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Chiral gauge symmetry without anomalies
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The Ward identities derived by use of chiral gauge symmetry, when examined in a perturbation expansion
using Lagrangian field theory, are found to contain the Adler-Bell-Jackiw-Schwinger anomalies. The cause of
this shortcoming is examined, and the result is that when one uses a formulation of field theory in which only
fields already renormalized are introduced these anomalies disappear completely. The specific cases examined
here are massless two-dimensional electrodynamics with a vector coupling and massless four-dimensional
electrodynamics with an axial-vector coupling. In the first example, it is also found that the polarization
tensor disappears in second order, and does not exhibit a pole at zero momentum transfer that would cause
the vector field to generate a mass spontaneously.
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2(( =ky((y54
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i' =T(y,g.
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If the axial-vector and pseudoscalar vertex parts
are defined by
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INTRODUCTION

If spinor electrodynamics with the Lagrangian

f, = ,'F„,F=„„—g(x)[y ~ (8 + ie,A. ) +m, ]g(x), (1)

E„„=8~A,—8„Aq

is used, the equation of motion for the axial-vector
current j' is

S,'(P) r'(P, P')S,'(P ')

d'xd'y e'~'"e '~ ' 0 T x j' 0 y 0

with Sz(P}being the Fourier transform of the
spinor propagator, then the equation of motion of
Eq. (2) gives the Ward identity'

(p -p')„1 '„(p,p') =2™f '(p, p')+ S' (p} 'y,

+y, s„'(P') '.

However, if the left- and right-hand sides of this
equation are examined in perturbation theory, it
is found that the graph of Fig. 1 does not satisfy the
equality. " If, following Adler, ' we define

+Z 80
(2 w)' (2w) y (r+h, )+m '

y r+m ' ~ y ~ (r —k, )+m
-1 Tr ieoy, ) ie,y ) (4)

then the regulated value of this integral, upon im-
posing gauge invariance, satisfies the equation

-(k, +k, )„R,q„=2m, R,q+Sw'k, „k,se„s,p . (5)

According to the Ward identity of E(l. (3), the last
term should not appear; this is the anomaly of the
axial-vector Ward identity. This can be accounted
for by replacing E(l. (2) by

k( y' r ~p ka

B~j„=2gmoj + c~sygE~SEyg.4w
(6) FIG. 1. Anomalous graph in four dimensions.
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Similar problems occur in two dimensions, when
the Lagrangian

L = -,'E„„E~„—g-[y ~ (s + i eA)] g,
with

)0 1~ ~0 i

&1 oj &i 0

is used. ' Here, formally, both the vector current
j &

= gyzg and the axial-vector current j '„=igy&y, P
should be conserved, but this is impossible as

v&v,
5 (10}

where &„„=-c,„and e» =I, unless we also have

B„e„vgv=0.

The anomaly occurs in the divergence of the axial-
vector currente so that

e
~p&p = & pv Fpv ~2g

This ean be used to imply that the vector particle
acquires a mass. To see this, from the equation
of motion

ev+pv = e~p

and Eq. (10), it follows that

~v&n~ &~v =e&~-

Equations (ll) and (13) together imply that

(12)

Higher-order graphs and radiative corrections to
the graph of Fig. 1 can be shown to leave Eq. (6)
unaltered. ' However, the anomaly does prevent
the resulting theory from being both unitary and
renormalizable, 4 placing serious restrictions on
the form of axial-vector couplings.

If one were to examine massless spinor electro-
dynamics with the axial-vector coupling

Lr =i eogypy5)A p ~

then the Lagrangian is symmetric under the chiral
gauge transformation

g(x) - exp[-i e,A(x}y,]g(x},

A„(x)-A„(x)+8„A(x).

The resulting conserved current should be g', but
once again, an anomaly in the divergence of the
axial-vector current occurs,

FIG. 2. Vector propagator to second order.

This can also be seen in perturbation theory. If
the complete vacuum polarization tensor is to be
transverse, it is of the form

ll~„(q) = (&„„q'—q„q „)Il(q') .
In two dimensions, due to the algebra of the y
matrices, the only contribution to II is given by
Fig. 2, and it is equal to

provided that gauge invariance is imposed. The
pole at q2 =0 in II leads to a singularity in the vec-
tor propagator at q' =-e'/w, again indicating that
the vector particle acquires a mass dynamically.
The graph of Fig. 2 is al.so responsible for the per-
turbation calculation of the anomaly in Eq. (11).
The anomalous graph is given in Fig. 3. It is re-
lated to the graph of Fig. 2 as

Yp'Y5 =- &&pv'Yv ~

The source of the anomalies in perturbation
theory is easy to pinpoint. In both four and two
dimensions, the integrals associated with the
graphs of Figs. 1 and 2 are divergent. In order to
extract the finite part of these integrals, a regu-
larization procedure has to be devised that re-
spects both the ordinary gauge symmetry and the
chiral gauge symmetry that are present in the ini-
tial Lagrangian. Such a procedure has not yet
been invented; as a result, the regularized inte-
grals cannot be expected to obey both of the Vizard

identities derived from these two gauge principles.
For example, in the dimensional-regularization

scheme, ' the dimension of the integral being
examined is analytically continued to n dimensions
in order to define its value. However, the tensors
e&„z, and e&„are defined only in four and two di-
mensions, respectively, and there is no unam-
biguous way to extend their definition to n dimen-
sions. As the chiral Ward identities involve these
tensors, the dimensional-regularization scheme
cannot respect chiral gauge symmetry. This is

E=O, (14)

where E„„=~„„E.Consequently, there is a free
particle of mass en' ~2 in the theory. FIG. 3. Anomalous graph in bvo dimensions.
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pursued in Appendix A.
The Pauli-Villars regularization scheme' also

does not respect chiral gauge symmetry, because
of the introduction of a mass into the effective
interaction. Bell and Jackiw, ' in the context of the
0 model, have modified this regularization method
so as to respect chiral gauge symmetry, but only
at the expense of breaking ordinary gauge sym-
metry.

These problems can be overcome in asymptotic
field theory. e ' In this formulation of quantum
field theory, only renormalized fields are intro-
duced; consequently, no ultraviolet divergences
ever appear. The results of the renormalization
program of Lagrangian field theory can be repro-
duced without ever appealing to a subtraction pro-
cedure involving infinite quantities. This is of
particular value in the case of a theory involving
chiral gauge symmetry, for, since no divergent
integrals ever appear, no regularization scheme
that respects this symmetry need be invented.
When massless spinor electrodynamics is examined
using this formalism in two and four dimensions
in the next two sections, it is found that no anoma-
lous corrections to the chiral W'ard identities owing
to perturbation theory have to be made. Conse-
quently, we must conclude that no such anomalies
really occur; the anomalous terms in Eqs. (8) and

(11) are merely reflections of an inadequate regu-
larization scheme.

The essentials of asymptotic field theory will be
briefly sketched here, using the specific example
of a self-interacting scalar field of mass m. Two
sets of fields A (x}and A,„,(x), satisfying the free-
particle equations of motion

panded in terms of A (x),

g (-i)"
n~

d'x, ~ d'x„(u(x, x„}

&&:A;„(x,) A.,„(x„):,
then the reduction technique of Lehmann, Syman-
zik, and Zimmermann" shows that on the mass
shell.

(g (x, ~ ~ x„)= (oi & (A (x, ) A (x„))i0), (23)

where the 4 product is also defined in Ref. 9. By
Eqs. (22) and (23), an integral equation for the S
matrix off the mass shell can be derived in per-
turbation theory,

(u'"'(x, ~ x„)— d'y, ~ d'y„B(x, ~ x„;y, ~ ~ y„)

x(u'"'(y, y )

= A. '"'(x, x„}. (24)

Here, (d'"' is the nth-order approximation to ~,
B is an integral operator defined in Ref. 9, and
~'"' is an expression involving 5-matrix elements
of orders lower than n. The interaction is defined
by postulating first-order values for certain of the
u's; for example, with a quartic coupling, the
vertex function is

(un'(x„x„x„x,}= -i&(x, —x,)&(x, -x,)&(x, -x,}.
With suitable boundary conditions, Eq. (24} admits
only those vertex functions that correspond to re-
normalizable interactions. The problems of gauge
invariance for Abelian and non-Abelian gauge
fields has also been studied. ' '"'"

( —m')A;„.„,(x) =0

and the commutation relations

[A (x),A. (y)]= ia(x-y-),

[A-~(x),A-t(y)1 = —i& (x —y),

(18)

(19)

SPINOR ELECTRODYNAMICS IN TWO DIMENSIONS

In compliance with the formalism of asymptotic
field theory, we introduce a complete set of spinor
and vertex fields, 4;„„„,(x}and A„,.„,„,(x), satis-
fying the equations of motion

A,„,(x) = StA;„(x)A, (20)

that also satisfies the condition

are postulated.
These two sets of fields are related by a unitary

operator 5,

y s+,„.„,(x) =o,

UAq, „,„,(x) =0

and the commutation relations

(@;„(x)0;„(y}]=iS(x -y)

(@.„,(x), 4,„(y)]= iS(x -y)

(25)

s[0) =[0). (21)
and (26)

A. (x) = St(A (x)S), ,

where ( ), is defined as in Ref. 9. If S is ex-

(22)

An interpolating field A(x) is defined by the equa-
tion IA&;.(x),A .(y)] =-i~& D(x -y),

[A„..t(x),A.,t(y)1 =-i~,.D(x -y).
The S matrix can be expanded in terms of the in-
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fields
v

S = d'x d'x d'y d'y d'z d'zyt(st)2 1 Y 1 s 1 S

x(u(x, z, ):a„ (x,) g(z, ):,
where 4;„(x) and A„,„(x)have been denoted by f(x)
and a„(x).

Interpolating fields are defined by the equations

A„(x)-A„(x)+S„A(x),
q (x)- [1 —i ey, A(x)] q (x)

when the in-fields undergo the transformation

a„(x)-a„(x)+S„A(x),

4(x)- 4(x),
commutation rules for the interpolating fields can
be found, by the methods of Ref. 12. They are

and

e(x) = S'(q(x)S),

A„(x)= S'(a„(x)S),.
(27)

[B„A„(x),A„(y)] =-is„D(x -y),
[s„A„(x),~(y)] = eD(x -y)y.+(y),
[s„A„(x},e(y)] = eD(x -y)%(y)y, .

(28)

By requiring that the interpolating fields undergo
the inf initesimal transformation

As in Ref. 14, the Ward identities resulting from
these commutation rules are

(0~(s„A„(&)A„,(x,}'' 'A„„(xv}q'(y,)" q'(z, )).I0) = (& ~ @, "«v, y, " z, )+

=-i +8~ D~($ —x )(x '' ~ A ~ ~ 'x y ~ ~ z )

+ e+D,(( —y~)y,'~'(x, ~ ~ zz), + e+D, ($ —z;)(x, ~ ~ ' zz), y,'~'.

(29)
This can be shown to be equivalent to the Ward identity of Eq. (3}, by the methods of Ref. 15.

A vertex function that is consistent with this Ward identity and unitarity is

~"'(x,y, z) = iey„y, ~-(x -y)~(y -z).
By Eq. (27}, the interpolating field to first order is

A'„"(w) = ie d'-xD„(w -x):g(x)y„y, g(x): .

Equation (24}gives for the second-order propagator

(u"'(x„x,) =,a, (oi(A„"'(x,)A„"'(x,)),i0}.
Explicit evaluation of this matrix element leads to the finite expression

(30)

(0~(Ap"'(x, )A'p" (x,)},~0) =Tr d'y, d'y2Dz(x, y, )Dz(xg -y-, )

[g(x, x,)S ( ,y- )yyS, ( ,yy) „,ye+( ,-x- )xS (y, y, )y„,~-, (y, y, )y„].-

However, it is shown in Appendix B that

»[s ( y)y„&.(y)y-, ] =o,
in the two-dimensional case. Thus, the second-
order propagator disappears completely, leaving
only the free-field propagator. All integrals are
well defined at the outset, no anomaly occurs,
and the vector field remains massless.

Similar considerations, when applied to the
massless Thirring model, ""also show that it too
is free of anomalies.

SPINOR ELECTRODYNAMICS IN FOUR DIMENSIONS

The same considerations used in two dimensions
can be applied in four dimensions, although the
practical complications are considerable. The
quantization procedure is identical, the Ward
identities are the same, and the vertex function is
unaltered. However, in four dimensions, it is the
three-point function in third order that must be
examined. Even in ordinary quantum electrody-
namics, straightforward evaluation of the vertex
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function is very complicated when one is using
asymptotic field theory. "

The proof that the dynamics of asymptotic field
theory is consistent with the Ward identities of
ordinary gauge invariance is given for the case of
spinor electrodynamics by Pugh. ' With a few
modifications presented in this section, this

proof can be used to establish the consistency of
the dynamics of massless spinor electrodynamics
with chiral Ward identities.

First of ail, the Ward identities of Eq. (29) can
be written as restrictions on the co functions by
converting time-ordered products to C' products.
The result is

(u(a ~ xx, ~ ~ x„)=i e+P„K,K,(y, S,(x, -», )[.5(x -x, ) —a(x —x,)])&u(x, ~ ~ A„~ 'x„)
i)

+eK, " K.QD, (x-x, )[a„y,"'e(x," x.)+a,—,4(x, " x„)y,"'].
The notation used is consistent with that of Ref. 10.

If this equation is assumed to be true for / &n, then

a„A„(x). =a„a„(x)+pa„A„'~'(»)

and

[a„a„(x),4'"'(y)] =eD(x -y)y, +" "(y),
[a a (x), %"'(y)]=eD(x —y)%" "(y)y

By the expression for a„A„(x), we have

(&ol(a„A„(»H', @„),lO)) &" & =g f &O[(y, " [a„a„(x),y, ), ~ p„),)0))'"'+ &0[(a„AI,"'(x)y'," . y'"), [0)

Using the commutators of a„a„(x)with 4'"y and @"'(y),

&0((a„A„(x)y,~ ~ ~ y ),(0)&"'

=e+D.(x-x&)[a&,r."'&ol(A, " 0 ).Io&'" "+a~-&ol(A '' 0 ).Io&'" "yl")

—i g a& a& D,(» x, )&OI—(y, ~ i~, .~~ ~ y.)+IO&'"'

+ &0~(a A(&&{x)ytn ~ ~ ~ ytn) ~0}

+g &0~(gj" ~ ~ ([a„a„(x),QI"'],—ea, ~D,(x -x, )y, p,'" "—ea,„D,(x-x, )Q,'" -"y j ~ Q'„"),~0) .

Converting this into an equation with 4' products, we obtain

4'"'(a xx, ~ ~ x„)= ie+p„y, S,(-x, —x;)[D,(x —x,)-D,(x —x,)]@'" "(x, ' ''iijj x )

(x -x )[f! ya~lgl&" ~~(x ' 'x }+a -e~" ~(x ' ' 'x )y~~~]

+&OIC(a A'„"'(x)y ~ ~ y )lO&

+g &0~!&(p,'" {[a„a„{x),Q,'"']-«&~D.( x )rx, @&" -" «~~ D, (x-x&)pf" "r-~) ~ @'„'")~0&.

(32)
The commutation relation for 4'"' to nth order is now

[a„a„(x),@'"'(y)],=eD,(x -y)r, +'"-"(y)

(-i)
e~~ B!E!(E —1)!

d4X ' 'd4+ y ~ & —X D + — (") X '''+~: i" '' ~-X:
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and similar relations are found for 4'"' and A„'"'. The function 0 is defined to be

Q(x, x, x„}=(u(s xx, x ) —eK, ~ ~ ~ K QD, (x-x,.)[5,~y,"'C(x, x }+6,.~4(x, x )y,"']

—i e+P„K,K., [y, S.,(x, -x,..)[6(x —x, ) —6(x —x~)]) &u(x, A, ~ x„).
fj

Upon substituting the expression for [e„a„(x),4'(y)], into Eq. (32), it is found, as in Ref. 10, that

where B is the same operator as in Eq. (24). Pugh
uses this equation' in order to show that 0'"' is
zero. Consequently, if the Ward identity of Eq.
(29) is satisfied to order I for l&n, then it
is satisfied to order n. This demonstrates that
no axial-vector current anomaly occurs when
one uses asymptotic field theory, and, in particu-
lar, the three-point function satisfies the chiral
Ward identity in third order.

It is unfortunate that the equations for cu"'(x„
x„x,) do not lend themselves to explicit evaluation.
However, even in Lagrangian field theory the tri-
angle diagram has never been explicitly worked
out, except by relating divergent quantities to con-
vergent ones by imposing gauge invariance, which
is a suspect procedure, when no attempt is made
to preserve chiral symmetry.

DISCUSSION

The disappearance of anomalies in chiral Ward
identities removes many difficulties in construct-
ing field theories with chiral gauge symmetry.
The only place where anomalies have been in-
volved in making a calculation for a physical pro-
cess is the determination of the decay rate for the
reaction w -2y using current algebra. ' However,
quark-model calculations have accounted for the
decay rates of pseudoscalar mesons without ever
referring to anomalies. " In any case, PCAC
(partial conservation of axial-vector current} has
not been able to account for the decay q- 3m. Any
claim that anomalies are somehow "physical, "
and as such are not to be discarded, is somewhat
suspect. There is simply no clear experimental
necessity for the existence of anomalies.

It now becomes much easier to construct renor-
malizable field theories for the weak interactions.
The constraint that anomalies have to cancel in
order for a theory to be unitary and renormali-
able has been thought to imply~ certain restric-
tions on quark-lepton charge assignments, but
this problem now disappears.

Many calculations involving the Bjorken limit'
have been done on the basis of Eq. (6). The calcu-

lations must now be revised to remove any con-
tributions from the anomalous term. For a dis-
cussion of the charge operator in asymptotic field
theory, Ref. 20 is of particular interest.

Anomalies have been seen to play a role in spon-
taneous mass generation in two-dimensional elec-
trodynamics. This mechanism has led to theo-
rizing on the possibility of spontaneous mass gen-
eration in four dimensions, as, for example, in
Ref. 21. The properties of two-dimensional quan-
tum electrodynamics have also formed the basis
of speculation for quark confinement in four di-
mensions. " With the disappearance of anomalies
in two-dimensional electrodynamics, the physical
basis of these models must be reconsidered.

The anomalies in the chiral Ward identities are
usually related to anomalies in the Ward identities
that are a result of scale invariance, "even though
anomalous dimensions do not lead to problems
with unitarity or renormalizability. It is difficult
to draw such comparisons in the context of asymp-
totic field theory. The dynamic Eq. (24) is scale-
invariant for the case m =0, but for m 4 0 there
is no operator corresponding to the "improved
energy-momentum tensor" 8„,. Explicit calcula-
tions show" that even in asymptotic field theory,
infrared divergences can occur, thus resulting in
the introduction of a mass in the form of an in-
frared cutoff. This, however, appears to be an
inherent difficulty of the measuring process, '4

and not a weakness of asymptotic field theory. The
Callan-Symanzik equations" are supposed to ac-
count for the anomalies in scale invariance, and
these are usually considered to be equivalent to
the Gell-Mann-Low equations. " As the Gell-
Mann-Low equations occur in the formalism of
asymptotic field theory, " it is safe to assume that
anomalous corrections to scale-invariance Ward
identities really do occur.

The power and utility of asymptotic field theory
is demonstrated by its handling of axial-vector
Ward identities. No divergent quantities appear
in this formalism, allowing for freer manipula-
tions of quantities that normally would be con-
sidered dangerous owing to their singular behavior.
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Yet, with no appeal to renormalization theory, all
the standard results of electrodynamics' "and
non-Abelian gauge theories" can be established.

tions
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APPENDIX A

resulting in the expression
00 iF "»

A„„=n d&& dz iz 1-g 2p~p„- P2&~p
0 0

"+ r er„r (e+P)r.
(A1)

To evaluate this integral, the condition P&A„„=O
must be imposed. However, if we look at

The Feynman integral corresponding to the graph
of Fig. 2 is Xexp[iAS(1 -z)P2].

If we naively pass to the limit n=2, the last term
drops out and A. „„satisfies E(ls. (AS) and (A4),
but is not transverse. On the other hand, if the
integration over ~ is first performed using the
equation

r e»r, r (e+P)r.r,
e'(v+ P)'

then as y„y, = - i&»y&, we must have

&pe =-&pX.&v.&~a.

(A2)

(AS)

f
0C)

z x+1
dA. A"e' ' = — F(x +1)

0 a

and the relation xl"(x) =1 (x +1), we obtain

But if the matrices r, in E(l. (A2) are allowed to
contract on each other, we must have

(A4)

There is no nonzero transverse tensor A„„satis-
fying both E(ls. (AS) and (A4). This is a crude way
of stating that an anomaly occurs in two-dimen-
sional spinor electrodynamics. If the integral of
Eq. (Al) is continued to n dimensions, ' we obtain

dn kg(e+P). +(f, (e+P), - ~„,q (q+P)]

(A5)

After combining denominators by use of the inte-
gral

dz z u-1&f g(a+f e)
~ ~

1 " 1
a+ i@ i "F(n)

and inserting the identity

E(l. (A5) becomes
I

A. ~y=n d Q dA, dz ~ ~~pQ —2Q
0

-x(1 - )(~e„.P' —2P„P,)1

x exp(i~I(f +~(1 —x)P ]] ~

The integration over q can be done using the rela-

A „=2in&»I 2-—n
pP 2

"" [ (1 )1"" '2Q
z (P2)2-2.12 x ~ ~

0

This is finite at n =2, and is transverse, but does
not satisfy E(ls. (AS) and (A4). This is an explicit
demonstration of how a regularization procedure
can fail to respect two symmetries that should be
retained in the theory.

Furthermore, one could regularize the theory
by defining the current2' as

and allowing & to approach zero at the end of any
calculation. In examining

M„„{k)=Jdxe "'*(Ol)'{)'„(x)A.(o))lo),

we have to lowest order in &

FIG. 4. Graph giving rise to the bvo-dimensional
anomaly.
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eee„(k&=eex Jdxe ' '*(Dl&'"&»( x-'e&Xegx( —x —,'e&&& eee A(x&&el„(0»10&.

The anomalous contribution to M„, is given by the
diagram of Fig. 4. This involves examining the
integral

A„=» lim Jo(eK)
E-+ oo

@jk'e
d2k tJ

pv k'- g&

Performing the Wick rotation and integrating by
parts yields

Similarly, the terms with p, v can be shown to
vanish.

The second term of Eq. (A7) can be written

d k8 8„9„1nk —zE

V jk e~

(A7)

As 1n(k' —ic) is the Green function in two dimen-
sions, satisfying

ink =2»&'(k),

There are two types of contributions to the first
term; those with p. =v, and those with p. t v. With
Ltj. =v=1, we obtain

A = d'k e
k

1I

+jhow
cos@

0 0

which upon applying Gauss's theorem becomes

KA„=!imam dyX e'"'-e)
g-+ oo EP

Inserting the identity

we see that the contribution of Eq. (A8) to Eq.
(A7) is such that

APV — Ã~
PV ~ (A9)

g(x)- exp[-icy, A(x)] y(x)

and

This is exactly what is required to give the anoma-
ly of Eq. (11).

We thus see that this method of regularization
also gives anomalous contributions to the diver-
gence of the axial-vector current. This is not un-
expected, however, as the current defined by Eq.
(A6) is not invariant under the chiral gauge trans-
formations

e'»' '"'~ =Q (e„(-1)"&,„(eK)cos(2ny)
ft=o

+ 2 i (-1)"J,„„(eK)cos[(2n + 1)Q]],

where e„=2—&„„ leaves us with

A„(x)-A„(x)+s„A(x) .

We have dealt with the "point separation" method
of regularization in two dimensions only. Hagen
has discussed" the use of this method in handling
chiral symmetries in four dimensions, and has
found that several ambiguities arise.

APPENDIX 8

In this appendix, it will be proven that

A„,=-»[S (-S)&„S.(y)r„]

First of all, substitution of

S, (x&=*
' f d'u (er &'&e(&e'&ee(e&'&

into this expression yields
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I9PI ~ -P2 Pl' P.'7 P,+@~ P.~V exp —Pl+ P.

Shifting variables of integration in this finite expression gives

Tr (~(d 9 d'q e "'9(p —q)q(q)p((p q)'—)9(q )[r '' (p q)r„r-qr )'I . .
Evaluating the trace in this equation leads to

J( dp r ""
Id q'(p'9)'-(q)'((9 q)')'(9-')(p, q. + 9 9, —qq.,q. --'*9,.9*) .

(B2)

(B3)

If we now define the integrals

I =
Jl

d'q e(P —q)~(q)«(p —q)'}6(q'),

I, =
Jl

d*q ~(p -q)e(q)e((P -q)'}6(q')q„,

„v= d'q ~ p-q ~q & p-q ' & q'q„q

(B4}

I~ =AP~,

I» =&P„Pv +CP'&I v ~

(B6)

Employing the & functions within the integrands
yields

PpI„. =&O'Pv +CO'P&

=(P'/2)f. ,

I pp
=BP2+2CP2

=0.

then the requirements of Lorentz covariance imply
that the forms of I„and I» are given by

As a result of the equations, we obtain

f„v =alp, pv —~lp'6„P. (B6)

These results can also be obtained by direct inte-
gration. Substitution of Eq. (B6) into Eq. (B3}gives
us

dr. =
(9 p f d'P & "'(( 99„9.)+(*r9,9.)

—2(2')(p„+q p )(„}

—(-'Ip'6„.H

Consequently, we have proven Eq. (Bl).
Actually, the integral I in Eq. (B4) is not well

defined at P' =0. This is a manifestation of the
familiar infrared problem, which also arises in

Lagrangian field theory. To demonstrate the prob-
lems involved, an explicit evaluation of I will now

be made. The requirements that q, &0 and (p —q),
& 0 immediately yield the restrictions Po& 0 and

P,' P,', as can be seen from Fig. 5. Thus we

have

e( }( 6(q. +q, )+6(q. q,)-
q=0

0 {Pl Po}

q=0

x6(p'-2P q)8(-p')9(p). (»)
Employing the & functions to integrate first over
q, and then over qo quickly yields

~(-P') e(p)
2P' (Ba)

PIG. 5. Graph illustrating the integral of Eq. (B7).

If P~ =0, then the integrand in Eq. (BV), instead of
being over the two points A and B in. Fig. 5, now is
over part of the forward light cone(q' = 0. This inte-
gral is not well defined; consequently, an infrared
cutoff at P' = - p,

' must be made in Eq. (B3}.
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