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Dirac equation around a charged, rotating black hole*
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The Dirac equation for an electron around a Kerr-Newman black hole is separated into decoupled ordinary
difFerential equations.
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Here &» is the symbol for covariant differentia-
tion in the pseudo-Riemannian geometry repre-
senting the gravitational field, A.» is the elec-
tromagnetic or other vector field potential, e is
the charge or coupling constant of the Dirac par-
ticle to the vector field, p., is the particle mass
(v2 times the p, , used by Chandrasekhar), and

Chandrasekhar' has recently separated the Dirac
equation in the Kerr geometry. This allows an
analysis of the wave behavior of electrons and
muons around a rotating black hole with no ex-
ternal matter fields. However, one would also
like to analyze the situation when the black hole
is electrically or otherwise charged so that it has
an external electromagnetic or other massless
vector field. For example, a small hole emitting
electrons and positrons stochastically by Hawking's
process' would have random charge fluctuations
that could affect the average emission rates
through the electromagnetic coupling. ' Carter'
has also suggested the existence of another long-
range vector field coupled to the baryon or lepton
number of the hole which could affect the geometry
and thus the behavior of Dirac particles whether or
not they couple directly to the vector field.

In this paper, Chandrasekhar's analysis is ex-
tended to a Dirac particle in the Kerr-Newman
field. With a given energy and axial angular mo-
mentum, the wave function can be written in terms
of four components which satisfy a set of four
coupled partial-differential equations in the radius
and polar angle of Boyer-Lindquist' coordinates.
These components can be expressed as products
of radial and angular functions that satisfy de-
coupled ordinary differential equations, which will
be given below.

The analysis starts with the Dirac equation cou-
pled to a general gravitational and electromag-
netic or other vector field. In two-component spin-
or notation, "the equation is a simple generaliza-
tion of Eqs. (C1) and (C2) (where C denotes Chan-
drasekhar 's paper'):
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Here the electromagnetic or other vector field is
expressed as a four-vector A.

These equations may be written out explicitly for
the Kerr-Newman' field in Boyer-Lindquist' co-
ordinates by using the Kinnersley" tetrad. The
equations simplify if one sets [cf. Eqs. (C9) and
(C25}]
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The (t, cp) dependence is that of a wave function

Pe and Qs are the two-component spinors repre-
senting the wave function. The asterisk replaces
Chandrasekhar's general use of overbars to de-
note complex conjugation; Qe is the complex
conjugate of Qe. The vector potential must enter
with the opposite signs in Eqs. (1) and (2) to pre-
serve gauge invarianee, since the spinors in the
two equations are related by complex conjugation.
Planck units are used, so 5 =c = t" =1.

In the Newman-Penrose formalism' with a null
tetrad ( l, n, m, m*) and spinor components P' and
Q', the equations become [cf. Eqs. (C7) and (C8)]
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The Kerr-Newman vector field" has the tetrad
components

Qr QrA I=- A n=— A m=A m*=0

where
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with energy 0 and axial angular momentum m.
The tetrad components and spin coefficients have
the same form in the Kerr-Newman geometry
as in the Kerr geometry, except that the quantity
b, [not to be confused with 6, the directional de-
rivative along n in Eqs. (4) and (6}]has an extra
term from the charge Q of the hole":

6 =—r' —2Mx+a'+ Q'.

is what Chandrasekhar calls p'.
Now if Chandrasekhar's quantity K is replaced

with

K-=(r'+a') e—eQr+am, (14}
then Eqs. (3)-(6) sep: rate into ordinary differen-
tial equations by precisely the same procedure
Chandrasekhar' uses for the uncharged case. That
is, we have
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g, (r, 8) =R,i2(r)S,g, (8) . (is)
S(8}and R(&) must satisfy Eqs. (C44) and (C45),
which, with Chandrasekhar's v2 X replaced by my
&, may be written out as
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Then S,~, (8) and R„~,(r) can be obtained from Eqs.
(C41) and (C40). The condition that S be regular
over 0&8&r makes Eq. (19) an eigenvalue equa-
tion for the separation constant &, which is then
used in the radial Eq. {20). Equation {19}is inde-
pendent of the charge, so ~ is a function only of aa
and ap, , for each half-integral m. When ap. , =0,
Eq. (19) reduces Teukolsky's" Eq. (4.9) with
s =-&, ~ =-0', and A. =~' —2amo' —a'O'. Equation
(20) similarly reduces to Teukolsky's Eq. (4.10)
for neutrinos when both p., =0 and Q =0, since his
K is then the negative of mine.¹teadded in Proof. S. Chandrasekhar has in-

formed me that Toop has independently separated
the Dirac equation in the Kerr-Newman field and
has also done the cases when there is a cosmo-
logical constant and when the Dirac particle is a
magnetic monopole.
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the reference" on the spin coefficients in the
Kerr-Newman geometry and K. S. Thorne, J. B.
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check the validity of Eqs. (1) and (2). K. S. Thorne
also gave helpful comments on the manuscript.
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