
PHYSICAL REVIE% D VOLUME 14, NUMBER 6 15 SEPTEMBER 1976

Anisotropic parametrized post-Newtonian gravitational metric field*

K. Nordtvedt, Jr.
Montana State University, Bozeman, Montana 59715

{Received 17 February 1976)

The anisotropic generalization of the parametrized post-Newtonian (PPN) gravitational metric field is made

for the case of theories with energy and momentum conservation laws. Such an anisotropic metric field will

generally result in two-tensor or bimetric theories of gravity in an anisotropic universe. New anisotropic 3 X 3

spatial PPN matrices are introduced into the general metric expansion. Earth gravimeter measurements

strongly restrict some anisotropies, while anisotropic inertial and gravitational mass for celestial bodies result

from other combinations of the PPN matrices.

I. INTRODUCTION

During the era of the classical tests of general
relativity (light deflection, perihelion precession
of Mercury, clock gravitational frequency shift)
Eddington' and Robertson' used a general para-
metrized expansion for the exterior gravitational
metric field g„„ofa spherically symmetric mass
source;

goo = 1 —2o. (GM/c'x) + 2P (GM/c'x)'+ ~ ~ (la)

g„=—[1+2y(GM/c'x)] 5,~+ ~ ~, (1b)

go. =O (1c)

(isotropic spatial coordinates are used; a, b

=x, y, z). Such a metric-field expansion facili-
tated determination of the dependence of each
experimental prediction on the various aspects
of the metric field, and comparison of different
gravitational theories by means of experiment
could elegantly be stated in terms of the metric-
field parameters n, P, y, . . . . n= 1 was required
for recovery of Newtonian gravity as a first ap-
proximation of relativistic gravity. Clock fre-
quency-shift results were then uniquely predicted
for all metric theories (equivalence principle).
Light-deflection experiments measured y, while
perihelion precession of the inner planets was
sensitive to both y and P. (y= P = 1 in general rela-
tivity. ) Later Schiff used this metric-field ex-
pansion to analyze the spin-axis precession of
orbiting gyroscopes.

Nordtvedt4 generalized the parametrized metric-
field expansion beyond the static spherically sym-
metric case to include the possibilities of multiple
sources and moving sources. His immediate goal
was the study of gravitational self-energy effects
on the equation of motion of massive bodies and
experimental consequences. A number of new
parameters were added to y and P in Nordtvedt's
general metric-field expansion. Soon thereafter
Will' formulated the metric-field expansion for the

case of continuous hydrodynamical sources of en-
ergy density, pressure, and momentum density.
The metric field became known as the paramet-
rized post-Newtonian (PPN) metric Wil.l and
Nordtvedt' then unified their metric-field expan-
sions into a single formulation and studied the
properties of the PPN metric field under Lorentz
transformations. Specific PPN parameters were
identified as "preferred frame" parameters which
when nonzero indicated that gravitational physics
was dependent on motion relative to a particular
inertial frame. Experiments to search for pre-
ferred-frame gravitational effects were suggested
by Nordtvedt and Will. '

More recent work' has added a new PPN pa-
rameter —the Whitehead parameter f—associated
with noncentral gravitational fields produced by
multiple sources. Other studies' have examined
the conditions for energy-momentum and angular
momentum conservation laws in the gravitational
physics of PPN systems.

The metric field of Will and Nordtvedt, though
generally having a preferred inertial frame, did
have the property that in this preferred frame
gravitational physics was isotropic with no refer-
ence to any global directionally dependent boundary
conditions. In the special inertial frame equations
(la)-(lc) were considered as giving the most gen-
eral metric field of a static spherically symmetric
mass source. However, consideration of "bimet-
ric" or two-tensor theories of gravity, where
either the second tensor augmenting g„„is a non-
dynamical, flat background tensor g„„, or the
second tensor is a dynamical field k„„, have
brought to attention the possibilities of intrinsic
anisotropies in the PPN expansion for the gravita-
tional metric field. In such theories a second ten-
sor cannot be expected to have global isotropic
diagonal form in the coordinate system in which
the metric field g „ is asymptotically Minkowskian.
A residual anisotropy in a second tensor in the
theory would be a consequence of the cosmological
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anisotropy which we have no right to assume is
precisely zero. Then depending on the field equa-
tions of the specific two-tensor theory of gravity,
the anisotropy in the global value of the second
tensor will induce anisotropic post-Newtonian
gravitational potentials in g„„.

The purpose of this paper is to generate a gen-
eral anisotropic PPN metric field, and then discuss
experiments which can put stringent limits on the
anisotropies or detect them if they are present.
As an example of a theory which leads to an aniso-
tropic PPN metric field, we calculate in an appen-
dix the PPN metric for Rosen's bimetric theory of
gravity, "which has previously been shown to be
consistent with the PPN metric of general rela-
tivity under certain conditions including isotropy. "

dH dP
dt dt

for

8LH= v- —L
~vg

(4a)

8v
(4b)

On the other hand an assumption of metric theo-
ries of gravity is that a particle's equation of
motion is derivable from a metric field g,„(r, f)
which is used to form one-particle Lagrangians;

II. CONSERVATIVE PPN METRIC FIELD FROM A POST-
NEWTONIAN LAGRANGIAN dx,'. dx" '"

L;= g„„;,t (6)

d eL eL
(2)

Because L is independent of explicit space or time
dependence (1. is solely a function of particle ve-
locities v,. and interparticle distances r, —r, ), there. .

is conserved energy and momentum;

The PPN metric field developed by Will and
Nordtvedt' has inertial frame-dependent potentials
appearing in the various components of g„„. How-
ever, this metric field has a "preferred frame"
often identified with a mean universe rest frame
in which the PPN metric field is isotropic. This
metric might therefore be called the "isotropic
universe PPN. "

Generalizing the PPN metric field for use in a
possibly anisotropic universe is the purpose of
this paper. Gravitational effects associated with
possible universe anisotropies can then be cal-
culated and experiments proposed. Our anisotropic
generalization will be made under a self-imposed
restriction: Only PPN metric fields which have
energy and momentum conservation laws are con-
sidered. This seems a reasonable restriction, as
dynamical systems without such conservation laws
usually possess runaway configurations, in dis-
agreement with experience. Also, most reasonable
field theories of gravity lead to energy and mo-
mentum conservation via Noether's theorem plus
the absence of explicit space-time dependence of
the theory's action integral.

A useful algorithm exists for simply generating
a conservative PPN metric field. First, a many-
body post-Newtonian gravitational Lagrangian L
is produced which generates the single-particle
equations of motion;

and the resulting equation of motion for each par-
ticle

(6)

A post-Newtonian Lagrangian yields a conservative
PPN metric field by equating the equations of
motion obtained by the two methods, Eq. (2) and
Eq. (6).

The fact that the equations of motion given by
Eq. (2) lead to conserved energy and momentum
by Eqs. (3), (4a), and (4b) guarantees that a metric
whose equation of motion given by Eq. (6) matches
Eq. (2) leads also to conservation laws for energy
and momentum. A Lagrangian is arbitrary up to
the addition of a total time derivative term, while
the metric field is arbitrary up to addition of terms
generated by the general coordinate transforma-
tion. These freedoms are used to put L into the
simplest general form and to put the resulting
g~,(r, t) into a "standard" gauge form.

III. THE ISOTROPIC CASE

The procedure outlined in the previous section
is first employed to review the case of the iso-
tropic PPN metric. In such PPN metric fields
there exists an inertial frame in which the metric-
field potentials have no anisotropic potentials. In
other inertial frames anisotropic potentials might
result from the Lorentz transformations, ' but they
are then called "preferred-frame" potentials and
would be proportional to w/c or (w/c), ' with w
being the velocity of the inertial frame relative
to the preferred frame. The most general iso-
tropic PPN Lagrangian is
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&=g —,
'

m, v,.' +g —,
'

m;v; + +2m, m, /.x,,+ —, (2y+t;+1)gm;m&g, '/r, ,

——'(4y+ 3+ n, —n, + 2 g) Q mm, .v, 'v ~/r o —2 fQ m;m~( r; J
~ vq) /r;,

1 I 3 j.+ 4(2f —1 —n2) m, m& r,J'.v& r, & vi /r, &
+ (~ —p) m&mjm~/r&&r;~ . (7)

Particle labels i,j,k are to be summed over; units in which the speed of light c and Newton's gravitational
constant G are 1 are used. r, , is the interparticle vector r,. -r, For n, =n, =0 and y, P, and f arbitrary
this Lagrangian is form invariant (to the necessary approximation) under Lorentz transformations and

hence produces no preferred-frame effects; the equations of motion are the same in all inertial frames.
For p = 1, f = n, = n, = 0, and y arbitrary we have the Lagrangian for the post-Newtonian approximation to
the Brans-Dicke scalar-tensor theory. The general form of the PPN metric field developed by Will and
Nordtvedt' for the case of conserved energy and momentum results from a Lagrangian with / =0 and the
other four parameters arbitrary. Later it was shown that conservative metric fields could have a nonzero
"Whitehead" parameter (,"and Will' has studied theories of gravity which lead to these types of PPN
metrics.

The Lagrangian of Eq. (7) yields the PPN metric field:

goo = 1 —2 p+ 2p U'+ (4 P —2 —g)g m, m& /r, r, &
—(2y + 1+ g)g m, v, '/r,

+ ggm, (r, v, )'/r + t;gm, m& r, ~ (r,./x& —r,&/x, j)/r, ',
g„=—,'(4y+ 3+n, —n, + L)Q m;(v, )'/x;+ 2(1+@,—g)Qm, v, r,.(x,.)',

(Sa)

(Sb)

and

g.,=-(1+2yu)S., (Sc)

r,. is the vector r —r, . A coordinate transformation has been used to put the spatial metric components in-
to a "standard" diagonal isotropic form. These metric fields given in Eqs. (Sa)-(Sc) will generate new po-
tential terms proportional to w when Lorentz-transformed if the parameters n, and/or n, are nonzero. '

1V. THE ANISOTROPIC CASE

Using Eq. (7) as a guide we add anisotropic Lagrangian terms in order to generate the anisotropic but
conservative PPN metric field. Several 3 &3 anisotropic but traceless matrices are introduced as new
PPN parameters; the trace of any such matrices are incorporated into the existing scalar PPN param-
eters y, P, f, n„dann, . The anisotropic Lagrangian terms are

I,„=pm,m&Q „(r,,)'(r, &) /r&&'+pm, m~m„e, ~(r, j)'(r,&)'/r, ~r,~'+ gm, m;v, 'A„(r,&)'(x,,)'/r, .

+ gm, m&A„(v;)'(v, )~/r, &+ gm, m&4'„(r, &)'(r,&)'v, 'v& /x, J'+ gm.,m&4', ~(ar;)'(v&)'/r;&

+ Pm;m&I;t, (r,&)'(v, ) r&J v, /r;& + gm, mz ",~(r&z)'(v&) r, z
~

v& /r;z'

+ Qm;m, 4 v; /x, , + m;m& Y ~ r,.z r&, ~
v& /x, &3 .

The indices a and b are to be summed over x, y, and z according to the Einstein convention. The ma-
trices Q, e, A, A, 4, and 4 are symmetric while the matrices F and:- may have antisymmetric parts.
4 and Y are vectors. Following the method of the previous section, L~ yields anisotropic metric-field
components;
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Vg (A) = —4+m;a, (r,.)'(r;)~/r, .s+ 4+m;m&a, (r&)'(r, )~/. r, r&3.

—2+m, m,.e„[(r,)'(r,.)'/r, 'r, + (r„)'(r„)'/r, ~'r, + (r,)'(r, )'/r, 'r, , ]

—2+m&(A+ Q),~(r;)'(r;)~v; /r —2+m, A,,(v,.)'(v, )~/r; —2+m,-l',~(r,.)'(v;)~ r, v, /r,

+ 2+m,.m,.l'„[(r )'/r —(r,,)'/r, ,](r,)'/r, ', (10a)

5go, (A) = gm, I'„(v,)'/r, -gm, F~,(r,)'r,. ' v, /r —2+m, k„(v;)~/r, . —2+m;0'~, (r;)'(r;)'(v;)'

-gm, . =~(r,)' r, ~ v,./r, .' —gm, „(r,)~(v,.)'(r, )'/r, .'+.g m, 4'/r, +g. m, Y r,.(r,.)'/r, .', (10b)

Og, ,(A) = —2+m, [I',",'+ A,„]/r, —2+m, A,„(r,)'(r, )~/r, '5„. (10c)

(s) stands for the symmetric part of the matrix.
A coordinate transformation has been used to
make the spatial metric field g„as isotropic as
possible, although complete isotropy cannot be
produced. This anisotropic metric-field expansion
is valid in one preferred inertial frame. The
method of Will and Nordtvedt' must be used to
generate the new frame-dependent terms which
will in general be present.

V. THE ANISOTROPIC NEWTONIAN POTENTIAL

Tery stringent limits can be placed on the PPN
matrix O. Will and Nordtvedt' have shown that
earth tidal gravimeter data will place limits on
anisotropic Newtonian potentials resulting from
preferred-frame (c., 4 0) effects resulting from
motion of the solar system in the galaxy. The
same analysis can be used to place an upper limit
of

] n )& 10-

by using the most recent results of gravimeter
experiments. "
VI. ANISOTROPIC INERTIAL AND GRAVITATIONAL MASS

Past work has shown that a massive body's
gravitational to inertial mass ratio (Mo/Mz) will
differ from 1 in the case of the general PPN
metric field. ~ The difference Mo/Mz —1 is pro-
portional to a combination of PPN metric coeffi-
cients multiplying the ratio of the body's gravita-
tional self-energy to total mass-energy. This has
led to observations in the lunar laser ranging ex-
periment which give stringent limits on the scalar
PPN parameters y, p, t:, n„aden,

For the case of a nonrotating, spherically sym-

+-.(I., —U~.,)(v;)'(v;)',

with U being the Newtonian potential

(12b)

U= gm, /r, .

and h 0' being the second-order correction to g«,
the equation of motion of a particle becomes

—[ v+ —,'v'v —h+ (U —h"') v]dt

= 0[ U+ —,'(U' —h"') —h v+ —,(U —h"')v']

Here k"' stands for the spatial metric h,~.

VII. INERTIAL MASS

Contributions to inertial mass are considered
first; these effects come from terms in the equa-
tion of motion proportional to the body's actual

metric body the M~/Mz ratio is a scalar number
in the isotropic PPN metric field, as one mould
expect. However, a rotating body was found to
develop an Mo/Mi anisotropic spatial tensor part
which was proportional to the rotational kinetic
energy of the body divided by total mass-energy. "

Here we calculate contributions to a massive
body's gravitational and inertial masses resulting
from the anisotropic PPN matrices and obtain an
anisotropic mass tensor for nonrotating spherical-
ly symmetric bodies. If Eq. (5) is written in the
fol m

I,)=[1—2U+ho'20'+2h' v; —v +h, ~(v;}'(v;}~]'~2

(12a)

—1 —U- 2v; —8 v;~+ z(ho'~" —U )+ h ~ v;
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acceleration. Examination of Eq. (14) shows that
anisotropic contributions of this type result from
the terms

(h+I&"& v) .

Consider a nonrotating spherically symmetric
massive assembly of gravitationally interacting
particles. After using Eqs. (10b) and (loc) and
after weighting each particle's equation of motion
by m, /total mass, Eq. (15) produces inertial-mass
contributions for the body:

g'm™~(e+-.'A+ —'r"') p R&/R'

plus an additional acceleration

(21)

where the part of h"' produced by the external
body multiplies v' of elements of the second body;
also from part of the anisotropic "Whitehead" po-
tential in VA,~', and finally from the nonlinear po-
tentials in Vh,",' proportional to e. Altogether
these terms produce a potential acting on a second
body of

' ' [(2A+-', r"&+2m+-', =-"&).,+-', r„] .
1j m) mg ~ b

abg ex & (22}

(s) stands for symmetric part of the matrices.
The inertial mass of the body is now a spatial
3 x 3 anisotropic matrix.

&. U„=g & & (e.,R'R'/R')

+ gm, && '(A+ —,r&"),R'R'/R' . (17)

But by using the virial relation for the particle in
a body in equilibrium

(18)

VIII. ACTIVE GRAVITATIONAL MASS

Considering the same massive body now as the
source of a gravitational field acting on another
body, we concentrate on contributions to Eq. (14)
where the Newtonian potential M/R is augmented
by anisotropic potential terms proportional to in-
ternal gravitational energies and dependent on
distance as R '. (R is the distance from the mas-
sive body to the field point. ) The additional poten-
tial terms of this type are

X. TWO-BODY EQUATION OF MOTION

The combined result of these anisotropic effects
is to have the two-body gravitational equation of
motion take the form'7

(M, 5~,+ U,c~,)a[=M,M2V, (1/R)

+ (M, U2+M2U, )V~(B,~ R'R~/R )S,

(23)

with another equation for the acceleration of the
second body obtained by interchanging labels 1 and
2. a is acceleration, spatial indices b, c, and d
are summed according to the Einstein convention.
8 and C are anisotropic matrices given by

and

c„=-[4(A+4)+ '(r& &+=&")]„ (24)

which combines with the nonsymmetric term in the
inertial mass given by Eq. (15) to symmetrize it.
The identity of the form of Eq. (19) and Eq. (21)
(except for the inversion of the roles of the bodies}
shows the equality of active and passive gravita-
tional mass in this conservative theory.

we arrive at
R„=—[2e+ A+ —,

' r"']„ (25}

~U = '(e+-'A+ -'r& &) RR&/Rsr 6 ab

IX. PASSIVE GRAVITATIONAL MASS

(19)

A few years observations of the frequency shifts
due to the orbital motion of the binary pulsar PSR
1913+16 can put a stringent limit on the B and C
matrices";

is i
=

i
C

i
( 1O-' or 1O- ' .

——'Vh "g) (20)

Terms in Eq. (14), where the Newtonian poten-
tial of the external body which accelerates a
second body is multiplied by either the gravita-
tional potentials of the second body or squared
velocities of elements of the second body, produce
what can be called passive gravitational mass
corrections. Such terms come from

APPENDIX: PPN METRIC FOR ROSEN'S BIMETRK
THEORY OF GRAVITY

Hosen's field equations for the metric field g„„
take the form o,

pv pv ye
I'&Ply v

—
& ~ I gya I ugfelv

= —8«(-g)'~'G(T, p
—,' g„pT), (A1)—
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in a coordinate system where g„„is asymptotically
Minkowskian;

gradient operator

v, = (&/sx„s/ey„e/8&, ),
1 0 0 0

0 —1 0 0

0 0 —1 0
as r-, (A2)

with

x„=(- q„„)'i'x, etc . (A9)

Equations (A5)-(A7) have the following solutions:

0 0 0 —1

In an anisotropic universe the "flat" background
metric g"" must have the general form

0 0 0

goo = 1 —2U~+ 2U~'+ Q m;mq /r~, r~, q

—3+m,.v,.2/r„. , (A10)

0 —1+ q„

0 0 —1+ g,

(A3)

and

g„=4+m, (v, )'/r~, ——,
'

g gm, (v„,)'/r~, .

+ —,
'

y Qm;r~; v~, (r~, )'/r~, ', (A11)

with

Ex+ Ky+ &z (A4)
g,~= —(1+2U~)6,~,

with

(A12)

The form of Eq. (A3) indicates that spatial rota-
tions were made to find the principal axes of the
anisotropic 3 & 3 spatial matrix &'~ contained with-
in g~", and also that a preferred inertial frame in
which the space-time components of g"" are zero
is used.

To obtain the PPN metric field the above equa-
tions can be approximated by

goo = 16m( —g)' 'G(Too —,'g T0)0—
+ Xgpp+ +g gpp +ggpp ~

V'~ gp =16wGTp

(A5)

(A6)

V' g = 8mGT, (A7)

where a=x, y, z. The V operator is an anisotropic

U= Pm, /r„.
r~, = [ —g„(r,)'(r, ) '] ' ' = r, + 2 e„(r,)'(r;)'/r, ',
r~, v~, = —g„(r,)'(v, )'=r, .v, + e„(r,.)'(v, )',

(v~;)'= —q„(v,)'= (v, )'+ a„(v,)' .

For the case of no anisotropy in the matrix q„
and the parameter value X=1, Rosen's theory
has the same conservative PPN metric as general
relativity. The anisotropic PPN potentials are
obtained by expanding the expressions in Eqs.
(A10)-(A12) to lowest order in a„;

6g„(»=g .,(r,.) (r,.»/r, . + -'. gm, v,".,(r,.) (r,.) /r, 2+m, ...,(r,.) (r,) /r, . r,.

~;mph' ~ ««x 1')),— ypzpz)6 ~
f' ~ (A13)

6g„(A)= —,'Qm, c„—(r,)'(r, )'(v, )'/r, ' —Qm, a„(v,)"/r, + ,'Qm, e„(r,—)'(v,)'(r, )'/r, '

+ ~&r&' v~&aa « ' «' —~ m, r, ~ v~&oc ~~ (A14)

(A15)6g„(A) = Qm, e„(r,)'(r, )"/r, '6„.
Except for a term in Eq. (A14) proportional to
1/r, ', this metric derived from Rosen's theory

of the form given by Eqs. (10a)-(10c). An addi-
tional term added to the Lagrangian can generate
this 1/r, 'term, and ther. efore Rosen's anisotropic
metric field leads to post-Newtonian energy and
momentum conservation laws.



14 ANISOTROPIC PARAMETRIZED POST-NEWTONIAN 1517

*Work supported in part by N.A.S.A. Grant No. NGR
2 7-001-035.

~A. S. Eddington, The Mathematical Theory of Relativity
(Cambridge University Press, New York, 1957), p.
105.

2H. P. Robertson, in Space ~e Astronomy, edited by
A. J. Deutsch and W. E. Klemperer (Academic, New

York, 1962), p. 228.
3L. I. Schiff, in Proceedings of the 1965 Summer Semi-

nar on Relativity and Astrophysics (unpublished).
4K. Nordtvedt, Jr., Phys. Rev. 169, 1017 (1968).
5C. M. Will, Astrophys. J. 163, 611 (1971).
8C. M. Will and K. Nordtvedt, Jr., Astrophys. J. 177,

757 (1972).
~K. Nordtvedt, Jr. and C. M. Will, Astrophys. J. 177,

775 (1972).
C. M. Will, Astrophys. J. 185, 31 (1973).

GC. M. Will, Astrophys. J. 169, 125 {1971).
¹ Rosen, Ann. Phys. (N.Y.) 84, 455 (1974).

~~D. L. Lee, C. M. Caves, W.-T.¹,and C. M. Will,
California Institute of Technology report {unpublished).

~2D. L. Lee, A. P. Lightman, and W.-T. Ni, Phys. Rev.
D 10, 1685 (1974).
R. J. Warburton and J. M. Goodkind (unpublished).

~4J. G. Williams et al. , Phys. Rev. Lett. 36, 551 (1976).
~~I. I. Shapiro, C. C. Counselman III, and R. W. King,

Phys. Rev. Lett. 36, 555 (1976).
~8K. Nordtvedt, Jr. , phys. Rev. 180, 1293 (1969).
~K. Nordtvedt, Jr., Astrophys. J. 202, 248 (1975).


