulations in the lowest-order theory.
Consequently, the term C(12} must be a higher-
order correction in our approximation scheme or
these manipulations were meaningless. The proof
of this is already implicit in the preceding,
but to make it explicit we will determine
C(12) directly. We will use the equation obtained
by differentiating (116)with respect to J(2), which

If we write equation (19b) in the form

O(1)W (1)=J(1), (118)

we find taking the derivative of this with respect
to S(2) that

is

tr~W (2211)=iW (221) —2iW (221) ' W (1)
—2iWO(21) ~ W (12)+iC(12,2). (11V)

O(1)W (12)+—.[tr, W (112)]Wo(1)+2K,[WO(21) Wo(1)]W (1)—2WO(1)5(1 —2) =0.

Taking the derivative of (118) with respect to J(2) yields

O(1)W'(l2) +—. [tr,W'(112)]W'(1)+ 2X,[W'(21) W'(1)]W'(1) = 5(1 —2).

Differentiating (120) once again and taking the trace results in

Otr, W'(122) + [tr~ Wo(112)]Wo(21) +4K,WO(12) W'(2l) W'(1) +—. [tr, ~WO(1122)]WO(1)

(119)

(120)

+ 2Xo[tr, W (221)] ~ W'(1) W'(I) + 2X,(tr, [W'(2l) W"(12)]]W'(I}= 0

(121)

We simplify Eq. (121) by using Eqs. (116), (117), (119), and (120) and setting 1 = 2 to find

O(1)+ . W (11)+2K W (1)W (1) +—. Wo(l) C(11) — o Wo(1) .Wo(11)
2' 0 ~0

2X
d2WO (12)W'(2l) W'(2) ' W (ll). (122)

z

The last equality in (122) is obtained by the use of
Eq. (35). We thus conclude that C(11) is a first-
order correction as conjectured.

XI. SUMMARY AND CONCI. USIONS

We have extensively examined the RPA in lowest
order and developed a method for generating high-
er-order corrections through iterations of the
lowest-order results. The results of this method
strikingly differ from ordinary perturbation theory
in that they are dominated by a two-field induced
bound state in such a way that the results have a
similar topological structure to normal theories
of interaction form Q'X, where P and X are inde-

pendent fields. We have demonstrated to lowest
and first order (with some fillable gaps) that the
theory is renormalizable. Although we have not
studied this problem, it should be possible to
demonstrate renormalizability to all orders by use
of Eqs. (101), (103}, and (104), and an additional
equation for W(1234). We have shown that this
theory is related to the O(N) expansion in the liter-
ature although it is not necessary to take N large
to generate our results. We have not seriously
examined the order-by-order convergence of the
theory for N large or small. We have, however,
demonstrated that with no symmetry breaking the
theory to lowest order is ghost-free for a range
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of renormalized coupling constant. Incidentally,
it is also easy to show that in lowest order this
theory is asymptotically free.

Finally, we point out that the techniques used
here are applicable to a large range of Lagran-
gians and that we have just examined the simplest
and hence probably the least physical problem.

Note added. Some time after this work was
completed, a paper by L. F. Abbott, J. S. Kang,
and H. J. Schnitzer [Phys. Rev. D. 13, 2212 (1976)]
was called to our attention which through effective
potential methods reached similar conclusions
about O(N) having a region without tachyons when
there is no symmetry breaking. Papers by M.
Kobayashi and T. Kugo, [Prog. Theor. Phys. 54,
1537 (1975)] and R. W. Haymaker [Phys. Rev. D

13, 968 (1976)] also study aspects of this problem.
Nate added. The reader should not be alarmed

by the discussion following Eq. (58) in which it is
observed that X~ must be negative for a tachyon-
free theory. The sign of X~ required for a con-
sistent theory is entirely an artifact of our sub-
traction procedure (k' =0) and can be made positive
by another choice of subtraction point. It is the
quantity X~ D that is renormalization-group invari-
ant and hence independent of any subtraction pro-
cedure. In fact, X~ is really an inappropriate pa-
rameter with which to characterize the theory pro-
duced here which we emphasize is inequivalent to
that produced by a normal perturbation expansion
in X, (or a normal loop expansion). This is made
clear by the fact that no vestige of the original Q'

contact interaction remains in the renormalized
scattering amplitude or any other process to any
order.

All interactions appearing in the renormalized
theory are trilinear ($'y) and a more appropriate
expansion parameter is clearly the coupling con-
stant associated with this trilinear interaction.
This is easily displayed by subtracting the quantity
Xp D at the physical bound- state mass, p.'. We
then find that X„'D can be cast into the form

Xo D(k') = g H(k'),

where

16m'
1

[ /v( w)2'] f d g'p(~')/(~' M')'-
and

1
(M '-k')[1- ' (k')]'

Clearly g may be identified as the renormalized

gory coupling constant, and we note that g' has the
structure

g' =M, 'd(x),

where

1
1 —(I/[x(l —x)]' '] tan '[x/(1 —x)]'
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APPENDIX: FORMAL RELATIONS

prom y
= g' —2S/Xo we obtain

W(1) =—.W(11)+ C,'(I) —2S/X„ (Al)

W(12) =—.W(112) + 2C,(1)W(12),

W(12) =—.W(112)+24',(1)W(12)—,(A3)
0

W(123) =—.W(1123)+ 2W(13)W(12)

+ 2C,(1)W(123), (A4)

W(1234) =—.W(11234)
Z

+ 2[W(134)W(12) + W(13)W(124) J

+ 2W(14) W(123)+ 24', (1)W(1234). (A5)

and d(x) is a dimensionless function of x =M~'/4m'.
lt is easy to verify that d(x) varies monotonically
from Q to+~ as x varies from +1 to 0. Thus for
the weak-binding case (Ms'-4m', x-1) we see
that this theory may be characterized by a small
dimensionless parameter quite independently of
the size of ¹

Note added. A simple and elegant way to deter-
mine the order of any graph in this expansion with-
out counting powers of N directly or following the
detailed prescription of Sec. X is to just count the
minimum number of integrations needed to inte-
grate over the bound- state propagators. The order
of the graph is the number of such integrations,
and the expansion may therefore be termed a
bound- state loop expansion. Such a loop expan-
sion has already been implied by Eq. (25), which
tells us that we are, in fact, making an expansion
in fluctua, tions of Q', i.e. , Q' loops. This is im-
plemented, functionally, by the operation 5/M,
which generates Q' loops.



COOPER, GURALNIK, AND KASDAN

W '(78) =[,'+m, '+ ROW(7)]6(7 —8)

+. 9. (7, ) fW(79)W -(96)49,

we obtain when J'=$ = 0 and (C) =0

3
= X,W(72) 6(7 —8),

6W '(78)
6$(2) ~(3)

= X W(723) 5(7 —8),

6W-'(78)
5$ (2 )I(3) 5$(4 )

XoW(72 34 ) 6(7 —8 )

(A6)

(A 7)

(A8)

5W 'V8
5Z(3) 5J(4)

= ROW(734) 5(7 —8) + LOW(73) W(V94) W '(98)d9+ LOW(74) W()93)W '(98)d9,

= XoW(7345) 5(7 —8)+ XoW(735) W(794) W '(98)d9+ X,W(745) (793)W '(98)d9, (A10)

6
= XO5(7 —8)W(V3456) + LOW(7345)

+ X,W(7456) W(V93) W '(98)d9

(796)W '(98)d9+ X W(7356) W(794) W '(98)d9

+3 W(76) fd9IW(79345)W '(98)+W(798)
4 ~ 3

+W(794)
at 4585~

O'W '(98)
6J(3)5Z(5),

+4 W(73) 49(345-456)+5 W(74) 49(345-356)+1 W(76) fd9{345-346). (A11)
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