
PHYSICAL REVIEW D VOLUME 14, NUMBER 6 15 SEPTEMBER 1976
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A classical relativistic theory of one-dimensional extended objects interacting through a massless scalar field,
of which they are in turn the source, is constructed. In the no-coupling limit, the string model is recovered. In
another limit, the system that describes nonrelativistic vortex motion in a superfluid is obtained. The diverging
self-interaction of these objects is shown to be regularizable through a renormalization of the slope of the

Regge trajectories. Motion in an external field is studied in some detail and leads to a system of coupled
nonlinear equations that generalizes the sine-Gordon system. Solitary wave solutions to these equations are
obtained and a natural geometric interpretation to the associated linear equations of the inverse scattering
method is given.

I. INTRODUCTION

In a previous paper by one of us in collaboration
with Rasetti, ' a canonical formalism was con-
structed that described the motion of vortices in
an incompressible, inviscid fluid, of which super-
fluid He II is the best example. Among the prob-
lems that were opened by this work was the ques-
tion of whether there exists a Lorentz-invariant
theory that would generalize this nonrelativistic
formalism in some sense. Also, in light of the
work of Nielsen and Olesen' relating the string
model with the vortex lines in a type-II supercon-
ductor, one would like to know what the relation
is, it'any, between the Nambu string' and vortices in
a superfluid, apart from the mere fact that they
are both one-dimensional extended objects.

We present here a classical Lagrangian that im-
plements a unified theory of strings and (super-
fluid) vortices in the following sense: One-dimen-
sional objects —that may indifferently be called
strings or vortices —interact through a massless
scalar field of which they are in turn the source.
If the coupling constant vanishes, the action inte-
gral is just that of the Nambu string. On the other
hand, if the slope of the Regge trajectory is infi-
nite, that is, if the coefficient in front of the Nam-
bu action vanishes, taking the special case of the
one-dimensional object moving in a certain pre-
scribed external field reduces the Lagrangian to
the one of Ref. 1.

It turns out that our Lagrangian is the same as
the one introduced some time ago by Kalb and
Ramond4 in their construction of a theory of in-
teracting strings by analogy with the action-at-a-
distance electrodynamics of Wheeler and Feyn-
man. ' Thus, another way of expressing our result
is to say that the theory of Kalb and Ramond ad-
mits, as a particular case, the motion of a vortex
in a superfluid.

The self-energy of an infinitely thin (classical)
superfluid vortex is divergent. This is also true
of our strings. However, the divergence is loga-
rithmic and it can be taken care of by a renormal-
ization of the slope of the Regge trajectories.

The equations of motion will be studied in some
detail for the case of a uniform, static external
field, and some pleasant surprises will emerge.
In fact, the problem of the motion of the string
is just the problem of finding the surface it de-
scribes in a Minkowski space-time. Taking the
projection of this surface on a three-dimensional
(Euclidean) hypersurface of constant time one re-
covers the ancient problem of embedding a surface
in space, and our equation of motion is just a re-
striction on the admissible geometries for this
surface. Under certain special initial conditions,
the equations of Gauss and Codazzi, which say
when a surface with a given geometry may be em-
bedded in a three-dimensional Euclidean space,
reduce to the sine-Gordon equation. This has
been noticed before. ' What apparently has not been
realized is that the equations of Gauss andWein-
garten —which actually build the surface —are
first-order linear differential equations for the
normal and tangent vectors that can be written in
terms of a rotation operator, and that expressing
this operator in the spin- —,

' representation, one re-
covers exactly the equations used by Ablowitz et
al. ' to solve the sine-Gordon equation. Thus we
get a natural answer to the question of why a par-
ticular linear problem is of help in solving a cer-
tain nonlinear equation. For example, we might
mention here that different eigenvalues of the lin-
ear problem correspond to projections of our sur-
face along different three-dimensional spaces
which are related to one another by a Lorentz
transformation.

For general initial conditions, we are led to a
set of two coupled nonlinear equations with an as-
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sociated linear problem. We have not yet solved
this problem in general. Static solutions can easily
be found, however. These equations may be re-
garded as the dynamical equations of a theory of
two coupled scalar fields in one space and one
time dimensions. In this case a Lagrangian may
be written, and some of the static solutions repre-
sent solitons in their rest frame.

Starting from a definite physical picture, name-
ly, that of strings interacting through a scalar
field in four-dimensional Minkowski space-time,
we have been led by the mathematics of the prob-
lem to a quite different physical situation, namely,
that of two coupled scalar fields in a two-dimen-
sional Minkowski space-time. It would be very
gratifying indeed if one could translate these for-
mal analogies into a physical statement. We can
only speculate at this stage, however. A serious
obstacle to such a unified framework of quite dif-
ferent objects is that although the equations are
the same, and thus locally a solution to one prob-
lem provides a solution to the other one, this is
not so globally, as the boundary conditions are
quite different. For example, closed strings are
described by dynamical variables periodic in the
space coordinate. This is not so in a field theory,
the spatial variable being allowed to vary over the
whole range of real numbers. Perhaps the way to
look at this is to take infinite strings, but we have
not yet done actual computations along this line.
Another possibility is to interchange the role of
the spatia1. and temporal coordinates, thus relating,
one hopes, motions of a closed string with the so-
called "breather" modes, which are periodic in
time.

This work is organized as follows: In Sec. II
we write the Lagrangian, the equations of motion,
and show how the self-energy of a closed string
may be regularized by a renormalization proce-
dure. The canonical formalism for the theory is
worked out in the Appendix. In Sec. III we study
the motion of a closed string in a uniform external
field and discuss the implications of the geometri-
cal way of attacking the problem. Section IV con-
tains some conclusions and summarizes the loose
ends of this work. Quantum problems will not be
discussed.

II. THE MODEL

In Ref. 1, a vortex was described by a closed
curve I' in R', parametrized by three functions
x'(o). This vortex moves in a fluid described by a
divergenceless velocity field v(y, f} The dynam. i-
cal ingredient is the statement that, at each point,
the vortex velocity is given by the velocity of the

(2.1)

The dynamics of the system remains unchanged,
however, if the parameter cr is changed in an ar-
bitrary way, as it is just a coordinate along the
vortex. In general, then, the parametrization is
an arbitrary function of time, o =o(t), and Eq.
(2.1) acquires the more general form

Bx ] 4(T x=V
at dt eo ' (2.2)

where v' is understood to be evaluated at y =x.
Since do/dt is arbitrary, this equation says that

the vectors Bx/Bo and Bx/Bt-v are parallel. In
other words,

„,ad a2,
)8(x

(2.3)

To consider a vortex line in a fluid means that
the vor ticity w vanishes everywhere except along
that line, to which it is tangent. That is,

w =- curlv

= k—5(y —x(o)},Bo'
(2.4)

where k is a constant. Moreover, since divv =0,
there exists a vector potential A such that

v = curlA. (2 5)

Substituting into (2.4) and using the fact that A is
not completely determined so that divA =0 may be
imposed, we get Poisson's equation for A, which
has the well-known solution

k 1 ax
A(y) =— - - —do.

4~ & ly-x(o)l so (2.6)

This expression, together with (2.5}, gives the
velocity v as a functional of the dynamical vari-
ables x(o). The Lagrangian that, upon variation
of the x(o), gives the equation of motion (2.3) is"

(2.7)

where p is the density of the fluid and v is under-
stood to be expressed in terms of x(o).

We now want to generalize the Lagrangian (2.7)
in such a way that we will have a Lorentz-invariant
theory. The only requirements are that the action
integral be a Lorentz scalar and that it must have
(2.7) as a special case. This special case is a
theory in which the dynamical variables are the
x'(o). It is an obvious thing to do, then, to con-
sider a theory with variables x"(o) (p, =0, 1,2, 3).
The addition of one more variable reflects the fact
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Bx~ Bx
Bo.

(2.8)

where A„, is an antisymmetric tensor. We have
changed the notation for the time variable from t
to ~ to emphasize the fact that it is no longer the
Newtonian time but an arbitrary parameter. It is
natural now to take this term as the coupling be-
tween F" and x", and we must find how F" ean be
related to A„,. This is done as follows: In the
nonrelativistic case, x =7. =t and the field A„„
evaluated at the vortex must satisfy

that we shall have one more invariance, that which
is under time reparametrizations.

In the nonrelativistic theory described by the
Lagrangian (2.7) there is a field v(y) whose source
is the vortex x(o) that completely determines it
through (2.5) and (2.6). The field v(y) does not
have any life of its own, so to speak, just as the
Newtonian gravitational field is completely de-
termined by its source. This is, of course, just
another way of saying that in these nonrelativistic
theories interactions propagate instantaneously.
We introduce, then, to replace v', a vector field-
F" with a Lagrangian density proportional to

How is this field coupled to x"(o)? The
clue to answering this question lies in the fact that
the first term in the right-hand side of the La-
grangian (2.7) is not translation invariant and must
be replaced by a term that does have this invari-
ance, i.e. ,

nate transforma, tions on the surface as well as un-
der the gauge transformation

pv Apv+Bp~v 8vAp ' (2.14)

S =-N v'-gdo d~

Bx" Bx'.i fx„""~.d. --. x~ x(i.ii),80' 87

with

This is true owing to the fact that vortices are
closed or, eventually, infinitely long.

We have then a relativistic system with vari-
ables x"(o, ~) and A„,(y). If the coupling constant
vanishes, this is a free massless scalar field. The
apparent tensor nature of the A„, does not mean that
it carries spin. This is most directly seen using
the canonical formalism. We do this in the Appen-
dix. What we do not know is how the vortex moves
when it is decoupled from the field. We need an
extra term in the action. The obvious candidate is
the Nambu action for a relativistic string. In fact,
whether we call our one-dimensional objects
strings or vortices makes no difference, as they
are abstractions having little resemblance to what
we intuitively understand by either string or vor-
tex. %e shall use both names indistinctively. Al-
so, as we shall see below, it is the Nambu action
that must be added if we want to be able to regular-
ize the self-interaction of a vortex. We have then

A kAii 1y= x ~i Jiix

This is most easily satisfied just by taking

Aii(y) = & &i 3' ~.

(2 9)

(2.10)

Bx BXU Bx BxIy Bx Bxtf

(2.16)

Qn the other hand, still in this nonrelativistic
case,

,Ui 6 $)k 8 k (2.11)

E"—= —'e 8 A2 p vX'

We have been led then to the action

(2.12)

The easiest way of generalizing this to four di-
mensions is to define

It is clear that the action (2.15) has the same in-
variances as the preliminary action (2.13). The
same expression has been obtained by Kalb and
Ramond' through a different line of reasoning.

To summarize, then, we have an action that,
for f=0, describes a system of noninteracting
strings and fields. For Ã=0, that is, for Regge
trajectories of infinite slope, we get the action
(2.13). In the particular Lorentz frame x =7. and
for

A;0 =A;, k~if ~i jk3 (2.17)

F'd 4y, (2.13)

with f a coupling constant and with Ei' given in
terms of A„„=-A,

&
by (2.12). The first integral

is taken over the surface described by the vortex
in space-time and the field A.„,in the integrand is
evaluated at this world surface. This action is a
Lorentz scalar and is also invariant under coordi-

we recover the action (2.7) for nonrelativistic vor-
tex motion in a superfluid, apart from an unim-
portant additive constant.

We now turn to the equations of motion. The
variables x "(o, v. ) describe a two-dimensional sur-
face. Every such surface is eonformally flat, and
it is possible to choose coordinates in which this
is apparent ("orthonormal gauge"). Since the met-
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ric of the surface is where

ds = dv +2 dvd1
80 80 Bcr BT

G...(x) =—5(x px„)e(x,)
1

(2.24)

Bx 8xg+ 7
87 BT

(2.18)
is the retarded Green's function. From here one
has

the conditions that must be satisfied are

Bx" Bx„Bx"Bx„
Bcr Bcr BT BT

Bx 8xtf
80' BT

(2.19) with

x «"" P (x- y), dxg& dxp,

8 xtf Bxy xP BxP

8cr 87 87 Bcr

(2.25)

(2.26)

Also, considering the gauge freedom (2.14) for the
field A„„ it is possible to impose the "Lorentz
condition"

8 A"'=0 (2.20)

These remarks are made more precise in the con-
text of the canonical formalism in the Appendix.
With the gauge choices (2.19) and (2.20), the equa-
tions of motion obtained by minimizing the action
(2.15) are

)ca«" ««' ««" «««)

It is an illuminating exercise to show that F" is
(locally) the gradient of a scalar field. As we said
before, although we are working with an antisym-
metric tensor A„„, there is only one dynamical de-
gree of freedom per space point. The rest is
gauge. Explicitly,

(2.27)

with

x 84)(x —y)dv dv, (2.21)
x«""P(x-y)pdx, ~dx„n, dxp

.

B x B x f ), Bxp Bxg
BT Bv BT Bv

(2.22)

Bx" Bx' Bx' Bx"
c

der d7 ]80' BT BCr BT
(2.23)

We consider first Eq. (2.19), that gives the field
produced by a moving string. It is just a wave
equation with an external source and has the solu-
tion

(2.28)

If the vortex is static, (t) is the velocity potential
for the fluid or, if instead of a vortex we consider
a static current loop, the scalar potential. for the
magnetic field. A short calculation shows that we
recover in any case the classical result that (I) is
the solid angle subtended by the loop at the point
of observation.

Consider now the interaction term of the action.
Substitution into it of (2.23) gives the self-interac-
tion of a vortex,

Y=—— d0 der'dT d7'8 xo cr, 7 —xo 0', 7' 5 x 0, 7 —x 0', 7'

Bx" Bx" Bx" Bx' Bx„Bx, Bx„Bx,
Bcr 87 87 80' BQ BT 87 80'

(2.29)

The integrand in this expression diverges when 0-cr', T-7'. To study this divergence, consider the finite
expression I', obtained from Y' by replacing 5([x(o, v) —x(v', ~')]') by 5([x(v, ~) —x(v', ~')]'+«'). Clearly,
lim, ,oY, = Y..

Introducing '.he new variables

Acr =cr —cr q hT =—7 —T', (2.30)

and developing the integrand of (2.29) in a power series in bv and 4r we obtain



1528 FERNANDO LUND AND TULLIO REGGE 14

8 8xp Bx Bx Bg" Bxp
Y, =— d(BEG)d(b, T)do dT 5 " (nn)'+2 ' nann+ "(nn)'+n')

2m 80 Bg 80' 87 BT Bj

Bxu Bxu B~' B~ Bxu

+higher-order terms.

The integration over A~ is readily carried out with the aid of the 5 function, giving

f2 8~~8~
Y, =— d(ho)do d'r(g) g'(b o)' +e' " +higher-order terms,

4w 87 BT

(2.31)

(2.32)

where g is given by (2.16). For small e we have

F ~ ——ln — do d~v'-gf Eo
&~~0 2g

+finite terms, (2.33)

wl th &p be ing a cutof f in hv.
We see that the divergent term has exactly the

same form as the Nambu action, and we may ab-
sorb it with a renormalization of the constant hT

appearing in (2.15),

ds' = cos'8do' + sin'8''. (3.'7)

Notice that as x is fixed by the choice (3.1), all
we need to know is x(v, ~), and is enough to con-
sider the surface S obtained by projecting the
world surface of the string on the x'=~ hyper-
plane.

In what follows, we shall use the notation"

which may be written, according to (3.4) and (3.5),
as

II =In+ In(~) . — (2.34) (3.8)

z'=z z' =0 (3 1)

with I' a constant. In this case, the p, =0 of Eqs.
(2.22) is identically satisfied. The others are

III. MOTION OF A STRING IN A UNIFORM, STATIC,
EXTERNAL FIELD

In this section we consider the equation of mo-
tion (2.22) for the x"(e, ~), subject to the con-
straints (2.19), when the field F is a given static
and uniform external quantity. We study the mo-
tion in a I.orentz frame in which

and we shall call 0, D', and D" the coefficients
of the second fundamental form of the surface (al-
so called the extrinsic curvature).

At a given point on S, sx/so and sx/s~ are vec-
tors tangent to the 7- and cr-coordinate lines, re-
spectively. They span the plane tangent to S at
that point and their vector product is the vector
normal to S there. The angle 8 in (3.V) is —,

' the
angle between the two tangent vectors. " The length
of the normal vector is (EG-F')' '.

One possible definition of the coefficients of the
second fundamental form is

where

fF
2y t

(3.2)

(3.3)

2BxD= 2 X3,Bg

28 xO' = .X3,8g87

(3.9)

(3.10)

and the constraints (2.19) become

Bx BX—~ —=0
80' BT

(3.4)

28 xD" =
2 X3,87

where we have introduced the unit normal

(3.11)

+ — =1 (3.5) X, =(EG F) —x-—.2 „&g2 BX BX

80' BT
(3.12)

The metric of the world surface is given by (2.18).
Its projection on three-dimensional space has the
metric

Analogously, we shall use the unit tangents

1 Bx
use ' (3.13)

ds = —d +2 ——da'd7 + dT

(3.6)
Bx

ace~~'

(3.14)
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Taking the dot product of (3.2} with X, we obtain

D" -D =2 (Ec-F')"' (3.iS)

It is a classical result of surface theory (see
Ref. 10) that, given coordinates u„n„a metric
tensor

B - 1Bvo
X2

Bg v'E Bo

1 BvG D'
vZ Bo WZ

D 1/

X2

and a second fundamental form

Dl

D' D"

the equations (of Gauss and Weingarten)

BX;' =I' &aXi+I ~ax3~
BQg

BX3 =-g Iq)X;
BMg

(3.16)

(3.17)

(3.18a)

(3.18b}

(3.22}

and the integrability conditions (3.19) and (3.20),
which are nothing more than the statement that
crossed derivatives of (3.21) and (3.22) must coin-
cide, become

BD BD' DBE 1 BE 1 BG

BT Bo' 2E 8'T 2E 80' 2G Bo'

D"= 0, (3.23)
2Q Sg

have a unique solution for X„X„andX„pro-
vided the following compatibility conditions hold:

BD" BD' D BE 1 BG 1 BE
So Bv' 2E Bo 2G Sv' 2E BT

B~12 B~ll l+r „I.„-r„S.„=o,
BQ& BQ2

(3.19a) D" = 0, (3.24)
1 BG

BL22 B12j.
BQ& B+

+r „L„—I' „L„-0

DD&i (Dt)2

EG —F

(3.19b)

(3.20)

(D')' 1 B 1 BWG B 1 BVZ

EG v'Bc Bcr ~B Bo Br ~C Br

(3.25)

Substitution of (3.7) into (3.15) gives

1 BWE

vo Br

»VX D

7a B~ 7Z

Df

Wc

DP

VG

(3.21)

Here, K is the (intrinsic) scalar curvature of the
surface and I'„are the Christoffel symbols.
Equations (3.19) are called the Codazzi-Mainardi
equations and (3.20) is the Gauss equation.

Moreover, these X, X2 X3 so determined unique-
ly fix a surface x(o, r), whose metric tensor is
g;;, whose second fundamental form is L,;,, and has X,
and X2 as unit tangents and X, as unit normal.

We now go back to the equations of motion (3.2).
It is easy to see that, as a co~sequence of Eq.
(3.18a}, and of the form (3.7) of the metric tensor,
the three equations (3.2) are equivalent to the one
equation (3.15). Our problem is then to find those
surfaces with metric tensor of the form (3.7) and
second fundamental form that satisfies (3.15}.

Using (3.16) and (3.1V), Eqs. (3.18) may be writ-
ten as follows (F =0):

D" —D=2c sin8 cos8,

and deflIllQg

B= 2(D" +D),—

(3.26)

(3.27)

the integrability conditions (3.23)-(3.25) become,
using (3.V) and (3.26),

SB BD' 88 B 88 D'
Bi Bo ST' sin8 cos8 So sin8 cos8

BB BD' 88 O' 88 8
Bo Bv Sv sin8 cos8 Bo sin8 cos8

8'8 8 8B' —(D')' = c' sin'8 cos'8+ sin8 cos8
87 80

(3.28)

(3.29)

(3.30)

The key remark now is, very simply, that (3.21)
and (3.22) are three-dimensional rotations of
(X„X„X,}with rotation vectors

1 BYE
a ~c t ~E t ~c

and

D~ D' 1 BVG

va'MZ'vE Bo

respectively. %e may then write these operations
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in the spin--,' representation:

(3.31)

8 (g- ) (3.32)

828 828
~+ 2= c sine cos8

y87 80' (3.33)

the familiar sine-Gordon equation. Conditions
(3.28) and (3.29) are, of course, trivially satis-
fied. Equations (3.31) and (3.32) take the form

.8$ 8T
2i ——-~

8Q'

ic sin8

--i c sine
(3.34)

where g is a two-component spinor and 0= (0„0„0,)
are the Pauli matrices.

Let us consider first the special case B=D'=0.
In this case, the Gaussian curvature is constant
and Eq. (3.30) simplifies to

8@]
(3.41)

where Q = 28. The sine-Gordon equation in these
coordinates is

82
Q = sing. (3.42)

8x 8'ds = (dv2 d&2)
8O' 80' (3.43)

This expression is manifestly conformally flat,
and it remains so under Lorentz transformations
on the two-dimensional o-v' parameter space; say

cr' = cosha cr+ sinha 7',

z' = sinha o + cosha v .
(3.44)

Leave now this line of reasoning and go back for
a moment to the metric (2.18), which may be
written, using the constraints (2.19), as

ed I err
2g

8v

c cos8

c cose

n =—2 c(T+ 0')
q

In light-cone coordinates

(3.35)

On the other hand, the equation of motion (2.22} is
also invariant under these transformations. If,
instead of taking the projection of the world surface
on the hypersurface x'= 7, we take it on the hyper-
surface x'= 7', it is still possible to choose F'= F
and F'=0. The p=0 of Eqs. (2.22) will still be
identically satisfied, and Eq. (3.2) will keep its
form. Writing out the constraints (2.19) with this
new coordinate condition for x', we get

P= pc( T+ 0}&

they are

(3.36) 8x 8x—~—= sinha cosha,
87 8g

+ —= cosh'a+ sinh'a,

(3.45)

. 8$
22.———

8Q

88
e80

88
8

8Q

(3.3V)

and, in the primed coordinates,

8x 8x
87 l 8o1 (3.46)

Bg

8P
2i—=8P,, 8

I
e-"

(3.38}

y
—eke~8/2y

one gets

(3.39)

The terms in 88//8P may be eliminated from (3.37)
by a rotation in spinor space. Defining

In terms of these new coordinates then, the geo-
metrical problem is unchanged. We are still look-
ing for the geometry of a two-dimensional surface
embedded in three-dimensional space, which is the
projection of a world surface that is embedded in
four-dimensional space-time. What has changed
is the three-space where we are doing the projec-
tion.

The transformation (3.44) induces the following
transformation on the light- cone coordinates:

( 0 e'+)
2i

8P (ere 0 )
(3.40)

n'= e'n, p'= e 'p. (3.4V)

This leaves Eq. (3.42) unchanged, and (3.40) and
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8$
. 8$ Bot'

22 B~P 8$
k

BQ

k-' -"e

(3.41) take the form

(3.48)

(3.49)

time dimension with a highly nonlinear self-inter-
action. Our geometrical framework provides for
an immediate generalization of this theory. Name-
ly, one can ask what results if one considers sur-
faces whose extrinsic curvature in the three-di-
mensional space is not restricted by B=D' =0.
In this case, the (nonlinear) embeddability condi-
tions are (3.28)-(3.30) and the (linear) equations
for the tangent and normal vectors are (3.31) and
(3.32). Equations (3.28) and (3.29) may be written
as follows:

where k= e '. These are the equations employed by
Ablowitz et al. ' to solve the sine-Gordon equation
(3.42) by the inverse scattering method. (The cor-
respondence with that paper's notation is k = 2g,
p, = v, +iv„and g, = v, —iu, .) They have also been
used by Orfanidis" to study the relation between
the Thirring and sine-Gordon models at the classi-
cal level.

It is interesting to see that there is a natural
geometric interpretation for the linear eigenvalue
problem which was used in Ref. 7 to solve the sine-
Gordon equation: This equation expresses the
"embeddability condition" that a surface with
metric givenby E=cos'Hy F Op 6 sin'8, and ex-
trinsic curvature D~ =-D=csin&cos8, D'=0, must
satisfy in order to be embeddable in a three-di-
mensional Euclidean space. The linear equations
(3.48) and (3.49) give the actual construction of
the tangent and normal vectors to that surface,
thus actually constructing it. Different values of
the parameter k give different surfaces. These
surfaces are related, however, all of them being
projections of one and the same surface embedded
in a four-dimensional space-time along different
three-dimensional spaces. These spaces are, in
turn, transformed into each other by Lorentz
transformations.

The sine-Gordon equation has the interesting
feature of admitting solitary waves among its solu-
tions. It can also be considered as the evolution
equation for a scalar field in one space and one

8 8—(tane 8) =—(tang D'), (3.50}

8 8—(coteB) = (c—ot8D') .
80 BT (3.51)

From (3.50) it follows that there exist X such that

BA, , BXI3= cot8 —,D'= cot8 —.
80 BT

(3.52)

Substitution into (3.51) yields an equation for X:

cot'8 —=—cot'8 —. (3.53)

The other embeddability condition, Eq. (3.30) is,
according to (3.52),

828 828 cos8 &A.
' 8A. '

+c slQHcosH + . 3
———,=0.

BT 80 sin 8 BT 80'

(3.54)

The last two equations can now be interpreted
as the dynamical equations for two coupled scalar
fields. They can be derived from the Lagrangian

+ —sln28

cot28 (3.55)

which is a Lorentz scalar in 0-T space-time. The
linear equations (3.31) and (3.32) are now

2i—
80

cos8 BX —+ sc sln8
sin 8 BT sin8 80'

cos8 BA. i BA,—+ . —-ic slnHsin'8 BT sin8 Bo

(3.56)

2i—
BT

cos8 BX i BX—+ c cos8+sin'8 Bo sin8 BT

cos8 BX BX—+ Q cos8-
sin 8 80' sin8 BT

(3.5'I)
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—cot'8 —= 0 (3.56)

9 8 cos8 8A, '
—e'sm8 cos8+ . , —= 0.sin'8 80 (3.59)

It is easy to solve these equations using elliptic
functions to obtain periodic waves. A particular
solution that vanishes at infinity is given by

8 = arcsin((l —A')'~' sin (2 tan ' exp[a'(I -&')' ') ))

~X—=A tan'8

(3.60)

(3.61)

where A is a constant. The form of 8 is sketched
in Fig. 1 and that of X in Fig. 2. Performing a
Lorentz transformation we get a localized wave
traveling at a constant velocity and remaining
localized for all time. When A. 0 the well-known
sine-Gordon soliton is recovered.

IV. CONCLUDING REMARKS

We have constructed a classical theory of one-
dimensional extended objects interacting through
a scalar field. Special cases are the Nambu string
and vortices in a superfluid. The divergence of
the self-energy of a vortex may be regularized by
a renormalization of the slope of the Regge tra-
jectories. The action integral describing our sys-
tem is the same as the one found previously by
Kalb and Ramond' in a somewhat different context.

It is easy to check directly by cross-differentiation
that (3.53) and (3.54) are indeed the integrability
conditions for (3.56) and (3.57).

We now look for static (v'-independent) solutions
to the field equations; They are, in this case,

At this stage, our contributions are then the rela-
tion of this action with the one describing nonrela-
tivistic vortex motion in a superfluid and the regu-
larization of the self-energy.

The study of the motion of a closed string in an
external field led us to a geometrical problem
throwing some light on the sine-Gordon equation:
We found a natural geometric interpretation to the
linear eigenvalue problem used to solve this equa-
tion by the inverse scattering method. This sys-
tem was obtained under certain simplifying as-
sumptions on the motion of the string. In the gen-
eral case we were led to a set of two coupled non-
linear equations. This relativistic system, as
does the sine-Gordon equations, admits solitary
wave solutions, whose explicit form we have de-
termined. The Lagrangian for this system was
also found.

At this point, several problems are left open.
Firstly, the system of nonlinear coupled equations
(3.53}and (3.54) can be studied as a purely mathe-
matical problem. Can the inverse scattering prob-
lem for the associated linear system (3.56) and
(3.57}be solved'P It is unfortunate that, at least
at first sight, this set of equations does not seem
to fit among the general class considered by
Ablowitz et al."in their systematic search for
solutions to nonlinear equations. One should be
able at least to determine whether a Backlund
transformation exists and whether there is an in-
finite set of conservation laws" or not. The fact
that we have a linear problem naturally associated
with the nonlinear equations should be of help in
resolving these points.

Secondly, one should find out whether the La-
grangian (3.55) describes a system with any rela-
tion to the physics of elementary particles. The
first question to be settled in this context is
whether the theory described by this Lagrangian

)i/2

FIG. 1. The solid line is the solitary wave given by
(3.60). In the limitA 0 it goes over to the sine-Gor-
don soliton (dashed line). Notice that if 0 is a solution,
so is 7t' —8. Both cases are drawn here.

FIG. 2. Shape of field A, given by |,'3.61) when 8 is a
solitary wave.
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is renormalizable.
Thirdly, as we pointed out in the Introduction,

we have started from one physical system, namely
strings in four dimensions, and through the mathe-
matics of the problem we have arrived at quite a
different one, coupled fields in two dimensions.
It would b*e very interesting to find whether there
is more than just formalism in this relation.

Finally, we have not tried to quantize either the
system described by the Lagrangian (2.15) or the
one described by the Lagrangian (3.55).

Note added in proof We h. ave been informed by
g. abulia that the Lagrangian (3.55) has also been
obtained by K. Pohlmeyer, Commun. Math. Phys.
46, 207 (1976).

+ 9„&„B„A

5S
S ee(o): ee( ) e (A3}

and it is simple to see that they satisfy the (pri-
mary) first-class constraints

e, —:(e'„—fA )(e'„fA " )—

This is reflected by the presence of constraints
among the canonical variables. We shall follow
the general treatment of Dirac" for such systems.
First we consider the variables x~(o). The canon-
ical momenta are (the overdot means 7 derivative)
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APPENDIX

Here we shall consider the canonical formalism
for the system described by the action (in units
such that N= 1)

ex exS= — ~-gdo dT'+ A. „do'dv

& =('-fA- ee) e.
=0. (A5}

This shows that this system is obtained from the
free string by the "minimal coupling" 6'~ -6'„
—fA, „8x'/8o. In fact, with this subsitution the
constraints (A4) and (A5) are those of the free
string. It is also simple to see that there are no
more constraints: g, and P, form a closed algebra
under Poisson-bracket multiplication. Since the
Lagrangian is homogeneous of the first degree in
the velocity x", the quantity (Z —6'~%") vanishes
and the Hamiltonian is given by

I"~I'"d'y . (Al) H= do A, ,+ (A6}

There are two gauge freedoms: one is the invari-
ance under reparametrizations of the surface
x~(o, 7') and the other is the invariance under

where 1, and X, are arbitrary functions, reflecting
the reparametrization invariance of the system.
The equations of motion are then

PP AP (A7)

(AS)

The orthonormal gauge is obtained with X, = —,',
A.,=O. In fact, in this case

(A9)

and (AS) reduces to (2.22) and (A4} and (A5) to
(2.19).

Now we take the field A~„= -A„~. The canonical
momenta are
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5S

5A-.,.
—,'(e'x" + e~x" + e x~')

to the additional (secondary) constraints

(A14)

(A10)

We immediately have three primary constraints,

rr0~=0. (All)

The Hamiltonian

(-'lI'&.
&,.—&)d'X

is given by (Latin indices take the values 1,2, 3)

H= d y[II, ,II"+ '(E )'—

(A12)

This Hamiltonian is not uniquely defined, as an
arbitrary linear combination of the constraints may
be added to it to obtain

Since II",, =—0, these are two independent con-
straints only. The preservation in time of these
constraints leads to no further ones. It is'also
easily seen that both (A11) and (A14) are first
class. That is, they generate gauge transforma-
tions. It is easy to see now that, as asserted in
the text, A„, corresponds to a scalar field. In
fact, there are twelve canonical variables: six
coordinates and six conjugate momenta. These
variables must satisfy five constraints and five
gauge-fixing conditions, leaving two independent
variables, one coordinate and its conjugate mo-
mentum. That is, one degree of freedom per space
point.

The extended Hamiltonian H~, in the notation of
Dirac, "is

Hz= d3y II-.II'~+ 4J 2

H'=H+ u.II 'd y.j (A13)
+ d'y v,.rIO'+ ge,.rI", , (A15)

The constraints (All) must be preserved in
time. Thus, their time derivative, given by the
Poisson bracket with H', must vanish. This leads

where v,. are three arbitrary functions and u,. are
three functions subject to one condition, for ex-
ample w, ,- = 0. The gauge-independent part of
(A15) is positive-definite, as it should be.
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v d
1 6

x'(cr)
k

4m'

u
5x~ (cr)

d3y gpss Q) Plf 8

8 1 Bx
ex' Iy —xl eo.

8 1
"ea Iy-XI

Since

y —x &p y —x

one gets

1 5 2 3 k Sx pl] 8 l,lp 8
2 6x'(cr) 47' acr Bx~ ax'

()
J Iy —&IOI I

Using now the identity

Pl i ~ Pl@ ~ ~Pfk 8 ~Pil
ax~ ax' ax' Bx"

leads to the second term in the equation of motion (2.3):
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