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Existence of a phase transition in the ($ )3 quantum field theorye
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We show that a properly renormalized ($ ), field theory undergoes a phase transition from a vacuum with
broken symmetry to a vacuum with manifest symmetry as the $ coupling strength is increased with the mass
parameter held fixed. The same behavior is exhibited by the O(N) model with ($ )' coupling in three space-
time dimensions.

I. INTRODUCTION

In a recent paper, ' Chang has studied the stabil-
ity of the vacuum in the (Q')s field theory defined
by the Lagrangian density

where:: denotes normal ordering. He showed
that the vacuum undergoes a second-order phase
transition from the symmetric to the unsymmetric
state as g is increased with m fixed. In his argu-
ments he used the fact that the (Q')s theory can be
renormalized simply by normal-ordering the
Hamiltonian.

The purpose of this paper is to extend Chang's
proof of a, phase transition to include the (ili')s
field theory. We show that the vacuum in this the-
ory goes from the unsymmetric to the symmetric
state as g is increased withm fixed. We show that
this result remains essentially unchanged if the
Lagrangian is given an internal, O(N) symmetry.
We are unable to determine the order of the tran-
sition because the Simon-Griffiths theorem' does
not apply.

The payer is organized as follows: In Sec. II we
formulate Chang's argument for a phase transition
in the (&I&'), theory, using a cutoff-dependent mass
counterterm instead of normal ordering. In Sec.
III we show how to extend the argument for the case
of the (~I~s) s field theory, with or without internal
symmetry. In Sec. IV we use the results of Sec. III
to find expansions for the effective potential which
are valid for small and for very large values of
the coupling constant. In Sec. V we mention some
interesting problems which we have encountered.

II. REFORMULATION OF CHANG'S ARGUMENT

Consider the following Lagrangian densities in
one space dimension and one time dimension'.

tion theory if 6m contains all primitively diver-
gent self-energy graphs. In the theory defined by
8„ there is only one such graph (see Fig. 1). It
can be expressed in terms of a momentum cutoff,
A, by

d'& 2 25m' =3g
(2w)' p' —m'+s'e p' —A'+i@)

= —ln, — . 2.3

The use of this counterterm is equivalent to nor-
mal-ordering Zy with respect to the mass, m. To
see this, note that

:Q'. = Q' —6(mi Q'~ m) &f&'+3((m[Q'im))', (2.4)
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So, normal-ordering the quartic term is equivalent
to using the mass counterterm, Sn'. Normal-
ordering the quadratic terms is equivalent to sub-
tracting a constant. Therefore, putting the coun-
terterm in 2, is equivalent to normal-ordering 8,
without the counterterm.

Since Sn' is defined in terms of the mass m,
perturbation theory will give an expansion for the
effective potential' in terms of both g/m' and the
classical field, Q, . Because of the symmetry

where [ m) is a free-field state of mass m, and m

is a mass which defines the normal-ordering oper-
ation. The expectation value in Eq. (2.4) can be
evaluated explicitly in terms of a momentum cut-
off, A, giving

The theory defined by 8, will be finite in perturba-
FIG. 1. The only primitively divergent self-energy

graph in the (Q4)2 field theory.
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unaer the transformation (()),- —Q„ the effective
potential, V(p, ), only depends on even powers of

Therefore, near Q, =0 we have

V(Q, ) =-' m'p, ' +O(m'p', gQ, ') (2 7)

Perturbation theory clearly implies that a local
minimum of the effective potential occurs at Q, =0
for some range of small values of g/m'. This tells
us that, if the absolute minimum is near g, =0, it
must be at (1), =0. We know that, when g=0, V(P, )
has its absolute minimum at Q, =0. Under the as-
sumptions that (Q) is near zero for small values
of g/m' and that perturbation theory is valid when
g/m' and Q,

' are small, we can conclude that (P)
=0 for a finite range of small values of g/m' in the
ground state of the theory defined by 2,.

Before applying perturbation theory to 8„ it is
natural to shift the field to minimize the classical
potential. We make the substitution

-m'+5m' =-,' p. '+5 p, '. (2.13)

Using Eqs. (2.3) and (2.10), we can rewrite this
condition as

for the ground state of the theory defined by Z, (&p').

[We cannot say that (Q') is exactly zero because in
this case V(&p, ) contains terms which are linear in

Q,'.] Therefore, if g/u is small, 22(P) describes
a theory with

(2.12)

in the ground state.
The two Lagrangians are written in a way which

suggests that they describe different systems.
However, this is not necessarily true, because a
change in the mass parameter can be compensated
by a finite change in the counterterm. In fact, the
two Lagrangians are identical if

In terms of Q', 2, is given by

(2.8)
or

+ —ln, =-—+—ln (2.14)

(2.15)

(2.9)

Because of the cubic term, Z, (Q') creates diver-
gent self-energy graphs which are not created by
S,(Q). However, these new (())'-type divergent
graphs are related to the P'-type graphs. If we
choose 6 p' so that the quadratic part of the coun-
terterm cancels the Q'-t yepdivergences, then the
linear part of the counterterm will automatically
cancel the Q' type d-ivergences Therefo. re, S,(P')
will be finite if 5p' has the same cutoff dependence
as 5m . We evaluate 5p' using the classical mass
(namely, p) of the P'field. We have

This is precisely the equation which Chang ob-
tained in Ref. 1, using a normal-ordering iden-
tity. He used this equation to show the existence
of a phase transition in the (Q')2 theory.

III. EXTENSION TO THREE-DIMENSIONAL P4 THEORY

Now it is straightforward to generalize the argu-
ment for the existence of a phase transition to the
(P'), theory. Consider the following Lagrangians
in three space-time dimensions:

~p =4 ln —
2 (2.10) (3.2)

If 6 p' is defined in this way, then perturbation
theory is applicable for small g/p, '. By arguments
similar to those made for Z„we conclude that

(2.11)

In the theory defined by Z„ there are two prim-
itively divergent self-energy graphs (see Fig. 2).
Call them Z, (m') [Fig 2(a)] and. Z~(k', m') [Fig. 2(b)].
They may be expressed in terms of a momentum
cutoff, A, as follows:

(2w)' )t' —m'+i 2' —i('+iw)

= —'g-m),3g
4m

(3.3)

g

„( (2w)' (2w) 2' —m'+iw ((q' —m'+ww (2-2 -q)' —m'wiw) (3.4)
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FIG. 2. The primitively divergent self-energy graphs
in the ($4)3 field theory.
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Since the divergence in Z, (k', m') is only logarith-
mic, one subtraction at any value of 0' makes it
finite. Therefore, the theory will be finite if we
use Q(O, m') in the counterterm. We define 6m'
by

6m' =Z, (m') + Z, (0,m')

= —(A —m)+, In —.3g 3g' m
4m 8m' A

'

The counterterm in 2, is defined by
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FIG. 3. Invariant coupling g/m as a function of g/p.
The functional relation is defined in Eq. (3.9).

6p.'= —(A —p,)+, ln —.3g 3g p
4w 8w' A

(3.6) —=—+ O(1),
m p,

(3.11)

&y& =(-.'w'/g)" +o(g/p, ).
The two Lagrangians are identical if

(3.7)

(3.8)

Using Eqs. (3.5) and (3.6) we can express (3.8) as

+- —+ ————— ln —= 0

The solution to this equation is shown graphically
in Fig. 3. It has the following properties:

1. If g/p &17.70, there is no solution.
2. If g/g =17.70, there is a unique solution with

g/m given exactly by

m 457 —3
= 11.05.

3. If g/p & 17.70, there are two solutions.
4. If g/p, »1, the two solutions are

(3.10)

Ne can use the same arguments we used for the
(Q'), theory to derive properties of the theories
defined by Z, and C4 in their respective weak-
coupling limits. For a finite range of small values
of g/p, the vacuum associated with 2, is normal,
with (Q) =0. In the weak-coupling limit of 2„ the
vacuum expectation value of the field is given by

, ln —+0 ln ln— (3.12)

Equation (3.12) tells us that, when g/p, ~, one
solution of (3.8) has g/m 0. This means that a
strong-coupling theory defined by S4 is equivalent
to a weak-coupling theory defined by 2,. In par-
ticular, the strong-coupling theory defined by 8,
has the same vacuum as the weak-coupling theory
defined by 2,. This is the "normal" vacuum, with
(Q) =0. On the other hand, when the coupling in

Z4 is weak, Z, defines a theory with an "abnormal"
vacuum. In this vacuum

(0) = (-'u'/g)' '+o(glv) ~ o.

As g/p. is increased from 0 to ~, there must be a.

transition from the abnormal to the normal vacuum
in the theory defined by S4.

In one sense, the behavior of the (&p ), theory is
opposite to the behavior of the (Q'), theory In the.
(Q4), theory, the vacuum is abnormal (i.e. , (P) e 0)
in the strong-coupling limit, regardless of whether
the theory is described by Z, or 2,. [Equation
(2.18) tells us that the two Lagrangians are equiv-
alent when g/m and g/p both go to infinity. ] In the
(Q'), theory, the vacuum is normal when the
coupling is large, regardless of whether the theo-
ry is described with 8, or 2,.



14 EXISTENCE OF A PHASE TRANSITION IN THE (44)3. . . 1605

.'(s„e-;)(s"e;)
—«g(Q;Q»)'+ 25m'p»p»,

&.=k(s» 4'.)(s"4») + '
&'4»4»

«8'(»t»»-P») + ~&i»'»t
» 4;

(3.13)

(3.14)

The repeated Latinindices are meant to be summed
from 1 to ¹ The required counterterms are the

following:

In another sense, the (Q«), theory and the (Q«),
theory behave quite similarly. Each theory has
two overlapping descriptions. Either we can describe
the theory withm and Z, or 8, or we can describe
the theory with p, and 2, or S,. In the range of
couplings where both descriptions apply, the two
descriptions are inversely related. Increasingm
is equivalent to decreasing p and vice versa.
Roughly speaking, the region in whichm is large
compared with g is the manifest-symmetry phase,
while the region in which p is large compared with

g is the broken-symmetry phase.
The argument for the existence of a phase tran

siti.on is easily generalized to the O(N) model' in
two space dimensions and one time dimension.
The Lagrangians of interest are the following:

mensions. ' Drastic infrared divergences make the
appearance of Goldstone bosons impossible in that
model. However, statement 2 has been proved to
be true for the O(N) model in three space-time di-
mensions by FrGhlich, Simon, and Spencer. '
Therefore, the argument for a phase transition
works for the O(N) model in three space-time di-
mensions. In the theory defined by 2„ if g/i», is
small enough, the vacuum will not possess O(N)
symmetry. [By O(N) symmetry, we mean sym-
metry under the rotation group of the N fields. ]
As g/p is increased, the vacuum will become O(N)
symmetric at some finite value of g/p, .

IV. THE EFFECTIVE POTENTIAL

Using the connection between 2, and Z„we can
now use perturbation theory for the (Q'), theory
in both the weak-coupling and strong-coupling lim-
its. ' As an example, we will calculate the effective
potential for the theory described by Lagrangian
Z„and use it to find a~ '(0) (the inverse propaga-
tor at zero momentum) as a function of p. We will
do this for the strong-coupling as well as the weak-
coupling case.

For the weak-coupling case, we simply use the
loop expansion. The effective potential is given by

(N+2)g (N+2)g' m5m'= A —m+, — ln
A

. (N 2)g
A

(N 2)g'
I

4v

(3.15)

(3.16)

2 3
V(y ) gy« y

2 g
y

2

3g (4.1)
The two Lagrangians, 2, and S„are equivalent

if the two masses, m and p, satisfy the following
equation:

+—— + ————,lnm =0.

(3.17)

This equation has a solution with the property that
g/m-0 wheng/p-~. However, this is not enough
to show the existence of a phase transition. ' We
also need to show that the following statements
are true:

l. If g/m is small enough, then the theory de-
fined by 8, has the property that the ground-state
expectation value of each field, Q„ is exactly zero.
- 2. If g/p, is small enough, then, for at least one

value of i, (Q») «» 0 in the ground state of the theory
defined by 2,.

Statement 1 is true by the same argument we
used for the (»I»«), and (p«), theories. Statement 2

cannot be proved by a naive application of pertur-
bation theory. This is because Goldstone bosons
appear' and create infrared divergences. Coleman
has shown that statement 2 is actually false when
applied to the O(N) model in two space-time di-

plus two loop corrections. The inverse propaga-
tor, A~ '(0), can be found from V(P, ) by

,(0)
' (4.)
d4'c dv/d»» = 0

= ~' —,„+0(a').9gp. (4.2)

If g/p is very large, then 2« is equivalent to 2,
if we make the identification [from Eq. (3.12)]

m'=, ln —+0 g'ln ln— (4.3)

m2
V(~.) = g4 e.",e."'~3

(m'+ 3gy, ')"' (4 4)

plus two loop corrections. In terms of p, for
large g/p, this can be written as

When the theory is written in terms of Z„g/m is
very small. Therefore, we can use the loop ex-
pansion for 2, to get
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, ln —+3g, '+0 g'ln ln-

+Olg'in ln—
~

~

(, gl
(4 6)

Therefore, for large gjii., we have

(4.6)

V. DISCUSSION

The phase transition in the (p'), field theory can
be demonstrated by a variational calculation, in
which the trial states are free-field vacuum
states. " The parameters which are varied are the
mass and the expectation value of the free field.
A similar variational calculation for the (Q'), field
theory yields nonsensical results. The expecta-
tion value of the field is predicted to be zero,
regardless of the value of g/p, . The physical mass
of the system is predicted to be infinite.

The reason why free-field vacuum trial states
do not work in a variational calculation in (Q'),
theory is that carrying out such a variational cal-
culation is equivalent to calculating the effective

potential by summing the cactus graphs. " In
(Q'), theory, there is a primitively divergent graph
[Fig. 2(b)] which is not a cactus graph. This graph
must be included in the mass counterterm. Since
the simple variational calculation does not include
this graph, the cutoff dependence in the counter-
term is not complete1. y canceled. As a result, the
counterterm completely dominates the effective
potential. So far, we have been unable to find trial
states which include these divergent graphs and
which are simple enough to handle in an exact
variational calculation.

It is important to study the existence of a phase
transition in the (Q'), field theory. However, the
techniques used in this paper do not have an obvi-
ous generalization to three space dimensions and
one time dimension. The difficulty is that the
(Q4), theory has an infinite number of primitively
divergent self-energy graphs. There are prim-
itively divergent graphs of every order in g. As a
result, the mass counterterm cannot easily be
written as a closed-form expression involving a
momentum cutoff.
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