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A gauge theory with U(N) symmetry is studied in the large- N limit to all orders in the scalar self-coupling,
and to lowest nontrivial order in the gauge coupling. Unlike the 1/ N expansion of the scalar field theory, the
effective potential is found to be always real, although it can be mutiple-valued. Furthermore, there is a region
in the coupling-constant space where symmetry is broken spontaneously involving two separate phase
transitions, one of the first kind and one of the second kind. This phenomenon persists for arbitrarily small
(finite) gauge coupling as a genuine feature of the 1/N expansion, exhibiting much more of the nonlinear
structure of the complete theory than found in ordinary perturbation expansions. A comparison is made
between the spontaneous symmetry breaking found in the 1/N expansion and that of other symmetry-
breaking schemes, which are of the Goldstone, Higgs, or Coleman-Weinberg type. Here the vector-scalar-
boson mass ratio, m, 2/ mg %, is of O(g?), which is contrasted with Higgs and Coleman-Weinberg mechanisms,

for which m, 2/ mg?

I. INTRODUCTION

Recently the many-field limit of quantum field
theories has attracted considerable attention as
part of the continuing attempt to understand the
underlying physical content of such theories in a
way which does not depend on the ordinary pertur-
bation expansion in the coupling constants.! A
typical model is a field theory with an internal
symmetry O(N) or U(N), with N chosen as the new
expansion parameter. Then the coupling constants
need not be small, and the 1/N expansion contains
much more nonlinear structure of the exact theory
than the ordinary loop expansion. It has an infinite
number of Feynman diagrams even in leading-order
approximation. The new expansion has some ap-
plication to the strong-interaction theory, since it
has been shown that a gauge theory with U(N) color
symmetry is described by the planar diagrams in
the large-N limit, which is topologically equivalent
to the dual resonance models.? It may also be
relevant to unified gauge groups of weak interac-
tions if these groups become sufficiently large.

In four-dimensional space-time most of the pre-
vious work has concentrated on the O(N)-sym-
metric r¢* theory. Initial studies of this model
incorrectly indicated that the 1/N expansion was
not consistent, claiming that the Green’s func-
tions generate tachyons® and that the next-to-lead-
ing term destabilized the vacuum state by making
the effective potential everywhere complex.* How-
ever, a careful reanalysis has shown that the ef-
fective potential V(¢?) is in fact a double-valued
real function of ¢?, with its absolute minimum
always lying in the second real solution of the gap
equation, features which were previously over-
looked.® Then the 1/N expansion of O(N)-sym-
metric A ¢* theory becomes a consistent theory if
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is of O(1) and O(g ~?), respectively, where g is the gauge coupling.

the Green’s functions are constructed with respect
to the global minimum of V(¢?). Tachyons disap-
pear and the 1/N correction to V(¢?) is still stable
at the true ground state.® Further, spontaneous
symmetry breakdown is not possible and there
exist a bound state and a resonance in the strong-
coupling domain.®

The purpose of this paper is to add gauge fields
to this theory. We consider a U(N)-symmetric
gauge theory in the large-N limit. The composite
field x is introduced as in the scalar model,** and
the topologies of the diagrams are studied to lead-
ing approximation in N. It is shown that only cer-
tain planar diagrams are dominant in the large-N
limit. We find it very complicated to evaluate the
effective potential even to leading order in N.
Therefore, we confine ourselves to V(¢?) computed
to lowest nontrivial order in the gauge coupling,
but to all orders in the scalar self-coupling con-
stant. Our result cannot be reliable if the gauge
coupling g2 is too large. Nevertheless, we find
that new and interesting phenomena occur even
in the weak gauge coupling region. The effective
potential is now a triple-valued function of ¢? in
general and it is everywhere real. Furthermore,
there is a region in the coupling-constant space
where symmetry breakdown can occur. These
results can be contrasted with other symmetry-
breaking schemes such as the Higgs” and the
Coleman-Weinberg mechanisms,® which are usually
discussed in the context of an ordinary perturba-
tion expansion in small coupling constants. Our
effective potential has three real solutions in gen-
eral; we show that one of them reduces to V(¢?)
of ordinary perturbation theory in the weak-coupling
limit, and symmetry breakdown of the Higgs or
the Coleman-Weinberg type can be attributed to the
local minimum of V(¢?) occurring on this particu-
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lar solution. However, the global minimum occurs
on one of the other real solutions of the effective
potential in our shceme, owing to the rich non-
linear structure of the 1/N expansion, and it breaks
the symmetry of the theory spontaneously. We

also note that the vector-scalar mass ratio is of
O(g?) here, while it is of O(1) in the Higgs scheme
and O(1/g?) in the Coleman-Weinberg scheme,
where g is the gauge coupling constant.

The plan of this paper is as follows: In Sec. II
we review U(N)-symmetric A¢* theory as a pre-
liminary to the extension of the gauge theory. No
new result is presented in this section, but some
technical points are emphasized here. Here we
choose U(N) symmetry instead of O(N), use the
dimensional regularization method instead of the
ordinary cutoff method, and utilize Eq. (2.13)
maximally for the study of the effective potential
without solving the transcendental gap equation
(2.11) explicitly. In Sec. III we discuss a U(N)-
symmetric gauge theory with one scalar multiplet.
First we study the class of Feynman diagrams
which are dominant in the large-N limit. Then we
construct the effective potential to lowest nontrivial
order in g%, renormalize V(¢?), and analyze the
result. It is shown that there are four kinds of
phases depending upon the values of the coupling
constants, and there is a region in the A-gZ plane
for which symmetry is spontaneously broken. Typ-

ical behavior of the effective potential as well as the

particle masses are studied as a function of g2. In
Sec. IV we compare a new symmetry-breaking
scheme to other well-known mechanisms of the Higgs
type or the Coleman-Weinberg type.

II. THE 1/N EXPANSION OF U(N)-SYMMETRIC A¢* THEORY

This section contains essentially nothing new
other than the results which have been found in
the 1/N expansion of O(N)-symmetric 1¢* the-
ory.»®5 Nevertheless, we shall discuss a scalar
theory with U(N) symmetry here as a preliminary
to the study of the 1/N expansion in gauge theories.
We intend this section to be self-contained, but
shall be as brief as possible, since O(N)-sym-
metric scalar theory has been extensively inves-
tigated in the literature.!*3:%:5

" Let us consider a scalar field theory with the
scalar field belonging to the vector representation
of U(N). Then the Lagrangian of the theory be-
comes

N-lg =0 ) 0¥ o) = o P& Do — 22X (D5 Do)?,
(2.1)

where ¢, is an N-component complex scalar field
and the subscript 0 refers to the bare quantities.

An overall factor N is introduced in the Lagrangian,
which leads to exactly the same results presented
in the existing literature.!-®'5 It only simplifies
the discussion of the dominant Feynman diagrams
in any given order of the 1/N expansion.

Owing to the additional factor N in our Lagran-
gian, every vertex in a Feynman diagram is of
O(N) while every internal propagator is of O(1/N).
This is reminiscent of the loop expansion, where
one expands the theory in terms of the Planck
constant #Z.° However, there is an important dif-
ference between the two expansions, one in 1/N
and the other in 7Z. Since the scalar loops can add
additional powers in N, the 1/N expansion contains
many more diagrams in every order than the or-
dinary loop expansion. In fact, there are an infinite
number of Feynman diagrams even in leading or-
der.! It is this rich structure of the 1/N expansion
that enables us to study a strong-coupling theory.

The effective potential for the Lagrangian, given
in Eq. (2.1), can be most conveniently calculated
by the introduction of a composite field y,3

NTEE=(0,08) (0" ¢g) = 1o P& Do =2 X0 (P Bo)?

+ 2_;:()(0 = ot = XodEho)?
2
%o = XoPd Po -
Ao
(2.2)

Then the effective potential V(¢?) to leading order
in the 1/N expansion becomes

1
=04 93) 0" po) + 5= xo" -

- 1 Lo
N~'V(¢?) =~ 2x, on'*"xg‘)(o"’)(od)g‘bo
0

d*k
+ In (k2 +x,) ; 2.9
@1)* Xo
where ¢ =(¢*$)*/? and the integration is to be car-
ried out in Euclidean space. Furthermore, we
should eliminate the y field by means of the “gap
equation”

v

L (2.4)
ie.,

1 2y = “gz 2 a‘k 1

Ao Xo (¢ )= Ao too (2m)* k2+Xo(¢02)'

(2.5)

The effective potential in Eq. (2.3) contains in-
finities which are very familiar in quantum field
theories, with renormalization necessary before
one can analyze the ground state of our theory. We
shall choose the venormalization point at $*=0
which is on the ovbit defined by Eq. (2.4) and impose
the following renormalization condition:
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_, dv
N ' d¢2 ¢2-O:X(O)=u2’ (2.6)

-, A%V
1 s ¢2_°=x. 2.7

For the moment we shall assume that u? is positive,

but A can have any sign. Later we shall also dis-
cuss the case of negative u2.

It is well known that there is no wave-function
renormalization to leading order in the 1/N ex-
pansion in the scalar field theory. This means
that the composite field x, does not need wave-
function renormalization either, since the x-¢*-¢
three-point vertex does not have any divergent
diagrams in this order. Therefore, we only need
a mass renormalization and a coupling-constant
renormalization. Since we plan to extend the pres-
ent theory to non-Abelian gauge theory in the next
section, we shall adopt, dimensional regulariza-
tion, which is a gauge-invariant regularization
method.’® Then from Egs. (2.3)-(2.7) we find the
relations between the renormalized and the bare
quantities

1 1 11

X A, 167 ¢ 2.8)
2 2 2

" iz - Ter (2.9)

where the integration is performed in (4 —2¢)-
dimensional Euclidean space. Finally we obtain
the renormalized effective potential

uz

- 1
NW=— )P S X9

1 3
* 3on? [xz <ln ‘i;—§>+2u2x]. (2.10)

Now let us analyze Eq. (2.10). The gap equation
(2.4) defines the orbit for A in the form of a trans-
cendental function in ¢?

2

1 1
¢2=‘ﬁ{‘+7X‘ 1672 [X(ln—;l‘x;__l>+“2]s

(2.11)

or

2

1 1 1

2
2_ 42, MK e (2, 2 1 X
eT=PT h+16n2—x<x+16n2 16n2h‘p2>‘

(2.12)

We show this orbit in Fig. 1. Since the Euclidean
integral in Eq. (2.5) is real for real positive y,
only the principal Riemann sheet of Eq. (2.12) is
to be considered. Wealsonote from Eq. (2.10) that

FIG. 1. Typical behavior of the orbit in UN) A¢p? theo-
ry. When &%>&2 or %<0, X becomes complex and only
its real part is plotted, shown as dotted lines.

do®

L8V +N_1_g_z dx

&2 x d®?
=x. (2.13)

Therefore, the value of the composite field x on the
orbit is the same as the slope of the effective po-
tential, and V(¢?) can be obtained by quadratures
in the y - plane. This is very important in our
analysis, since we are able to deduce the behavior
of the effective potential as a function of 2 without
solving the transcendental equation (2.12) expli-~
citly. It is clear from Fig. 1 that there are in
general two solutions for y for any given value of
$2, and accordingly V(&%) becomes a double-valued
function of ®. We shall divide the orbit into two
parts, solution I and solution II, as shown in Fig.-
1. Then the effective potential with solution I,
V1(®?), is simply area B in Fig. 1. To get V;;($?)
we should integrate the orbit up to &,% and come
back to ®2, which means that

Vi(®®) =B,
Vi (®#%)=B-A.

N =N~

(2.14)

Equation (2.14) tells us immediately that the effec-
tive potential is always lower on solution II than on
solution I. We have plotted V(®2) in Fig. 2. Since
there is no real solution of the gap equation for
$2%>% %, x becomes complex in this region, and
thus V(®2) becomes also complex for *>®,%. The
same is true of V;(®?) for #2<0.

The ground state of the theory is the absolute
minimum of V($?) for ¢*>0. Therefore, only part
of the effective potential in Fig. 2 should be taken
into account, i.e.,

11
2724 <7+ 161;2)“2'

It is trivial to prove that &,°<®,® always, which

(2.15)
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V(@)
(d) (a)

PP Y N

1= i * FIG. 3. A diagram which contributes to the Green’s
o, ¢'/Vx (<~} function (2.16). The dotted line refers to the X field,
and the solid index line with direction refers to the
scalar field.
// to verify which of the candidates corresponds to the
true ground state of our theory. To leading order
FIG. 2. Typical behavior of the effective potential in in N, there is only one diagram to be calculated
the A¢* theory. When V(¢2) becomes complex, only its for the two-point Green’s functions (Fig. 3). There-
real part is plotted, shown as dotted lines. Since V(¢?) fore, we have
is shown as a function of ®2, only that part of V(¢?) for )
which &% >&? is to be considered for the analysis of the =1/Ay=B(x;p?) ¢’
ground state. G~ (p?)=iN . ;
oF (p2+x)8{ |,
leaves the following cases: (2.16)
(@) 0<® <& ,%. In this case there are two local :
minima, one on each solution. Both minima are where
U(N)-symmetric. 1
(b) ®,2<0. We also have two local minima in this B(x;p?%) = f T3 5 (2.17)
case. However, the minimum of V;(¢?) breaks (Zﬂ) k X (k4p)+x’
U(N) symmetry while the one on solution II is still and a Wick rotation is made so that all the mo-
U(N)-symmetric. menta k£ and p are in Euclidean space. It is
Now we shall study the Green’s functions in order straightforward to invert (2.16), giving
J
p2+x ¢
i [ P&, o%0%) D(x, $%pY
G(p*)=-+ : (2.18)
b 1 ( P10’ >+ 1/2o+B(x;0%) ¢3¢’
D(x; ¢%p%)  po+x ®® D(x, 9%0°)  ¢°
where
D(x, $%p%) =(p%+x) [—— +B(x; p? )] +¢2. (2.19)

Of course B(y;p>) as it stands in Eq. (2.17) is divergent, but it is made finite by the coupling-constant re-
normalization. When B(x;p?) is calculated in (4 — 2¢)-dimensional space and Eq. (2.8) is taken into account,
we find a finite expression for D(x, ¢ p?),

2 2 1/2
Dx, $%0%) =(p*+x) {%— lel,,zln“x—+ 8:,2 [1- <p +24x) 1n {2-+4) +‘/_2]} ¢*. (2.20)

p vy

Since the D(x, ¢ p?)’s appear as denominators in the Green’s function (2.18), the zeros of D(x, ¢ p?) cor-
respond to particle masses. However, to avoid the tachyon problem, it is important for Eq. (2.20) not to
have any zeros between p%=0 and p%=+ (recall that p? is Euclidean).

Going back to the various candidates for the ground state, we shall consider an asymmetric vacuum first,
which can be realized when &,%<0 [the minimum of V; in case (b) of Fig. 2]. Then we have

X:o’ ¢2¢0: (221)

and

D(0, ¢?;p?) =p? [; 1—617,;<2—1n£2->}+¢2- (2.22)
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Since D(0, $%; 0) = ¢* and D(0, ¢p% =) =~o, we learn immediately that an asymmetric vacuum always has
tachyons, and must be ruled out. The second possibility is a symmetric vacuum,

x#0, ¢%=0,
and Eq. (2.20) becomes

(2.23)

1 1 X 1
D(X,O;P2)=(P2+X) 7\— 161T21n—2_+ 8n2 [1_<

It can be readily seen that the expression inside
the square brackets is a monotonically decreasing
function in p%, which goes to —« asymptotically.
Therefore, the necessary and sufficient condition
for the absence of tachyons is that the expression
inside the curly brackets should be negative at
p?=0, ie.,

_x_)x 1672
P exp X .

This inequality is always satisfied on solution II,
which is clearly shown in Fig. 1. Thus the true
ground state of the theory should be the U(N)-
symmetric vacuum of Vi;(¢?).° Therefore, we
have learned a lesson from the analysis of V(¢2):
The theory becomes a consistent one if the global
minimum of the effective potential is chosen for
the ground state. This is further evidenced by a
study of the higher-order correction in N. The
next-to-leading term is always complex on solu-
tion I1,* while there exists a finite region containing
the symmetric vacuum of solution II, for which the
1/N correction term remains real.®

Before we discuss the case for ;1?<0, a remark
is in order about the renormalization conditions
(2.6) and (2.7). Although we have chosen ¢*=0 (or
®%=8,%) as our renormalization point, there could
be an ambiguity in this prescription owing to the
double-valued nature of the effective potential. In
this event at least one of the solutions should sat-
isfy the renormalization conditions. Recalling that
Egs. (2.6) and (2.7) define the slope and the curva-
ture of V(®?) respectively at ®*=%,%, we notice
immediately that the renormalization point is on
solution I for x>0 while it lies on solution II for
A<0. This illustrates the fact that two sets of the
renormalization conditions give rise to the identical
effective potential.

We must be more careful when u%<0. According
to Eq. (2.5), we have an inconsistency appearing
if ¥(0) is real and negative. Therefore, the ef-
fective potential becomes complex near the re-
normalization point $?=0, and Egs. (2.6) and (2.7)
should be regarded to hold for the ReV(¢?) only.
This is quite legitimate since the divergences in
Eq. (2.3) are real, and only the real part of the
gap equation and V need to be renormalized. How-

(2.25)

pz+4x>1/21n (P2+4x)1/2+\/P_2 :H

o (2.24)

ever, the renormalization conditions can be re-
placed by another equivalent set of conditions with
w?>0 and A <0, as can be seen from Fig. 2. This
is only possible when the effective potential is
double-valued. It is customary in conventional
perturbation theory to fix the sign of A to be posi-
tive, but take u? to be of any sign. In other words,
the renormalization point is chosen on solution II.
However, in the 1/N expansion it is most conveni-
ent to choose positive pu? with any sign for .

Even the massless theory can be considered from
the effective potential shown in Fig. 2. Since ;=0
at ®,2=0, V;(@%=¢?) satisfies Eq. (2.6) with u*=0.
However, the same argument does not apply to Eq.
(2.7). The renormalized coupling constant becomes
infinite at this point, which is due to the infrared
divergences in the massless theory. Therefore,
the condition (2.7) should be defined at ¢p>=M?2#0 to
avoid the infrared problem. Once again this can be
formulated with the equivalent conditions on solu-
tion II. Here we simply choose X = - 1672 so that
&2 defined by (2.12) at ¢?=0 becomes zero, but
vary 1 on solution II so that the desired coupling-
constant renormalization condition is satisfied on.
solution I.

We are able to study the strong-coupling theory
because our expansion parameter is N~! and not X.
Certain questions naturally arise: What is the
relation between the 1/N expansion and the con-
ventional perturbation expansion? Is the latter
restored in the weak-coupling limit of the 1/N ex-
pansion? We can answer this question affirma-
tively in the following way. In the conventional
perturbation theory A is assumed to be small and
positive. Therefore, we shall choose a renormali-
zation point on solution I and consider the weak-
coupling limit. In this limit &2 becomes exponenti-
ally infinite, much faster than does ®,%, and the
energy difference between the two solutions I and
II also becomes infinite. The situation becomes
more dramatic in the weak-coupling limit, where
conventional perturbation becomes a better approx-
imation. Then we can choose solution I for the
description of our theory, and we can ignore solu-
tion II. This may sound contradictory considering
the tachyon problem that we encountered on solution
I. The tachyon mass is independent of N and
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causes genuine difficulties for the strong-coupling
theory on solution I. However, the tachyon mass
is a function of A which becomes infinite in the
weak-coupling limit. This is not a reliable result
of the theory, for the 1/N expansion also fails to
be valid in the deep Euclidean region. Therefore,
the infinitely heavy tachyon mass in the weak-
coupling limit may be an artifact of the theory, and
the effective potential on solution I, Vi(¢?), be-
comes the effective potential of ordinary perturba-
tion theory. Now the minimum of V;(¢?) becomes
quasistable and can be chosen as the ground state
of the theory. The Goldstone phenomenon'! can be
also realized when & <0, but it is only possible
in this theory in the weak-coupling limit.

It is a folklore of quantum field theory that a
negative coupling constant should be excluded from
consideration, since the effective potential is then
unbounded below. However, results obtained in the
1/N expansion cast some doubt on this widespread
belief. When X is negative, V;; becomes the ef-
fective potential in the perturbation limit. It can
be seen in Fig. 2 that V (®2) becomes complex for
large ®2 instead of being unbounded below. This
illustrates that the higher-order quantum correc-
tions affect the large-&2 behavior and suggests
that arguments based on the tree approximation
may not be justified in the asymptotic region.

Finally we shall discuss the effective coupling
constant. The asymptotic behavior of the coupling
constant is normally obtained from the study of
B(\) in the renormalization-group equation. Since
V(®2) becomes complex for &> ,%, B(A(M?)) also
becomes complex for large M2, and it is necessary
to investigate S(A) for complex A, as has been done
by Khuri for simple A¢* theory'? without internal
symmetry. However, it is much simpler to cal-
culate the effective coupling constant A(M?) direct-
ly from the effective potential (2.10) as it is the
curvature at ¢p2=M2. Since x is the slope of V(®?),
A(M?) is the inverse slope of the orbit (2.12), and
it can be readily shown that

)\(Mz) ~ -1+2

W TafE (2.26)

Therefore, the effective coupling becomes zero
asymptotically, not through the real values, but
with the phase angle 135°. Nevertheless this does
not necessarily mean that the theory is asymptot-
ically free.!? Were our expansion parameter the
self-coupling constant A, the vanishing effective
coupling would imply that the expansion was a
good one in the asymptotic region, and that the
theory would be asymptotically free. However,
here 1/N is our expansion parameter, and the
small effective coupling constant does not mean
that the leading term of the 1/N expansion pre-

dicts the correct large-¢?® behavior of the effec-
tive potential. It simply means that the next-to-
leading terms of the 1/N expansion are dominant
in the asymptotic limit. ’

III. A GAUGE THEORY WITH U(N) SYMMETRY

We are now convinced of the consistency of the
1/N expansion in the theory, and it is quite natural
to extend our study to gauge theories. The non-
Abelian gauge theories have attracted a great deal
of attention as realistic models for weak and elec-
tromagnetic or strong interactions. The 1/N ex-
pansion of gauge theories may have some particu-
lar importance in strong interactions, since it has
been shown by ’t Hooft that only planar diagrams
dominate in the large-N limit of a gauge theory
with color gauge group U(N), and thus the topo-
logical structure of the 1/N expansion is the same
as that of the dual models.? Therefore, the 1/N
expansion of a gauge theory with quarks would be
a realistic model, but we here shall consider a
U(N) gauge theory with scalar quarks in this paper
to avoid complications due to the spin of the quarks.
Since the vector representation for the scalar field
is one of only a few representations which allow
the theory to be asymptotically free in the large-N
limit,*® we hope that we do not lose any essential
feature of the quark model with a color gauge group.
Moreover, our model has the advantage of being
presented in four-dimensional space-time, while
most of the work with fermion quarks has been
restricted to two-dimensional space-time.?¢

A. The model

Let us add the U(N) gauge fields (4,)} to the
Lagrangian of (2.1), obtaining

N7l :(au¢o+igvou¢o)*(3”¢o+igoAg ®o)
= Lo PE Do =z ho (PFBo)?
1
-5 Tr (Fu,,F”") - —ETr(BMAg)Z

- Tr ,C*(G"C +ig,[4*,C])}, (3.1)
where
FPY =g”Ab —oAY —ig [AR AY].

The scalar field ¢, has N components as in Sec. II,
and the gauge field A, as well as the ghost field C
is an NXN matrix in the group space. We have
chosen U(N) symmetry instead of SU(N) only for
technical purposes, but we believe that there is no
qualitative change in our final results even if we
employ SU(N) for our gauge group. By doing so
we have N? gauge fields and N? ghost fields,* so
that every element of these NXN matrices is an
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independent degree of freedom.

The Feynman rules can be readily derived for
the Lagrangian given in (3.1). However, it is most
convenient to utilize the group index line in the
Feynman rules so that the part of the rules due to
the group structure can be considered separately.®
Then the scalar field carries a single index line
whereas the gauge field A and the ghost field C
have double lines. It is to be noted that the con-
travariant indices are not equivalent to the covari-
ant indices unless N =2, and thus every index line
must be regarded as having a direction. Since
every term of the Lagrangian (3.1) is U(N)-invari-
ant, the index lines are always continuous. They
are broken neither on the vertices nor on the prop-
agators. Furthermore, the contravariant indices
are contracted with the covariant indices, which
means that the direction of the line is unchanged
along the index line. Therefore, an index line
either forms a closed loop, or ends up with an
external particle state. In the event an index line
closes to form a loop, it gives rise to an additional
factor N for the diagram under consideration, since
we can assign N indices for the loop. With this
simplification of group structure, the remaining
part of the Feynman rules can be easily worked
out.

Now we introduce the y field without changing
any physics as in Sec. II:

1
N'&=N"'&+5—(x
2x,

= (00, +igo Aguo)* (au¢o+ig0Ag¢’o)
1 2

"
+K0on_'foL'Xo"Xo¢5k¢o

o‘“oz_xo‘%k‘po)z

1
-5 Tr(Fy, F*") - EgTr (8,A45)?
- Tr {o,C *(" C +ig,[Ah,Cl)}. (3.2)

The composite field y is a U(N) singlet, and does
not carry any indices. We also note that the four-
point self-coupling of the scalar fields is replaced
by a trilinear coupling -y ¢*¢, and the mass of the
scalar field is generated by the tadpole term, and
this trilinear coupling. We shall now study the
1/N expansion of the gauge model with the Lagran-
gian given by (3.2).

B. The 1/N expansion of the effective potential

The first step in the calculation of the effective
potential is to shift @il the fields in the Lagrangian
(3.2) and to find the effective propagators as well

as the effective vertices for the vacuum diagrams.®

However, we shall shift the y and ¢ fields only,
since the ghost fields do not appear as external

particle states and the gauge fields do not develop
nonvanishing vacuum expectation values unless
the Lorentz symmetry is spontaneously broken.
Then the effective Feynman rule shows that the
index line can be cut in pieces or part of the line
may entirely disappear. Nevertheless this does
not contradict what we have discussed earlier.
The effective Feynman rule is an effective way of
replacing the propagators and the vertices with
all possible insertions of external fields carrying
zero momentum by the effective propagators and
the effective vertices, respectively. Therefore,
an external scalar field must be attached whenever
there is a discontinuity in the index line. It is
apparent that a diagram with any index line cut

in pieces is at most of the same order in N as

the one with such an index line connected, and it
becomes of lower order in N if the connected line
forms a closed loop. When the index line disap-
pears completely at a certain point, it gives rise
to mixed propagators of the x-¢ type and ¢-A type,
and induced vertices such as the A -A,-¢ vertices
which do not exist in the Lagrangian (3.2).

We are only interested in the leading term of the
1/N expansion in this paper and shall now discuss
the topology of dominant diagrams in the Landau
gauge which we shall choose throughout our work.
To do this we have to establish a series of state-
ments as follows.

(1) In the Landau gauge (¢ =0) there is no ¢-4,
mixed propagator: Suppose that there is such a
propagator (Fig. 4) in a Feynman diagram. Then
an external ¢ line is to be attached at the disap-
pearance point which gives a vertex proportional
to k,. However, the vector propagator is tran-
sverse in the Landau gauge and becomes zero
when contracted with &, i.e.,

B R
k,,<g“”— — >=0. (3.3)

(2) A diagram with x-¢ mixed propagators is of
lower order in N than the one which is obtained by
removing these mixed propagators as well as the
x lines associated with them: Recalling that every
vertex is proportional to N, while every propagator
is proportional to 1/N, it is straightforward to

FIG. 4. A schematic illustration of a Feynman dia-
gram with a ¢-A, mixed propagator. The gauge field
is denoted by a double line with opposite directions, and
the shaded area refers to the rest of the diagram.
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I:

FIG. 5. A schematic illustration of a Feynman dia-
gram with a X-¢ mixed propagator.

observe that
1
Ty S Te (3.4)

in Fig. 5 as far as N-power counting is concerned.
Since m >0 always, a diagram with x-¢ mixed
propagators cannot be a leading term.

(3) To every diagram with the induced vertices,
there corresponds a diagram without them. Fur-
thermore, the two diagrams are of the same
order in N: From (1) and (2) we proved that an
index line is continuous on the propagators, and
thus it can disappear only at the induced vertices.
Suppose that a diagram has an induced vertex.
Then there should be another induced vertex at
the other end of the index line. By connecting them
with an index line (a scalar propagator) we re-
moved the induced vertices. The resulting diagram
is of the same order as the original one since the
factor 1/N due to the scalar propagator is to be
compensated by the closed-loop factor N.

(4) No internal x lines are allowed in the leading
approximation: By now the dominant diagrams
should have their index lines continuous, and thus
every line forms a closed loop. We can assume
this without loss of generality, for any dominant
diagram with the induced vertices can be generated
from the above-mentioned prototype diagrams by
removing some scalar propagators. Therefore,

a diagram I'; with y lines should have a configura-
tion as in Fig. 6. Then it can be readily shown
that

1
) e Wr‘}. (3.5

Noting that m >2 always (otherwise the diagram
is not one-particle-irreducible), we observe that
a diagram with internal y lines cannot be a domi-
nant one. The above statements require that the
leading diagrams should satisfy the condition that
every index line should be continuous and form a
closed loop and no x propagators are allowed. We
have still another statement to describe this class
of diagrams.

(5) A diagram of the above-mentioned class is of

o I ﬁ
% Ia

I

FIG. 6. A schematic illustration of a Feynman dia-
gram with a scalar loop attached to the X propagator.

order N*"2¢-5 where S is the number of scalar
loops and G is the genus of the Feynman diagram
(G =0 for a sphere and G =1 for a torus, etc.): Let
us assign a fictitious index loop for every scalar
loop. Then every internal propagator has double
lines and the number of the closed loops, I, is the
number of the surfaces bounded by the propagators.
I V and P are the number of vertices and propa-
gators of the diagram respectively, then the Euler-
Poincaré formula tells us that'®

V-P+I=2-2G, (3.6)

where G is the genus of the surface on which the
Feynman diagram lies flat. Recalling that a vertex
contributes N, a propagator 1/N, and a closed
loop N, and the whole diagram is raised by N¥ due
to the fictitious index loop, the power of N associ-
ated with the diagram is

V=-P+I
N =N, (3.7)
Therefore, the leading diagrams seem to be of

O(N?), which corresponds to G =0 and S =0. They

are planar diagrams with gauge fields and ghost
fields only. It turns out that the O(N?) terms are
constants which are independent of x and ¢, since
the vector fields do not couple to the y field, and
thus the effective potential becomes a constant

if we allow all the index lines to form closed loops.
We are not interested in additive constants of
V(¢?) and want to know the next dominant part of
this class of diagrams. To obtain a nontrivial
contribution to V(¢?), we have to cut at least one
index line, which reduces the N power by one unit.
This means that a diagram which appears to be of
O(N?) is in fact of O(N).

There is another class of diagrams which is of
O(N). These diagrams correspond to G =0 and
S=1. Now the diagrams are still planar, but only
one scalar loop is allowed. We do not have to break
the index lines here since the trilinear coupling
X¢*¢ gives a nontrivial contribution to V(¢?).
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Therefore, we can conclude that the following
class of diagrams is dominant in the large-N limit:
(a) Construct a planar diagram with gauge fields

and ghost fields only. Then cut the index line and
the closed loop one by one, but on the gauge propa-
gators only, and insert the external fields ¢.

(b) Construct a planar diagram with only one
scalar loop. No index line is to be cut for any
insertion.

(c) Remove part of the scalar loop in (b). Then
any broken index line due to this process may be
further cut for insertion of the external fields ¢.

C. The effective potential to O(g?)

Although we have found the dominant class of
diagrams in the large-N limit, it is nearly impos-
sible to calculate the infinite number of planar
diagrams explicitly. Therefore, we shall consider
the effective potential to leading order in N, but
only to O(g?). Then there are only a few diagrams
which need to be calculated. By deoing so, we con-
fine ourselves to the study of weak gauge coupling,

1 i
detiD~'=det | ¢; (R2+y)5]
0 gkloigt

The determinant in (3.11) is to be carried out over
the group indices i, j, B, I, m, and » as well as
the Lorentz indices u and v, and all the quantities
X, ¢, X, and g are to be understood as bare ones.
We do not have to consider the ghost loop in (3.11)
since its contribution to V, is a simple constant
independent of y and ¢2. It is rather tedious to
calculate the giant determinant explicitly, but there
is a way of extracting sufficient information for our
purposes. After some algebraic manipulation®” it
can be shown that

detiD™'=detA  detA,detA,, (3.12)
where
1
EEV
A= 0

b; (kz'*‘X)aij s
=[R20 0%, +27 (67,0" P, + 000 D) ]°,
k25760 + £ g2 (k2+x)¢2 (650" b = 0"’ D)

Ag= 5 B2 . .
+Eg W¢> Dr® P

but the scalar self-coupling constant can be arbi-
trarily strong.

It can be shown that a diagram with three loops
or more is at least of O(g*). Accordingly, we
shall calculate the effective potential up to the two-
loop level, but only to leading order in N, and to
O(g?) for the gauge coupling constant. Then the
effective potential is the sum of three terms,

N7'V(x, ¢*) =N Vo +N"'V +N"1V,. (3.8)
V, is the effective potential in the tree approxi-

mation and simply the minus of the nonderivative
terms in (3.2) when A, and C are set to be zero,

1
N'Wo==5—Xo+

2
o Yot 50 Xo FXo®i - (3.9)

V, is the one loop effective potential and it becomes

NIV, = f G )4lndetzD“(x,¢) (3.10)
where
0
gk’ T Om (3.11)

1
(g"" k2 =E"E" )57 8! + 3 R RV 570}, +8" g2 (8%, 0, 0" + OF ')

T
Now & =0 in the Landau gauge. Therefore, deta,
becomes a constant which we are not interested in.
Then V, consists of two terms, one from detA, and
the other from detA,. On dimensional grounds the
contribution of detA, is proportional to ¢*, but ¢
is always combined with the gauge coupling g in
A,, which means that A, is of O(g*) and does not
contribute to V, to order O(g?). Therefore, V,
takes a surprisingly simple form in our approxi-
mation,

N~1V1=f(g—:r;%m(kuxo)mu/m+o(g4).
(3.13)

There are five two-loop diagrams in the large-N
limit, but only two of them are of O(g?). They are
shown in Fig. 7. They can be evaluated straight-
forwardly'®

N™'V,, =0, (3.14a)

NV

/—\
N
\/
0q
%
><
O
f“_'l
C»D
=3
[
NE
N

(3.14Db)
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(a) (b)
FIG. 7. Two two-loop diagrams which contribute to

V($?) to 0(g? in the large-N limit. All other two-loop
diagrams are either of O(g%) or of lower order in N.

The loop integrations are carried out in (4 — 2¢)-
dimensional Euclidean space, and an arbitrary
mass parameter M is introduced.'® The most
convenient choice of M will be given later. The

2

=2 Xo+Xo®& Do

1 1 Xo
+ 992 3972 Xo I:— (ln M2

1
N~ V(X’¢ )‘_ Xo

) -2

D. Renormalization ’

We should renormalize the effective potential
given in (3.15) before we analyze it. We shall im-
pose the same renormalization conditions as in
Sec. 11, i.e.,

1.4V 2 |
N~ 67 |yes =u®, (2.6)
d2
N1 2.7
do* ¢2—0 @7

For the reasons that we mentioned in Sec. II, u? is
chosen to be positive, but we shall allow A to have
any sign.

The scalar field ¢, now requires wave-function
renormalization, as does x,. However, they are
related to each other, since the three-point vertex
Xo®d ¢, does not have any divergent diagrams in
our approximation. Therefore, we have,

$o=2Z ¢1/2 ¢,
) (3.16)
Xo= Z
From Eq. (2.6) we observe that
1
xo(0)=—Z-—-/.L2, (3.17)
¢

which suggests that it is most convenient to choose
M? as

-

- 1 1
NV, ¢°) == 57 X +%x+x¢ + Ten? z[X2<

1"
1 \2 X X
+<‘15‘z‘> %gz[x"‘(—lnzFHlnF

- 5) +6xy.2]. (3.22)

vanishing contribution of the diagram (a) to O(g?)
is due to the “beauty” of dimensional regulariza-
tion. Since the four-point vertex provides the fac-
tor g2, the vector propagator should remain mass-
less, and the subintegral of the massless propa-
gator becomes zero. The constant ¢ in (3.14b) is
not calculated explicitly, but it will be shown later
that this constant will be subtracted away in the
process of renormalization.

Therefore, we obtain the unrenormalized effec-
tive potential to O(g?) in the large-N limit by ad-
ding (3.9), (3.13), and (3.14b),

Xo
L1n? e iln e -})]

1 3
+ <—161r2> g XS [ 3In? — M2 — (E+ 10) In

‘A%*C] . (3.15)
M2 2 (3.18)
Zg

Then the renormalization conditions (2.6) and (2.7)
become

Bo =K 1 p?
AZgs A 1612 Zg4 z(l+e)
1 6
+ (1617 ) giu <E+14)’ (3.19)
1 1 1 11
NZg? A 167 Z 4% €
<—1—>2 2 (g 24+2 > (3.20)
+ 167[2 g €+ +a4acCj . .

The gauge coupling g, does not need any renormali-
zation to O(g?), and thus is simply the same as g.
The wave-function renormalization is yet to be

determined. Unfortunately, this cannot be done
from the one-loop approximation, since the ex-
ternal lines carry zero momenta. It should be
fixed from the self-consistency of the effective
potential. Alternatively it can be also determined
explicitly from the one-loop diagrams for the sca-
ler propagator. We find Z, in either way to be

- 1_ 2(3_1
Zo=1+ 1678 <e' 2)'
Then we obtain the renormalized effective potential

by inserting the relations (3.19), (3.20), and (3.21)
into Eq. (3.15),

(3.21)
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E. Ground state

Now we shall analyze the effective potential (3.22) and look for the absolute minimum of V(¢?). Although
this is more complicated than its counterpart in the A¢* theory, Eq. (2.10), an essential relation in the pre-
vious analysis is still applicable to the gauge theory, which is Eq. (2.13),

4

N d¢2=x.

(2.13)

Once again the effective potential can be obtained by quadratures in the x-¢? plane, and it is important to
study the x-¢ orbit carefully. Since the orbit is to be calculated from (2.4), we have

1 1 3g \2 1 [(3g\2 X g \?2 X
2_ 42 2_ 2 - A 2 &
2T=PTHE, =X { T C (167r2> [16112 *T6rz) [Pzt Tenz) I 7 (3.23)
where given &2, and the effective potential becomes a
1 1 3 2 triple-valued function now. Accordingly, the orbit
(boz— [-7—\ +Ten t <Wi2_> }“2 as well as the effective potential has three pieces
as shown in Figs. 9, 10, and 11. The values of y,
Let us study the gap equation (3.23) in further and x, which give &2 local extrema can be readily
detail, for its shape is crucial for our analysis. obtained from Eq. (3.24),
The slope of the orbit (3.23) becomes 1 16r?
X1=€xp 3 5t Ba%
g
do® _ 1 1 g \? X
dx =7L_[—161l'2+3 <—16172> 111?2‘ l 14 16172 2— 647T2 16172 l/zg 2
2 3g% X 3g? (L)
g \? 2. X
+3 ( 161r2) In2 ?’ (3.24) (3.26)
_ 1 16n?
which is quadratic in In(x/u?). Thus the slope of X2=€XP )5+ g g2
the orbit is always positive if . 1 [<1+ 1672 >2 6472 1672 :lllaiuz
12g2 Py 2 - 3 .
0<r< m‘}gm . (3.25) 2 3¢ A3
In the limit that the gauge coupling becomes zero
Then the orbit and the effective potential are both we have
monotonically increasing functions of #2. This is 1672
illustrated in Fig. 8. We shall define this situa- X1 ~ €Xp ( N )u"’,
tion to be phase I. g2~o0 (3.27)
If the condition (3.25) is not met, the slope of X2 oo @
the orbit becomes negative for a certain range of g=~o
X, and the orbit takes one of the forms shown in Then the orbit reduces to that of x¢* theory (Fig.
Figs. 9(a), 10(a), and 11(a). It is to be noted that 1) and we recover exactly the same results as that
there are three solutions of y in general for a of Sec. II.
ot \ v
....... : ot
X r ot CUE L N
(a) (b) (a) (b)
FIG. 8. Typical behavior of the orbit and the effective - FIG. 9. Typical behavior of the orbit and the effective

potential in phase I. potential in phase II.
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X Xs

(a) (b)

FIG. 10. Typical behavior of the orbit and the effective
potential in phase II.

It is apparent from Figs. 9, 10, and 11 that the
three phases are characterized by the value taken
by ‘1’22;

phase II: &,%>0 and V(&,%)>0,
phase III: &,%>0 and V($,2)<0,
phase IV: ®,%<0 and V($,%)<0.

The boundary between phases II and III is to be
obtained by the condition V(®,?)=0. Since V(®?)
can be calculated by quadratures as in Eq. (2.14),
we have from Fig. 9 that

V(@,?)=B-A (3.28)

and A =B on the boundary. Therefore, we obtain
the boundary between phases II and III by the Max-
well construction. The condition (3.28) can be ex-
plicitly calculated in terms of A and g, and it be-
comes

1672 1 1 16n°

A 2712 g?

(3.29)

The other boundary divides the phases III and IV
and ,°=0 on it. This boundary can be readily
obtained from Egs. (3.23) and (3.26),

(a) (b)

FIG. 11. Typical behavior of the orbit and the effective
potential in phase IV.

1672 1 1 1612 9 g*

x 2712 g% Tatent (3.30)

The four phases divided by the boundaries (3.25),
(3.29), and (3.30) are shown in Fig. 12.

A closer look at Figs. 8, 9, 10, and 11 reveals
that the effective potential is real everywhere,
although it could be multiple-valued. This is to
be contrasted to the scalar field theory, where
V(¢?) becomes complex for large ¢% The origin
of the new feature is in the last term of Eq. (3.23).
It is the dominant term for large &2 and the plus
sign of that term is crucial for the real effective
potential.

We are now ready to study the ground state of
the theory. We must look for the global minimum
of V(®?) for #?>& ° with & ,? given by (3.23). It is
easy to observe that the effective potential attains
its absolute minimum at 2= ? (or ¢$?=0) in phases
I and IV. Therefore, the symmetry cannot be
spontaneously broken in these phases. Further-
more, the scalar field theory which we have studied
in Sec. II can be recovered by turning off the gauge
coupling g; it belongs to phase IV. [We have al-
ready learned in Sec. II that the U(N)-symmetric
1 ¢* theory does not break the symmetry spon-
taneously.]

However, symmetry breakdown can happen in
phases II and III depending upon the value of & 2.
Since &,? is always positive in these phases (its
proof is trivial), the symmetry is broken when

® %< *<®,? in phase II
and
0<® %<&, in phase III.

This region of symmetry breakdown cannot be
solved analytically in the A-g? plane. Therefore,
we have carried out numerical solutions for them,
with the result shown in Fig. 12.

L]

ot
il
vpe 1
m
vV A

FIG. 12. Regions of various possible phases in the
coupling-constant plane. The region of symmetry break-
ing is shown as a shaded area. Note that symmetry
breaking is only possible in phases II and III.
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It is interesting to observe that there is a narrow
strip in the A-g2 plane where the symmetry is
broken, no matter how small the gauge ‘coupling
might be.

Let us now fix the scalar coupling A, and study
the effective potential as a function of g2. If A is
not too big, the theory goes through all the phases
described above and the symmetry breaking can
occur for large as well as small g, Recalling that
we have calculated V(¢?) to O(g?) in the gauge
coupling, and to all orders in A, we may rule out
symmetry breaking for large g2 as an artifact of
the theory. However, symmetry breakdown for
small g2 is a reliable result of our theory, since
the phenomenon exists for arbitrary small gauge
coupling. The behavior of the effective potential
is most clearly illustrated in Fig. 13 as a func-
tion of g2

F. Particle masses

In principle the particle masses are to be obtained
from the pole structures of the Green’s function,
similar to the analysis of Eq. (2.18) in the scalar
field theory. This is very complicated in the gauge
theory which we are considering. There are two
two-loop diagrams for the x propagator and two
one-loop diagrams for the scalar propagator in
addition to the one shown in Fig. 3. However, the
study could be greatly simplified if we are only
interested in the leading terms of the masses and
neglect O(g2) corrections. Then the scalar-boson
masses are still given by Eq. (2.18), since any
corrections due to the above-mentioned diagrams
are of O(g?). The vector-boson masses are given
by the tree approximation of the vector propagators.

When symmetry is not broken, N scalar bosons
have degenerate mass m ¢* which is simply the
slope of the effective potential at the ground state,

mg2=x(0). (3.31)

Of course, the vector bosons are massless in this
situation,

m,2=0. (3.32)

However, in the event of symmetry breakdown an
interesting thing happens very similar to the Higgs
phenomenon, since N —1transverse components of
the scalar fields are absorbed by the gauge fields
and accordingly N - 1 gauge bosons become massive.
The residual symmetry becomes U(N - 1). The mass
of the remaining scalar boson is to be calculated
from

D(x, ¢3; —mg?) =0 with x, ¢Z at the ground state,
(8.33)
where the D function is given by Eq. (2.20). It is

<

(a) (b)

<
<

(c) (d)

<
<

(e) (f)

FIG. 13. Typical behavior of the effective potential
as the gauge coupling is increased. The scalar coupling
is fixed at A/167% <1. V(¢?) for ¢2 <0 is plotted as dotted
lines to show the relationship with Figs. 8, 9, 10, and
11 and does not mean that it is complex there.

also evident from the tree approximation of the
gauge boson propagators that the masses of the
gauge bosons are

(3.34)

A typical behavior of the particle masses is
plotted in Fig. 14 as a function of g2 with X fixed.

m,2=2g%¢p® with ¢? at the ground state.

me m?2

0.2

0.l

2
my* ...9_2
92 g2 e

I6n2 |6n2

FIG. 14. Numerical solutions for the scalar-boson
and the vector-boson masses as a function of g2. The
scalar coupling is fixed at A/1672=0.9 and p2=1.
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Symmetry is not broken until the gauge coupling
reaches a certain critical value g,* and the vector
bosons are massless. Then the vector bosons
begin to acquire masses until another critical
value g,° is reached. Beyond the second critical
value of the gauge coupling, symmetry is restored
and the vector bosons become massless suddenly.
This is a most surprising result of our analysis.
Although the effective potential changes smoothly,
the absolute minimum of V(¢?) may shift abruptly,
which we can confirm from Figs. 13(d) and 13(e).
Therefore, there could be a sudden vacuum tran-
sition.

The scalar mass is also interesting. It increases
until the first critical point g,2, but decreases
afterwards and stays constant above g,2. Recalling
that the renormalization conditions (2.6) and (2.7)
are defined on solution I, we can understand con-~
stant scalar mass for g?>g,%. In this region the
ground state lies on solution I [see Figs. 13(e) and
13(f)], and the mass given by Eq. (3.31) states that
mgZ=p®, It is also easy to understand the scalar
mass in other regions. The slope of the effective
potential keeps increasing as we follow the orbit
from solution I to solution II [ Figs. 9(a), 10(a), and
11(a)]. Therefore, the scalar bosons become heavi-
er than the renormalization mass y in the range
0<g%<g,%, and also the larger g2 gives the heavier
scalar particles. In the region of symmetry break-
down the argument becomes complicated since the
mass should be calculated from Eq. (3.33). The
value of ¢® increases in this region while the change
of the slope is rather small. Therefore, the solu-
tion for zero of the D function in Eq. (2.20) re-
quires a smaller scalar mass for large ¢

IV. DISCUSSIONS

The ground state plays an important role in quan-
tum field theory since all other one-particle states
and bound states should be constructed from this
ground state of the theory. Furthermore, the sym-
metry of the ground state is the symmetry of all
particle states. It can be most conveniently studied
by the effective-potential method. By looking for
the global minimum of the effective potential we
are able to find the ground state and see if any
symmetry of the theory is spontaneously broken.
On the other hand, the 1/N expansion is a system-
atic way of approximating the exact theory. This
is particularly suitable for the study of the strong-
coupling theory, since ordinary perturbation ex-
pansion is only valid in the weak-coupling limit.

In this paper we have investigated the large-N limit
of a gauge theory. Among our findings are the ef-
fective potential which is real everywhere, and a
region of the coupling-constant space where sym-
metry is spontaneously broken.

The tachyon problem is not studied in this paper.
It is much more complicated than the scalar field
theory considered in Sec. II since two two-loop
diagrams must be calculated for the x propagator
and the resulting propagator should be studied for
all Euclidean momenta. However, we argue on the
basis of the analysis in the scalar field theory that
tachyons would not exist if we choose the global
minimum of the effective potential. It is also to
be noted that there are three complex solutions in
addition to the real solutions of V(®2) which we
have discussed in Sec. III. They are the extra-
polation of V;(®2) for %<0, V; (#2) and V;;(®?)
for ®2>®,%, and V;;(®2) and Vy;;(®2) for $%<,%
Although the real part of the complex V($2) could
be lower than V;;(®,?), we reject the possibility
of choosing the ground state on the complex solu-
tions for any ground state on the basis that the
complex effective potential would be unstable and
pose a tachyon problem. This is what has happened
to the scalar field theory. The complex V(®2) for
®2>®,% (see Fig. 2) goes to minus infinity for large
&2, and thus we can always find a vacuum state on
the complex solution which is lower than V;;(®,?).
However, it is easy to see from Eq. (2.20) that this
vacuum state generates a tachyon, and should be
rejected as an unphysical vacuum. Thus, we should
restrict the discussion to the domain where V(®2)
is real.

Symmetry breakdown occurs for weak as well as
strong gauge coupling. Any result associated with
strong gauge coupling may be exclided from our
consideration as an artifact of the theory, since
we have approximated the 1/N expansion to the
lowest order in g2. Nevertheless the phenomenon
of symmetry breaking for the weak gauge coupling
region persists no matter how small the gauge
coupling constant g? may be, and it is a genuine
effect of the 1/N expansion. It is also to be noted
from Fig. 12 that the scalar self-coupling is of the
same order of magnitude as the gauge coupling

when symmetry breakdown occurs,
A=0(g?). (4.1)

Furthermore, in this region the mass ratio be-
comes

my? _ 2
gz 0E?). (4.2)

The result may look unusual since Eq. (4.1) suggests
that the mass ratio is of O(1) if mg?=0(¢?) and
my2=0(g%p?). The part of the argument appropriate
to the vector-boson mass is correctly given by Eq.
(3.34), but the scalar-boson mass does not follow
this naive argument. Instead, it must be calculated
from Eq. (3.33). If the slope of the effective poten-
tial were zero at the ground state, then Eq. (2.20)
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would givemg®=0(r¢?). However, the slope of
V(¢?) does not vanish at the minimum [see Figs.
13(c) and 13(d)]. Therefore, the scalar mass is
of order unity.

Now we shall compare our result with other well-
known symmetry-breaking schemes such as the
Higgs phenomenon and symmetry breakdown of the
Coleman-Weinberg type. These phenomena are
discussed only in the context of the ordinary per-
turbation expansion, where qll the coupling con-
stants are small. We have shown in Eq. (3.27)
that the effective potential with solution III, Vi,
becomes infinite in the weak-gauge-coupling limit.
We have also argued at the end of Sec. II that Vy;
becomes minus infinity in the weak scalar coupling
limit. Therefore, the ordinary perturbative ef-
fective potential corresponds to V; in the weak-
coupling limit, and the two schemes mentioned
above are to be attributed to symmetry breakdown
which results when the effective potential restric-
ted to solution I develops a minimum. However,
in our scheme symmetry is spontaneously broken
as a result of higher-order quantum corrections
which generates another solution of the effective
potential V;;, and gives a lower ground state than
solution I. It is also interesting to note that the
mass ratio in the Higgs scheme is

my? _
T =0(1) (4.3)

since A =0(g?) and m¢®=0(¢?) in that scheme. In
the Coleman-Weinberg type mechanism the scalar
coupling 1 is of O(g*), and the mass ratio becomes

my, 2 2
o =0(1/g?). (4.9

Therefore, the 1/N expansion provides still an-
other method of dynamical symmetry breaking,
with the mass ratio m,2/mg? of O(g?).

The 1/N expansion is a well-defined, systematic
expansion method with N as its expansion param-
eter, just as in the same way the ordinary pertur-
bation is characterized by a systematic expansion
in the number of loops contained in the Feynman
diagram. Since the 1/N expansion contains much
more of the nonlinear structure of the complete
theory than the ordinary perturbation expansion,
we are able to explore a richer set of possibilities
for symmetry breaking. Of course the well-known
Higgs or Coleman-Weinberg mechanisms can be
recovered in some particular weak-coupling limit
of the 1/N expansion.
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