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On the basis of the phenomenon of zero-point energy an account is given of the mechanism of the emission of
blackbody radiation from an incipient (about-to-be-formed) black hole, which results from the gravitational
collapse of a star. The account is given in terms of three related points of view: (1) the emitted blackbody
radiation results from a Fourier spectrum analysis of the zero-point fluctuations on the surface of the
collapsing star; (2) the radiation results from a parametric amplification by a time-dependent potential of
waves emerging from the collapsing surface of the star; (3) the radiation results from the star passing
continually through states of resonance mutual to the natural modes internal and those external to the star.
These three points of view are related by virtue of the underlying principle that explains the blackbody
radiation mechanism: the nonadiabatic red-shift process operating on the randomly correlated zero-point
fluctuation modes. The picture that emerges from these analyses is that all zero-point oscillation modes
emerging from the star give rise to statistically identical blackbody radiation packets. Their only difference lies
in their time of emission. The packets are emitted in a time sequential order and each is created during a
limited time interval at the surface of the star: those packets caused by low-frequency zero-point modes first,
those caused by high-frequency modes later. The blackbody radiation continuously drains away the irreducible
mass of the black hole at an ever increasing rate. The lifetime of the incipient black hole is therefore
finite. Consequently, the total number of zero-point fluctuation modes taking part in the emission of
blackbody radiation packets is finite. The logarithm of this number (multiplied by Boltzmann’s constant)
equals the entropy of a black hole. This suggests that the internal microscopic states (in the statistical-
mechnical sense) of a macroscopic black hole, i.e., the “hairs” lost by the black hole, are to be identified with
those degrees of freedom that are capable of and will be causing the emission of blackbody radiation. The
statistical fluctuation spectrum of the emitted energy is exhibited and found to be identical to that associated
with a blackbody, showing thereby that radiation emitted from a black hole is thermal radiation in the precise
sense of the term. The relevance of these statistical fluctuations to the formation of a black hole is discussed
briefly. Brief mention is made of the sense in which a radiating incipient black hole lends support to
Sakharov’s idea that gravitation is a manifestation of the alteration of the zero-point fluctuations of space. The
formulation of the radiation mechanism in terms of successively amplified zero-point radiation modes
allows us to conclude that a star can never pass through its instantaneous r = 2 M surface. In view of the fact
that the evaporation and the final demise of an incipient black hole are visible to a distant observer, it is
necessary to reformulate the classical version of the issue of the final state of gravitational collapse. A
qualitative account of the evolution of a classical incipient black hole is given. The issue of the final state of
stellar gravitational collapse is restated in the form of a question: What is the ground state of an incipient
black hole?

I. INTRODUCTION

During the late stages of gravitational collapse
of a star, all radiatable multipole perturbation in
its gravitational field are either radiated away or
reflected by the centrifugal potential barrier and
thus disapperar from the view of a distant observ-
er.! Consequently, the configuration tends towards
a stationary state that is characterized by only
three descriptors: mass, angular momentum, and
charge.? This state of affairs is captured by the
phrase “a black hole has no hair.” The process of
an incipient black hole (a star during its late stages
of collapse) ridding itself of all those multipole
moments (“hairs”} that are not forced on it by the
existence of dynamically conserved descriptors is
condensed into the phrase “anything which can be
radiated gets radiated away completely.”® 1t is
natural therefore to inquire to what extent this

principle is also applicable to those asymmetries
on the surface of a star that are caused by the
zero-point fluctuations of the electromagnetic (or
any other) field.

The first result of such an inquiry is that during
the late stages of stellar collapse the incipient
black hole gives rise to an outgoing power spec-
trum whose spectral flux is

(total energy)

(unit spatial volume)(unit momentum volume)

Fw Fw
= +

7 tomer—yc (D)
Here 7, w, and M are Planck’s constant, the fre-
quency of the radiation at a distance observer, and
the mass (in geometrical units M =M va/cz cm™)
of the black hole, respectively. The first term
refers to the zero-point fluctuations. The second
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can be identified with thermal radiation actually
emitted by a black hole at a temperature

71
== . 1.2
T k 87M (1.2)
The second result is that the total net power loss
due to the thermal radiation is
aMm Ly?

T =0.708 x 10™* -ﬁ";— (1.3)

[L,?=(G/c?)*/2, the squared Wheeler length, ¢ is
in cm] at any given moment of time and that there-
fore the incipient black hole has a finite lifetime
given by
3
7=4700 2 (1.4)
LW
Expressions in Egs. (1.1) and (1.2) are derived in
Sec. VII. Those in Egs.(1.3) and (1.4) are derived
in Sec. IX.

Hawking arrived at similar results by applying
the formalism of quantized fields to the spacetime
setting of a black hole formed by a collapsed star.*'5
This article developes a more detailed treatment
of the mechanism of blackbody radiation. By ap-
plying classical field theory to zero-point fluctua-
tions, which permeate all space including the in-
terior of a collapsing star, we endeavor to find the
evolution of these fluctuations. The original moti-
vation came from trying to apply Price’s theorem
(“anything which can be radiated gets radiated
away completely”) to the vacuum fluctuation modes
emerging from the surface of a star during its late
stages of collapse. As each mode gets redshifted
nonadiabatically and finally switched off from the
view of a distant observer, it gets amplified.

J

The third result is that a collapsing star continu-
ally passes through states of simultaneous reso-
nance during each of which a vacuum fluctuation
mode gets amplified.

The collapsing star is found in each of such states by
virtue of the fact that a given red-shifted vacuum
fluctuation mode upon crossing the star’s surface
agrees in frequency and is thus identified with an
outward-traveling (Schwarzschild) mode. Amplifi-
cation occurs only as long as the two frequencies
agree. The (Schwarzschild) time interval during
which the collapsing star brings about this ampli-
fication (and hence is in a well-determined state of
resonance) is

At=41M;

it is a function of the incipient black-hole descript-
or M only. This interval surrounds a well-deter-
mined time and hence a well-determined radius,
the “resonance radius.”

The fourth result is that in the mean the amplifi-
cation of a vacuum fluctuation mode gives rise to
a corresponding finite packet of radiative energy,
which has a Planck blackbody spectrum. Further-
more, the packets, which in the mean are identi-
cal, are emitted in a time-sequential order.

The fifth result is that the fluctuations in the
emitted energy—fluctuations due to the variations
in the amount by which each vacuum fluctuation
mode gets amplified by the collapsing star—have
a spectrum corresponding to the sum of the mean
squared fluctuations of a mixture of statistically
independent Boltzmann gases, composed respect-
ively fo single quanta, pairs, trios, etc. In other
words, the radiation emitted by an incipient black
hole is indistinguishable from blackbody radiation.
The sixth result is that

(black-hole entropy) =% In (total number of vacuum fluctuation modes responsible for
the emission of blackbody radiation)

=k In (number of packets of blackbody radiation emitted by an incipient black hole) .

The seventh result is that the production of black-
body radiation by a collapsing spherically sym-
metric shell star prevents its collapse through its
instantaneous » =2M surface. A black hole, i.e.,
an event horizon, is never formed; instead the col-
lapsing star settles into a quasistatic evolutionary
patter, an “incipient” black hole.

Section II defines the general setting of the two
systems under consideration, a star and the set
of standing wave modes, each one undergoing its
zero-point oscillations.

Section III defines the exterior and interior geo-
metry associated with the collapsing star.

-
In Sec. IV the red-shifting of the zero-point radi-
ation emerging from the star’s surface is discuss-
ed and the Fourier spectrum of that radiation is
exhibited. It will be discussed in Sec. VI.

In Sec. V the parametric amplification of the
vacuum fluctuation modes is discussed heuristical-
ly in terms of (a) the nonapplicability of the WKB
(geometrical optics) approximation and (b) a time-
dependent blue- (and red-) shift associated with a
time-dependent potential. In this section the “rad-
ius of simultaneous vesonance” is introduced. This
radius plays a central role in the amplification
mechanism.
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In Sec. VI the resonance nature of the amplifica-
tion process is exhibited. With the help of the or-
thonormal wave-packet representation of the out-
going radiation modes the qualitative results of
Sec. V are made precise. Thus (a) the “time (or
radius) of simultaneous vesonance” which arises
quite naturally is defined, and (b) the finite and
frequency independent resonance width and hence
the local nature of the amplification process are
exhibited. Furthermore, Hawking’s assumptions®
are contrasted with ours.

In Sec. VII the radiation spectrum is identified
and its most important properties are listed.
Among them are the facts that the emitted radiation
packets are statistically identical and are emitted
in a time-sequential order.

In Sec. VIII the black-hole entropy is identified
with the logarithm of the total number of radiation
packets, i.e., with the total number of vacuum
fluctuation waves (inside the star) that cause the
emission of the radiation.

In Sec. IX the net rate of energy emitted by an
incipient black hole is exhibited and its accuracy
is discussed.

In Sec. X the subtraction, necessary to determine
the change in energies of the zero-point fluctua-
tions, is discussed and justified.

In Sec. XI the energy spectrum as well as the
spectrum of the energy fluctuations of blackbody
radiation are compared and found indentical to the
same properties of radiation from a black hole.
The origin of the violation of the energy condition,
which is central to standard black-hole formula-
tion, is identified. Furthermore, our classical
amplification mechanism, is related to the prob-
ability of creating photons and thus to Hawking’s
approach.

In Sec. XII the relationship between (1) the zero-
point fluctuation formulation of a radiating incipient
black hole and the Casimir effect and (2) Sakharov’s
ideas about the basis of gravitation is discussed.

In Sec. XIII the effect of the generation of black-
body radiation on the outcome of gravitational
collapse is discussed. Here we conclude that a
star will not pass through its instantaneous 7 =2M
surface, the incipient event horizon.

In Sec. XIV the classical version of the issue of
the final state of gravitational collapse is reform-
ulated to take into account the finite lifetime of
an incipient black hole.

In Appendix A the Fourier spectrum due to zero-
point fluctuations at the star’s surface is evaluated
for late stages of collapse. The result is used in
Sec. VI.

In Appendix B the instantaneous frequency of a
wave train emerging from the star is determined
as a function of time. The length of time that the

wave train is visible to a distant observer is de-
termined. The results of this appendix are used in
Sec. IX.

In Appendix C the rate at which such wave trains
are amplified and switched off from the view of a
distant observer is given. It is used in obtaining
the rate of mass loss expression in Sec. IX.

II. ZERO-POINT FLUCTUATIONS BEFORE COLLAPSE

Consider a cold noncollapsed star enclosed in a
large conducting spherical cavity of radius a. The
reflective walls of this cavity allow the existence
of standing electromagnetic waves, which also
permeate the whole star. Even in their state of
lowest energy these standing-wave modes undergo
oscillations (zero-point fluctuations).® The scalar
wave function associated with the electromagnetic
field oscillating at frequency w, is

2n \*/2 .
<I)nlm= (O) a> Sln(wnt+6nlm)
n
o sin(w,r - 3 I7)

2 Y70, ¢) - (2.1)

It satisfies the usual scalar wave equation
O® =0 in flat space throughout the conducting
spherical cavity. In the short-wavelength (WKB)
approximation’ this scalar function yields, for ex-
ample, the electromagnetic potential y* =e¢ "), with
the help of the polarization vector e*.

The amplitude of the above mode is determined
by the fact that it must have the zero-point energy

fff l inlmlz“",,zd(VO].un].e) :’é‘ﬁ ,
inside the sphere w

of a quantum-mechanical oscillator vibrating at
the frequency

wn:lar(”*%) (2.3)

(n=radial quantum number, [ =total angular mom-
entum quantum number) determined by a, the radi-
us of the “large” spherical cavity. The radiation
emitted by an incipient black hole is however, as
will be seen in Eq. (9.8), independent of the size
of the spherical cavity.

The presence of the phase angle g,,, for each
mode, Eq. (2.1), expresses the fact that the oscil-
lation of different modes are uncorrelated.® In
other words, the phase angle 8,,,,=8,l,m) is a
random function of the integers n,l,m.

The fact that 7z#0 together with the fact that
Bn, is @ random phase angle consitute the only
quantum-mechanical input into our theory of the
mechanism of blackbody radiation. The rest is
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merely classical field theory.

The analysis of the evolution of the standing
wave modes is facilitated by recognizing that they
are a superposition of outgoing and ingoing travel-
ing waves,

2n

) - /2 1
gy + aigne = (2L ool b 1)+ )
n

- cos[w,(t+7)+B,,, ]} YT(6, $) .
(2.4)

1t is evident therefore, that the existence of the
standing-wave pattern may be viewed as a continu-
ous scattering process in which the second term is
an ingoing wave converging onto the star and the
first term is the outgoing wave, which has been
scattered by the uncollapsed star. .

III. GEOMETRY INSIDE AND OUTSIDE
A COLLAPSING STAR

Now, at £=0, let the star undergo gravitational
collapse, and inquire as to the effect of the evolv-
ing geometry on the “scattering process,” i.e., on
the outgoing waves.

During the initial stages of collapse,space inside
and outside the star is flat, or nearly so, and the
wave field has the space-time dependence exhibit-
ed by &,,,. in Eq. (2.4). As the collapse evolves, in
particular during the intermediate and late stages
of collapse, the geometry outside the star is the
one given by the Schwarzschild metric,

2M dr?
2 =—f1_ 2
(@5%) outsice (1 - )dt +1_ 2M/r

+7%(d6® +sin%0 d ) , (3.1)

while the geometry inside the star is given by the
Friedmann geometry, if the star is a homogeneous
sphere of pressureless dust, or by a flat geometry,

(ds®) =—dt, 2+dr®+r3d6®+sin®*0de®), (3.2)

inside

if the star is a hollow shell star with all the mass
concentrated in the thin shell, or by another geo-
metry of a spherically symmetric mass under-
going gravitational collapse.®

During the late stages of collapse the history of
any star assumes a feature which, as seen by a
distant observer, is universal in nature!: The
history of a collapsing star made of only radially
traveling photons, i.e., the history of the surface
tends (as viewed in terms of Schwarzschild time ¢
and tortoise'® radial coordinate 7*, which exhibit
radial null histories as straight lines; see Fig. 1)
to be along the inwardly pointing light cone whose
apex is located somewhere on the world line of the
origin »=0. Consequently, one may, and we shall,
consider the structurally simplest type of star, a

shell star, composed of photons with zero angular
momentum in whose geometry the evolution of the
vacuum fluctuations is to be determined. The geo-
metry inside such a star is flat and is given by
Eq. (3.2); outside it is given by Eq. (3.1). The
history of the star’s surface, which separates
spacetime inside from that outside, is

LtV =70 (3.32)
in terms of the interior coordinates, and
7
t+r+2Mm<—2-M——1>=t+r*=vo (3.3b)

in terms of the exterior Schwarzschild coordinates.
Here 7, and v, are the respective values of

the initial radius 7 and tortoise coordinate »* of
the shell star composed of radially traveling photons.

IV. EVOLUTION OF A STANDING WAVE IN THE
GEOMETRY OF A COLLAPSING STAR

What effects does a collapsing shell star have on
a standing wave ®,,,, i.e., on the scattering pro-
cess? During the initial stages of collapse &,,,, is
totally unaffected: Space inside and outside the
star is flat to an excellent degree of approximation.
Thus the wave field both inside and outside is that
of the zero-point fluctuations as given by Eq. (2.4).
A distant observer measuring radiation coming
from the star’s surface will observe outgoing zero-
point radiation modes which are matched by in-
going zero-point radiation in Eq. (2.4). In other
words, he measures no net flux of radiation during
the initial stages of collapse.

During the intermediate and late stages of col-
lapse the picture is different. Although the geo-
metry is flat inside and given by Eq. (3.2), outside
the geometry is thatof Schwarzschild. Consequent-
ly, when an outgoing zero-point radiation wave
packet of mean frequency w, travels from the flat
inner region of the star to the Schwarzschild geo-
metry outside, its frequency as seen by a distant
observer is [see Eq. (A20)]

w= <1—g;—w>wn. (4.1)

A wave undergoes a continuous changing red-shift.
(This red-shift is exhibited pictorially in Fig. 1.
The “interior wave” characterized by w, gives
rise along the “history of collapsing surface” to
outgoing radiation which is of lower frequency the
more negative r* is, i.e., the closer 7 is to 2M.)
As a matter of fact, as the radius of the star ap-
proaches 2M, the radiation emerging from the
star will ultimately have such a long wavelength
that it will not be able to surmount the well-known
radial potential barrier'?
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INTERIOR

FIG. 1. Spacetime history of waves emerging from the surface of a collapsing star. The horizontal coordinate is the
tortoise coordinate r*=7+2M In(7/2M —~ 1). During late retarded time (large «) the history of the collapsing star ap-
proaches asymtotically the ingoing light cone as viewed in the Schwarzschild time ¢ and »* coordinate system. In this
coordinate system the amplitude of the outgoing part ®4£°" of an interior standing wave at the surface of the collapsing
star is indicated by “interior wave”. As the star collapses, the oscillation frequency tends to zero as seen by a distant
observed, i.e., the histories (null rays) of the wave crests emerging from the star are spaced successively farther
apart. As the mode ®,;, crosses the star’s surface it will cause the emission of photons into the exterior. Photons
identified with a “typical exterior wave” will be created only as long as #%=°" is in resonance with, i.e., has the same
instantaneous frequency as, the “typical exterior wave.” This happens in that interval Ax =87M along the history of
the star’s surface which is centered around the resonance (retarded) time #,. It is defined both in Secs. V and VI.
Thus, owing to the nonadiabatic nature of the red-shift, &y gets amplified and thereby gives rise to a whole spec-
trum of photons, high-frequency photons first, low-frequency photons later. At the switch-off time, »off (see Secs. V
or VI), the instantaneous frequency of <I>‘,’,“,‘,,g,"i"g is zero and its behavior changes from an oscillatory to an exponential be-
havior. The production of photons is therefore exponentially negligible beyond the switch-off time. Even before ®3}g0is
is finished producing photons, the next zero-point fluctuation mode 348" (not exhibited in this picture) is getting am~
plified and produces its spectrum of photons. The corresponding modes identified with the ‘“typical exterior wave” are
produced also in an interval Ax=87mM, which is centered around the resonance time %,y (> %, ), however. The
mean spectrum associated with the various zero-point fluctuation modes &33! Poutgoing - goutgolng - ote. s a blackbody
spectrum.

1(1+1) oM consists of a succession of wave packets, is not

V= T(l —‘;‘) (4.2) monochromatic. Rather, the frequency of the wave
train (i.e., of successive wave packets) is decreas-

which separates the incipient event horizon from ing. When the wave train (characterized by the

the distant observer. angular momentum quantum numbers ! and m, con-

It follows that an emerging wave train, which served during the scattering process) emerging
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from the star’s surface has frequency lower than

[z(z+1)]1/2l=

M wmln >

o (4.3)

the train will be reflected by the potential barrier
V, Eq. (4.2), and will not reach a distant observer
(see Appendix B). The time necessary for a wave
train to decrease its frequency from w, to w
Eq. (4.3), is (see Appendix B)

min’

161(1+1)

o7 (4.4)

t=(vy— 2M) + 2M In(4Mw,) + M 1n
It is the length of Schwarzschild time the outgoing
part of the standing wave inside the star,

2r\/2 1
(I)nlmz <?¢U"—> _ﬂ{cos[wn(tin_ 7)+ nlm]

- cos[w, (¢, +7)+ Buim]}, (4.5)

contributes at the star’s surface to the outgoing
radiation, which travels to a distant observer.
The time coordinate ¢,, designates the proper time
inside the shell star.

The observer, who resides in the asymptotically
flat region of the Schwarzschild geometry, uses the
unique time coordinate which reflects the static
nature of the exterior of the incipient black hole.
However, it is with respect to this unique Schwarz-
schild time thatthe radiation coming from the star’s
surface is nof monochromatic, but is of changing
frequency and of finite duration as given by Eq.
(4.4). The radiation is a Fourier superposition of
the outgoing waves associated with the static
Schwarzschild geometry

1 L giw(t=r¥) "
‘pxm(t: 7, 9’ ¢) = (2,”)17’2 -/: d)w v dw Y; (9, ¢) .

(4.6)

The wave field is continuous across the history of
the surface of the collapsing shell star, Egs. (3.3),

®

nimlty, +r =ro= Zplm] tark =vg °

Thus it can be said that the outgoing radiation field
is literally caused by the standing-wave mode @,,,,.
However, it is only the outgoing part of &,,,, Eq.
(4.5), which excites the outgoing Schwarzschild
traveling modes exhibited in the integrand of the
Fourier integral, Eq. (4.6). As shown in Appendix
A, the Fourier amplitude 3, is

27 \/2
O nlm)=<a~w_> (—2—:%51"(-4in)

X(e-zwwMe iBnim 4o 021ere-iBmm)
X eiwpore) | (4_7)

Here

Uy o35 = Vo — 4M +4M IndMw,

is the (retarded) “switch off” time which is intro-
duced in the next section.
The squared magnitude is

27 M?® 7

"Pw(wn’ nlm)lz=?¢—w—" ?ﬂ—m

x(l.*. 1 + cosantm >
2 e®“¥_ 1 2sinhdnwM /"

(4.8)

The first term refers to the zero-point energy as-
sociated with ®2e°", The second term refers to
the blackbody energy spectrum. The third term
refers to the statistical fluctuations of the energy;
it goes to zero when averaged over several modes
(n,1,m). A discussion of the physical significance
of each factor of the Fourier amplitude ¢, is given
in the paragraphs following Eq. (7.1). But first we
give a qualitative and quantitative identification

of the mechanism of blackbody radiation itself.

V. PARAMETRIC EXCITATION OF VACUUM
FLUCTUATIONS

The production of blackbody radiation by a col-
lapsing star can be accounted for in terms of a
single idea governing the evolution of vacuum
fluctuation modes: parametric excitation, i.e.,
the nonapplicability of the WKB approximation.

(1) A first qualitative picture of the evolution of
waves is invariably obtained by determining to
what extent the WKB (quasiclassical, adiabatic,
geometric optics) approximation is applicable.
The relevant criterion for waves emerging from
the star’s surface is found in their emitted in-
stant:]meous frequency [see Eq. (B7) and set v,
=2M

w(t)=w,e ¥ (5.1)

(A pictorial representation is given in Fig. 1.) The
applicability of the WKB approximation (in
Schwarzschild coordinates) near the surface of the
star is gauged by the smallness of the quantity

1do_ 1 ymy

(5.2)

As ¢ -, the star’s surface approaches the in-
cipient event horizon and the WKB approximation
becomes inapplicable. Is that inapplicability
merely a coordinate effect, or does it signal
something physically significant?

That the latter is the case follows from an ex-
amination of the nature of the wave equation

2 or (877 )0, (5.3)

axt



which governs the evolution of the wave field.
Evaluated inside the shell star, this equation is

l}:g:gh aa(:?)—l(f,jl)](rQFO. (5.4)

Outside it is

ot T ¥ 7°
(5.5)
Here
‘e o )
r¥=r+ 2M1n<2M (5.6)

is the “tortoise” coordinate,'® which together with
t straightens out the radial null geodesics and
thereby pushes the »=2M surface to 7*=—,

First, observe that the wave equation has constant
coefficients with respect to the (t;,,#) and the
(¢, 7*) coordinates inside and outside the star,
respectively. Consequently, any disturbance is
propagated without amplification or attenuation
(i.e., without parametric excitation in the wider
sense of the term). The disturbance is merely
scattered by a time-independent potential barrier,
which distorts the disturbance quantitatively, but
not qualitatively.

Second, observe that the (¢,7*) coordinates go
over into the usual Minkowskian (¢,7) coordinates
for a distant observer, who can thus use these co-
ordinates to define (i.e., identify) radiative energy
flowing out of a black hole.

These two properties, the first local, the second
global, uniquely single out the (¢,7*) coordinate
system as one of special physical significance.

As a consequence, they carry with them two im-
plications: (a) The applicability of the WKB ap-
proximation as gauged by the smallness of Eq.
(5.2) is not merely a coordinate peculiarly, but
instead refers to some physical phenomenon of
nature. (b) In those regions of spacetime where
the wave-equation coefficients are constant, zero-
point or any other type of radiation is propagated
without any (parametric) amplification; in other
words, only the time-dependent region of the star,
the history of its thin shell, assigns abruptly
changing coefficients to the wave equation and
thereby causes a parametric amplification of
waves passing through that shell. The amplifica-
tion is elaborated upon in paragraph (2) below and
in Sec. VI.

This breakdown of the WKB approximation at the
surface of the collapsing star is propagated to a
distant observer by means of the following null-
initial-value problem:

(i) Along the history of the star’s surface
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t+r*=v,, (5.7
where the retarded (Finkelstein) time
u=t—r*
is related to the coordinates »* and ¢ by
==2r*¥+u,, (5.8a)
u=2t-v,, (5.8p)

a typical outgoing vacuum fluctuation mode ®gjieine,
Eq. (2.4), which satisfies Eq. (5.4), given by

; 27 \"2 1 u —u)
outgoing _ [ =77 il Ynoff — %
LoD (aw,,) 2ycosliexp( 407 +B,,,m:l.

(5.9)

Here
Upost =Vo—4M+4MIndMw, (5.10)

is, as we shall see in paragraph (2), the (retarded)
“switch-off time” which, for the mode &2y of
frequency w,, designates when it changes from an
oscillatory to an exponential behavior.

(ii) Across the history of the star’s surface the

outgoing radiation mode is continuous,

outgoing _
@nlm - lplm

(iii) This field is propagated outside the star by
the wave Eq. (5.5) to a distant observer. In other
words, given a zero-point standing-wave mode
®,,, the (null) initial-value problem is character-
ized by Egs. (5.5), (5.7), (5.8), and (5.9). The law
of the emission of blackbody radiation is governed
by the solutions to such initial-value problems.

The rest of this section gives a qualitative ac-
count of the amplification process. First [i.e.,
in paragraph (2)], focus on the salient features of
the wave field on the star’s surface. These fea-
tures are propagated to a distant observer. Sec-
ond [in paragraph (3)], discuss the amplification
process in terms of a time-dependent blue- (and
red-) shift associated with a time-dependent po-
tential.

(2) Although the field is continuous across the
surface of the collapsing star, the coefficients of
radial Helmholtz equation for the modes inside
(~etvntin) and outside (~e*“?) the star change dis-
continuously. Indeed, for these modes Eqs. (5.4)
and (5.5) are respectively

d? 2M d 1 +1) 2M\?
(a5 -2 (o -5 -2 om0

(5.11)

and

d? +1) 2Mm 2M
sz*“’“(%*?)(“?)]”%=°-

(5.12)
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The behavior of a typical vacuum fluctuation mode
@),%™ is most directly exhibited by means of the

differential equation, Eq. (5.11), it satisfies along
the history of the star’s surface:

2 27\ M2 _
[df‘*z + wz(’}’*)] (1 - —%—) 7¢:>’l;triomg =0.

Here both the variable » and the squared instan-
taneous frequency

v

(5.13)

3 =) -s (5.14)

star’s
surface

_2_M<1_2_1K) _w

are understood by means of Eq. (5.6) to be func-
tions of the tortoise coordinate *, which, via
Eq. (5.8a), coordinatizes an ingoing null cone (=
the history of the star’s surface during late col-
lapse) (see Fig. 1). Evidently the field undergoes
the well-known time-dependent gravitational red-
shift. Indeed, along the history of the star’s sur-
face a high-frequency vacuum fluctuation mode
during late collapse (1 —-2M/r<1<Muw,) has an
asymptotic frequency given by

) () ()
2,y = [ = -
W) (4M> CXP\ Tom am)
Thus, at the well-determined instance of (retarded)
time, determined by

(5.15)

WUy oqr) =0

and, thus, given by

Unosg = Vo —4M+4MInd Mw, , (5.10)
the field ®2;%°"™ on the star’s surface changes its

oscillatory behavior to an exponential behavior .
This evidently happens when the tortoise coordin-
ate and the (Schwarzschild) time have reached the
respective values

Thor=2M -2MInd Mw, , (5.16a)

boit=Vo—2M+2MInd Mw, . (5.16b)

As expected, the higher the frequency w, of
@25 inside the star, the longer it takes the
collapsing star to switch off [i.e., red-shift to
zero frequency, w?(u)=0] that mode from view
outside the star. If one takes into consideration
the centrifugal barrier, Eq. (5.16b) must be re-
placed by Eq. (4.4). Similarly, Eqgs. (5.10) and
(5.16a) are to be replaced by analogous expres-
sions.

If each mode &2y ig characterized by its
switch-off time u, , how does the switch-off
process itself, i.e., the exponential behavior of
doyieons, depend uponn, I, and m? A central

proposition, again proved in Sec. VII, is that the
bprocess is time tvanslation invaviant. Indeed,
the two quantities relevant to the switch-off pro-
cess,

rlirrle wiu)=~-(4M)"? (5.17)
and

dw? -3

;Z';;(u,.off)= -(2Mm)3, (5.18)

depend only on the parameter M of the incipient
black hole. Thus the asymptotic behavior of
@ouieoine at the star’s surface is independent of the
integers n, [ and m that characterize the vacuum
fluctuation mode @3uteoins,

(3) ¥ the unifying concept dealing with the be-
havior of a vacuum fluctuation mode ®23%°" on the
star’s surface is its switch-off (retarded) time,

(5.10)

then the unifying concept dealing with the paramet-
ric amplification of zero-point fluctuations is the
stmultaneous rvesonance time

Uy res (W) =V —4 M +4 M Ind Mw, - 4 MInd Mw.
(5.19)

Upost =Vo—4M+4M Ind Mo, ,

It constitutes that instance of time in whose neigh-
borhood the collapsing star produces photons of
frequency w by amplifying the vacuum fluctuation
mode &2, whose frequency is w. In other
words, it is that instance of time when the vacuum
fluctuation mode ®,,, is in resonance with, i.e.,
has the same frequency by virtue of the gravita-
tional red-shift as, the mode y§, at the surface of
the collapsing star.

A heuristic account of this amplification process,
based on the notion of a time-dependent potential,
is obtained by considering the asymptotic radial
Helmholtz equation inside and outside the collaps-
ing star during late collapse:

a (1Y (T*-yn*gﬁ) <_1_>2]
[dr*2+<4M> S\T ) \am

-1/2
xr( -27M—> ®,,=0, (5.202)

2
(%ﬁ+w2>r¢‘,"m =0. (5.20b)
The domain of definition of these two equations is
separated by a moving boundary, the collapsing
surface of the star. The vacuum fluctuation mode
®,,,, inside the star will give rise to the mode ¥,
outside the star when the two modes are in re-
sonance. This happens when the “instantaneous
frequency” at the star’s surface agrees with the
frequency w of the exterior mode,
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(al_)zexI,(ﬁ‘mﬁni‘g&)_(ilﬁ)z: W,  (5.21)

i.e., when

r¥ =it 2MInd Mo (5.22)

nres”

The concept “frequency” in this context is only
applicable to the extent that the second (negative)

term on the left-hand side of Eq. (5.21) isnegligible.

This approximation is incorporated into the ex-
pression for the “resonance radius” 7}, , Eq.
(5.22).

To exhibit the time-dependent potential associ-
ated with Eqgs. (5.20), expand the “instantaneous
frequency” of &5 on the star’s surface in the
neighborhood of the instance when &gjieoine is in

“resonance” with ¢, ,

2 2 de
WHr*) = WP pee) + i (r*—rr )+---. (5.23)
Tes d,r* r* Tes
nres
Here w?*(r,,,) is given by Eq. (5.21) and
4w’ | w0+ (AM)72
ar | C o . (5.24)

nres

It is evident therefore that in the vicinity of the
“time of resonance” the two asymptotic radial
Helmholtz equations are

2 2 -1/2 o
(#_2_+[wz_w(7*)]) 1’( ——%) ®,,,=0 inside,
(5.25)

2
(Edm + guz) 7y, =0 outside. (5.26)

Here w? is the squared Schwarzschild frequency
given by Eq. (5.21). The time-dependent effective
potential for Eqgs. (5.25) and (5.26) is

w?+ (4M)?

(r* —»*,) inside
Wr*, t)= M

nres

0 outside

W+ (4M)™2

M (’V* _7’:res ..

= 9(1)0 -1 —r:res

(5.27)

Here 9 is the unit step function. Figure 2 exhibits
the diagram of this potential at the instant

the collapsing surface crosses the resonance
radius 7}, pertaining to the modes y¥, and @2u°ine,
This moving potential determines the shape and
evolution of only those waves which have the

specific (squared) frequency w? given by Eq. (5.21).

Evidently, for different Schwarzschild frequencies
(which jointly make up the spectrum seenby a distant
observer) different choices of resonance radii, Eq.
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FIG. 2. Effective potential at ¢, =vy—7 ¥, for waves
traveling inside and outside a collapsing star. The hori-
zontal coordinate is the radial “tortoise” coordinate
r*=v+2M In(r/2M —1) +const. “Inside,” to the left of
'r: s » the vertical coordinate designates the “effective po~
tential,” —w, 207 ¥/ M (striped curve), of Eq. (5.20a).

This curve is joined continuously, across the instantan-
eous position of the star’s surface, to the outside effec-
tive potential of Eq. (5.20). During the late stages of
collapse that potential is zero in the vicinity of the sur~
face. The wave pattern indicates a standing wave inside
and an outgoing wave outside. Inside these waves (®;,,)
have an exponential decay to the left of the switch~off
radiys, 7.4 ; this is the point at which the in-
stantaneous oscillation (squared) frequency, w, %" ¥

~ (4M)™2, the coefficient of the interior radial Helmholtz
equation (5.20a), turns negative. The collapsing surface
moves uniformly (»*=—¢ + const) with respect to
Schwarzschild time ¢ through the standing-wave pattern.
The wavelength of these wavesis evidently such that their
instantaneous oscillation frequency at the surface is
exactly that observed by an (e.g., distant) observer us-
ing Schwarzschild time £.

(5.22), and potentials, Eq. (5.27), are necessary.

1t follows from the WKB approximation that, to
the extent that it is applicable, photon number is
conserved across the discontinuity of the potential,
Eq. (5.27). This happens when the squared oscil-
lation frequency, Eq. (5.23), of the wave train
emerging from the star changes sufficiently slowly
over one oscillation period, i.e.,
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1 dw _ Wik +(4M)72
W7k Ar* |« 2Mw3(rf)
nres
N 1
T 2Mw(rt,)

<1.

It is evident from Eq. (5.21) that the WKB criterion
is violated especially for low frequencies. This
happens when the collapsing surface of the star

approaches the switch-off radius 7, ., , Eq. (5.16a).

The corresponding Schwarzschild and retarded
times are given by Eqgs. (5.10) and (5.186).

The importance of the mechanism of parametric
resonance excitation increases to the extent that
the size of the second term relative to the first
term in Eq. (5.23), i.e., the applicability of the
WKB approximation, decreases. For a given out-
going zero-point fluctuation mode &2y, notice
that the time-dependent jump discontinuity in the
effective potential entails a time-dependent

INSIDE . OUTSIDE

REDSHIFT

*

— RADIUS -~

INSIDE : OUTSIDE

BLUESHIFT

¥ as. —— RADIUS* —»

FIG. 3. Three snapshots of the time-varying step po-
tential which governs the evolution of zero-point fluctua-
tion mode &£ (“inside”) and a specific Schwarzschild
mode ¥, (“outside”). As discussed at the end of Sec.

V and as shown in Sec. VI this potential amplifies @,;,,
and gives rise to photons of frequency w only during the
limited time interval A¢=4r M surrounding the resonance
time £ (&) [=vg—7}es(@)]. At this instant the red-shifted
frequency of &,,,,, at the star’s surface equals the fre-
quency (w) of the excited mode ¥ ,,,.

“force,” which is proportional to a moving 6 func-
tion located at the star’s surface. That “force”
changes signs as the star’s surface crosses the
simultaneous resonance radius 7}, . It is evident
that if an interior standing wave has the correct
frequency and correct phase at 7}, , i.e., has a
node there, then the time-dependent “force” will
increase the amplitude of the outgoing part of the
wave as it crosses the surface. [Indeed, phase
synchronization (or the lack thereof) is important
enough to enhance or diminish the amplified wave
field; this fact is expressed by the “fluctuation”
terms of Eq. (4.8).] In other words, “photons” of
frequency w are created, (see Fig. 3). However,
as this force continues acting on this wave, its
effect over one cycle will average more closely to
zero the farther the force is located from the res-
onance radius 7},.,. As a consequence, onre expects
that the w spectral component. of the outgoing wave
®LVEME 5 only amplified at the stav’ s suvface in a
very navvow neighbovhood survounding this simul-
taneous rvesonance vadius .. Although the for-
mulation in this section constitutes only a qualita-
tive heuristic summary of the relevant properties
of the partial-differential equation, Egs. (5.4) and
(5.5), the expectations of this summary are for-
mulated and proved more precisely with the help
of the complete set of orthonormal wave packets
also used by Hawking in his analysis. This is done
in the next section.

VI. RESONANCE: THE NATURE OF A SINGLE
AMPLIFIED ZERO-POINT FLUCTUATION MODE

The Fourier spectrum due to the single outgoing
vacuum fluctuation mode ®$°™ is given by Eq.
(4.7). The squared magnitude of this spectrum is
given by Eq. (4.8). These quantities are produced
by a wave field whose properties are condensed
into and referred to by means of real solution of
the (Klein-Gordon) wave equation. Alternatively,
one may, and in this section we shall, consider
this real-valued field as the sum of positive- and
negative-frequency complex fields. Such a decom-
position, we recall, constitutes a more refined
classification of the wave field—a classification
which brings into sharp focus the particle-anti-
particle properties of the wave field phenomenon.!?
Although the neutral particles, considered here,
are their own antiparticle, the distinction allows
us to discuss the amplification of a wave very
efficiently as the mere production of particles
(say, photons) and antiparticles (again photons)
from, say, the positive-frequency wave field of a
vacuum fluctuation mode, Eq. (2.4),

2\ L

@mtxtgoing - <
mim aw, 4r

emnttnr)=nim Y70, )
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The spectral amplitudes [analogous to those de-
fined by Eq. (4.7)] of the resultant positive- and
negative-frequency wave fields are, as one can
see by inspecting the derivation in Appendix A,

respectively

2% 1/2 M » ]
(pi-w(menxm):(a_w") @n® Bnim (- 4iwM)
X ezvrwu ei“’"n off (6.13)
and
28 \'2 M )
Y _wlwn, BMM):(EZ):) Ez—w)me Bnim T'(4iwM)
Xe-zrrwue _iwun off . (6.1b)

Here
Uy o5 = Vo — 4M +4M 1ndM w,

is the switch-off (retarded) time which separates
the oscillatory from the exponential behavior of
&®,,,, on the star’s surface (see Fig. 1). Their
absolute squares are respectively

2 M2 7w (1 L
el = 25, 27 Mo (5 + oy _1) 6.2)
and
27 M: 7w 3
Wl =00 57 e (;@rﬁ—_—i) (6.3)

In these expressions it is understood that O0< w.
The amplification phenomenon is now reflected
very distinctly in the expressions of Eqs. (6.2)
and (6.3). The first term in Eq. (6.2) refers to
the unamplified zero-point radiation spectrum.
The second term refers to the spectrum of the
amplified part only. Equation (6.3) gives the cor-
responding “antiparticle” intensity of the amplified
portion. In other words, half the amount by which
the mode ®%,%°™ got amplified is given directly by
the negative-frequency intensity, Eq. (6.3). The
sum of Egs. (6.2) and (6.3) gives, modulo the in-
tensity due to fluctuations, the total spectral in-
tensity already exhibited by Eq. (4.8).

The amplification mechanism cannot be under-
stood within the WKB approximation. Indeed, com-
puting the spectral amplitude in Appendix A within
this approximation, i.e., by using the method of
steepest descent, yields the unamplified zero-point
spectrum only,

2n M?2 m (1
W*“’lzza_w,, o —M—J(§> (6.4)

All properties pertaining to the nature of an
amplified vacuum fluctuation mode are contained
in Egs. (6.1). Two questions must therefore be
asked and answered: (1) Given the outgoing part

outgoing

of a vacuum fluctuation mode, &;;.°"°, where

along the history of the surface of the collapsing
shell star does the amplification take place?

(2) What is the half-width of the retarded time in-
terval along the history of the star’s surface dur-
ing which this amplification takes place? Both
questions can be answered by expressing the am-
plified portion of the wave field in terms of ortho-
normal wave packets which constitute a complete
set, already used by Hawking.® The basis func-
tions of this set are wave packets,

ij(u)=7'€1' 'Jf

€

(j+l)e . 1 X
ezmkw/e (211-)1 5 e_twu dw

(6.5)

of mean frequency (j+3)e. The predominant con-
tribution to each packet is localized in an interval
whose half-width is

Auy= %z>0’
€

and which is centered around

_2mk
T €

u

The completeness relation is

i i Pp(u)Pp(u")=0(u-u'). (6.6)

j=o® gz o

A function y(«) can thus be decomposed into a
superposition of wave packets,

Pu)= D ;e Pu(n) . (6.7)
j==0 k= -
Here the expansion coefficients
(i+1)e i

je
j,k=0,£1,22,...

are expressed in terms of the usual Fourier trans-
form

1 e ’ iwy'’ ’
%=WL° Y(u') e du

of the given function y(u).

The Fourier transform of the amplified wave
field, Eqgs. (6.1), gives rise to the corresponding
wave -packet coefficients,

- _Zi 1/2 M e'iﬂnlm 1
@in= aw, @m)t? Ve
4(i+1)eM
X l T(-iw)e™/2

J
. Uy off 27Tk dw
X —nol )|
exp [“" ( 4M 4Me>:l4M :

(6.9)
Here w=4Mw. Positive (negative) integers j refer
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to positive- (negative-) frequency wave packets
composed of Fourier components, Eq. (6.1a) [Eq.
(6.1b)], which are made up of amplified (amplified
part of the) zero-point radiation. The integer &
locates via Eq. (6.6) the position of the wave pack-
ets along the history of the star’s surface, which
is coordinatized by the retarded time «.

To evaluate the integral, let 1<|j|. This con-
dition does not exclude low-frequency wave pack-
ets provided € is chosen small enough. The con-
dition facilitates the evaluation by allowing a first-
order expansion of the exponent of the integrand.
Consider negative-frequency wave packets only.
Let

=—w0-Aw:

where w,=4| j|Me>0. Equation (6.9) thereby be-
comes

27 \V2 -1 4 )
(25 ey e

% g-™Wo/2 giwg <uncff _ 27k >

4M  4Me
4 Me
Xf e™(y +id)d(tw), (6.10)
0
where
o Tlwe) T (U 2nk>
YOS Ty T2 T <4M e ). &1
The intensity of a wave packet is therefore
2n 1
2 _ 277 : 2 —-TW
|l = 2w, 327¢ | T (iw,)lPe ™0
. 2 . 12
x4y S0 2Meb +sinh ZMey‘ (6.12)

6% +97

This intensity exhibits by virtue of the “resonance
difference” 5 and the “half width” y a typical reso-
nance behavior along the history of the collapsing
star inthe following sense: Selectively focus atten-
tion on the set of all those wave packets that have fixed
mean frequencyje. These wave packetsare distin-
guished from each other by the integer &, i.e., by the
(retarded) time = 27k/€ at which they emerge from
the surface of the star. The intensity of these
wave packets, as seen below, is large for that
integer k for which

2k
T=unres ’ (613)

where u, ., is given by Eq. (5.23). The intensity
is small for other values of k. Indeed, as seen
below, the full width of the retarded time interval
over which wave packets have “appreciable” in-
tensity is only

A(-Z—Z—k >=Au=87rM. (6.14)

The location of the resonance, and its width, are
governed respectively by the imaginary and the
real part of y+i6, Eq. (6.11). At high frequen-
cies, 1<w,=4|j|Me, for example,

T'(iw,) _ . 7T 1

F('Lwo) Zlnwo_'z'_%—o, (6.15)
y=-m, (6.16a)
1 (27k
5_m<—?_unres> ) (6.16b)
where
Uy res = Uy oy —4M Inw (6.17)

is the (retarded) moment of resonance already in-
troduced by Eq. (5.23) in the context of parametric
resonance. Introduce Egs. (6.16) into Eq. (6.12),
use the well-known expression for | I'({w,)? near
the end of Appendix A, reintroduce 4Mwe =w,,
drop the subscript zero, and thus obtain explicitly
the intensity of the packets under consideration
(namely, je fixed),

27 1 7 1

aw, 327€ 2Mw € 1 de”

lajklz:

[2e@nk/€ = u, )] +sinh?27Me
(2"k/€ —Un res")2 +(47TM)2 )

(6.18)

in2
X 16 M? sin

" The relative intensity of the wave packets under

consideration (je fixed) is governed by the very
last factor of Eq. (6.12):

3 €(2Tk/€ —t, s)] + sinh?27Me

) 2 sin?[
sl L e — v P + BT

It is now clear that, considered as a function of

27k
u=—

€ ’

loz.,,zl2 expresses the afore-mentioned resonance be-
havior of the wave packets along the history of the
surface of the collapsing star. It is this behavior
that gives u, ., Eq. (6.17), its special signifi-
cance: It locates where the zero-point fluctua-
tion mode is getting amplified. Equation (6.18)
indicates that the spectral component w =je is
produced predominantly in a total interval

Ay =81M (6.19)

centered around this simultaneous resonance time
given by Eq. (6.17).

The damped resonance behavior is also present
for low frequencies (w =| jle ~1/4M). Indeed, for
such frequencies, w,=4|jleM~1, the real and
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imaginary part of (InI")’ in Eq. (6.11) are of order
unity. Although the half-width (=y) and the reso-
nance difference (=6) are altered slightly from
those of Eqs. (6.16), we expect that the qualitative
behavior of Eq. (6.18), and the concomitant re-
sults, Eqs. (6.13) and (6.14), still hold.

The results of the wave-packet analysis of this
section can be summarized by rewriting Eq. (6.18),
the intensity of a wave packet, in the form

2 " M1

law, = aw, Mw € €% _]
y sin®{3 e[ u —u, ..(w)]} + sinh*27Me
[ ~thy o5 (@) + (47M0)? ’
(6.20)
where

Uy res(W) =0y —4M +4M IndMw, — 4M IndMw (6.21)

is the resonance time, Eq. (6.17), with its depen-
dence on w, and w emphasized and exhibited. The
spectral component w is produced in a neighbor-
hood of size Au =87M surrounding the resonance
time u, . (w).

The various spectral components are produced
only over a limited part of the history of the col-
lapsing star. Indeed, the high-frequency (M
< w=|j|e€) intensity contribution [see Eq. (6.20)]
produced at early retarded time [ for how early,
see Eq. (6.21)], is exponentially small because
of the Planck factor. The very-low-frequency
(| jle =w<< (4M)™!) intensity contributions are pro-
duced at late retarded times. Although the corre-
sponding integrand, Eq. (6.20), diverges (~w™2) as
w=|jle approaches zero, the associated spectral
photon flux («| @, fw?®) or “energy flux” (=| a,,Fw?,
see Sec. IX) does tend towards zero during late re-
tarded time. Indeed, without even referring to the
above detailed wave-packet analysis, one may ob-
serve [see Eq. (5.9)] that the vacuum fluctuation
mode ®%°" ig being switched off by the star after
u =u, .; it approaches a contant in an exponential
way and thereby will not give rise to any radiation
appreciably after u =u, .

Within the context of gravitational collapse, the
primary significance of the above result about the
resonance aspect of the amplification process lies
in its local nature. Within the framework of clas-
sical field theory the above analysis shows that a
wave emerging from the surface of the star will
be amplified precisely at the collapsing surface
and no where else.

The amplification process is a linear one. Con-
sequently, it applies to any wave field satisfying
the Klein-Gordon equation, and the wave fields of
vacuum fluctuation modes, designated by &,;,
throughout this article, are no exception. Aver-

aged over several such modes, the spectrum of
the amplified portion of these modes is that of a
blackbody. '

It is therefore very difficult to associate the
production of blackbody radiation with anything
but the surface of the collapsing star.

It is interesting to contrast Hawking’s basic as-
sumptions with ours. His picture and computa-
tions rest very heavily on the assumption that a
collapsing star will actually pass through its event
horizon, leaving behind a black hole in the stan-
dard sense of the word. The origin of the black-
body radiation, he argues, is not the star itself,
but instead is the actual event horizon. Indeed,
he pictures the creation of particle pairs near
this event horizon. One particle is emitted to-
wards a distant observer; the antiparticle disap-
pears inside the event horizon. Our picture and
computations, though not as general as Hawking’s,
areverydifferentfrom them. The event horizonis ir-
relevant in our analysis. The importance shifts
away from the » =2M surface, and instead the
central focus of attention is the resonance radius

¥ (W) =2M = 2M IndMw, +2M IndMw, (6.22a)

or, equivalently, the resonance time
b res(W) =0y = 2M +2 In1ndMw, - 2M IndMw .
(6.22b)
There, in a neighborhood of size
Ar*=471M

at the vacuum matter interface of the history of
the collapsing star, an outgoing wave will get am-
plified.

It is the nonadiabatic change in the red-shift
which is responsible for this amplification and
hence the emission of radiation stimulated by
the vacuum fluctuations. The nonadiabatic nature
of the change is expressed and manifests itself
by the difference between Eq. (6.2) and Eq. (6.4).

VII. NATURE OF RADIATION EMITTED
BY A BLACK HOLE

It is easy to identify three properties of the ra- -
diation emitted from the surface of the collapsing
star:

(1) Each zero-point fluctuation mode &,,,, gives
rise to a spectrum that consists of three parts:

(i) the Lorentz invariant zero-point spectrum, (ii)
the blackbody spectrum, and (iii) the fluctuation
spectrum.

(2) The radiation fields associated with their
respective vacuum fluctuation modes are statisti-
cally identical.

(3) The radiation fields associated with their
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respective vacuum fluctuation modes are emitted
in a time-sequential order, each radiation field
being characterized by its switch-off time, Eq.
(5.16b).

The first property has already been identified in
the discussion following Eq. (4.8). That the first
term should refer to the zero-point radiation spec-
trum is a proposition that follows from an exact
frequency (w) by frequency cancellation of this
outgoing zero-point energy with the spectral zero-
point energy going into the incipient black hole.
This is shown in Sec. IX and also in Sec. X.

Each spectrum, Eq. (4.8), depends on the ran-
dom phase angle 8,,,, of the zero-point fluctuation
mode &,,,.. There are many such modes which
contribute to the total seen by the distant ob-
server. The phase 8,,,, is a random function of the
integers (z,7,m). Consequently, the fluctuation
term in Eq. (4.8) drops out. Thus the mean
squared magnitude of the Fourier amplitude 3, for
outgoing radiation due to the vacuum fluctuations
of the standing wave ® Eq. (4.5), reduces to

nim?

2
<|‘/’w(“’n)lz>=ﬂM T 2 coshdrwM

aw,2m 4wM sinhdrwM

_r M(1 1 )
_aw"w<2+ea”’”-1 ’ (7.1)

The second property can be identified directly by
focusing on the Fourier amplitude of the radiation
field caused by a typical mode ®

nim’
27 1/2 M .
Voo (s Brym) = <a_w—"> (2—1’_)17-51"(— 4iwM)

X (e‘z’”"MeiB"lm.'.e*z’”"Me'iB"’”‘)ei“’“n off,
(4.7)

The very last factor is the relevant one. It de-
termines the position of the amplified wave field
along the history (parametrized by the retarded
time coordinate u#) of the collapsing surface of the
star. Indeed, this positioning follows from the
circumstances that if F(w) is the Fourier trans-
form of f(u), then e®““nottF(w) is the Fourier
transform of f(u —#,4¢¢). In other words, multi-
plying F(w) by e“¥nort has the effect of shifting the
time-dependent signal f(#) by an amount

Uy o5 = Vo — 4M + 4M IndMw

into the future (later retarded time). In terms of
the Schwarzschild time #, which is used by a dis-
tant observer, this shift is, of course

Lyt =Vo— 2M +2M IndMw,,.

It is now clear why the outgoing packets of ra-
diation caused by their respective ®,,,’s are sta-
tistically identical. Their respective Fourier

transforms, Eq. (4.7), are, modulo the time
translation factor ei“n*notz, identical, i.e., they
are totally independent of the frequency w, [the
first factor, (2%/aw,)*/?, is merelyanormalization
factor]. Hence the outgoing packets of radiation
are identical.” Their only difference lies in the
presence of the random phase shift 8,,,. This ex-
presses, as is evident from Eq. (4.8), the statis-
tical identity of the outgoing radiation packets
caused by the &,,,’s.

The third property is now also easily identified.
By virtue of the presence in the Fourier spectrum,
Eq. (4.7), of the time translation factor

iUy ot

it is evident that the outgoing radiation packets are
sequentially ordered along the history of the sur-
face of the collapsing star. Each compound radi-
ation packet starts getting switched off after its
switch-off time u, ,,;; those packets caused by
®,,,.’s with low frequency w, first, those caused by
®,,, s with high frequency w, later.

VIII. BLACK-HOLE ENTROPY =% In (NUMBER OF FIELD
OSCILLATORS)

An incipient black hole emits radiation packets
in consecutive order. It is appropriate therefore
to determine the total number emitted during the
whole lifetime of the black hole. Each emitted ra-
diation packet is brought into existence by a spe-
cific field oscillator whose frequency is

T l
W=z (147 )

The number of radiation packets brought into ex-
istence by all those field oscillators whose fre-
quencies lies in an interval Aw, is given by

An  Aw,

T .
n+3l w,

(8.1)

(In order for the ingoing waves of these field oscil-
lators to be actually able to enter the star, it is
necessary that 3/ <<z. Dropping the angular quan-
tum-number term 37 will result in a slight inaccu-
racy in the final result [see also the discussion
following Eq. (9.11)]. According to Eq. (5.16b),
this happens during a time interval

Aw,
o (8.2)

n

At =2M

According to Eq. (1.3) or Eq. (9.11) (to be defined
in the next section), the mass emitted in this time
interval is

2

L
AM:aMLzAt,
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where a=~0.708 X 10", Combine Egs. (8.1), (8.2),
and (8.3), integrate, and obtain

"dn_ 1 (°MaM (8.3)
,/; n 2aJ, L,/

The result yields the logarithm of the total num-
ber of emitted radiation packets, i.e., the total
number of field oscillators ®,,,, which cause the
emission of blackbody radiation during the finite
lifetime [Eq. (1.4)] of the black hole,

M2

= X 103 .
Inn=3.53X10 I

(8.4)

The expression on the right-hand side is (modulo
a factor ~280) the entropy of the initial incipient
black hole!*!® (BH)
2
Spy = 4k 2L (8.5)
L w

Recall that the entropy of a black hole is a mea-
sure of the number of internal configurations,® 7
i.e., possible modes of formation (“hairs”) that
can give rise to the same macroscopic black
hole.'® In other words, the entropy is (Boltz-
mann’s constant 2 times) the logarithm of the to-
tal number, »;,,, of microscopic (in the statisti-
cal-mechanical sense) states any one of which cor-
responds to the same macroscopic state, the black
hole. Thus we are led to the interesting numeri-
cal coincidence

N X Ninternal (86)

in other words, the number of radiation packets
emitted during the lifetime of a black hole equals
roughly the total number of internal states (“lost
hairs”) of the initial black hole. This suggests
that in some generalized sense the vacuum fluctu-
ations modes (field oscillators) interact with cor-
responding internal black-hole states and stimu-
late them into emitting radiation packets. With
the emission of a number of such packets there
will be a corresponding decrease in the number of
internal states. Although the entropy of the black
hole will decrease, the entropy of the total sys-
tem, black hole plus emitted radiation, presum-
ably will not.*®

In view of the fact that a black hole has the inter-
related attributes of (1) temperature, (2) entropy,
and (3) degrees of freedom that cause spontaneous
emission, it follows that there is a potentially
very consequential way of viewing black holes:
Besides, say, compound nuclei, as we know them
from nuclear physics,® incipient black holes seem
to constitute another example of a macroscopic
many-level system in a state of excitation, which

is best described statistical mechanically in terms
of temperature and entropy. Indeed, it is possible
to derive the blackbody radiation spectrum togeth-
er with its fluctuation spectrum from the single
assumption that a black hole is endowed with a
high-density quantum-level structure.?!

IX. EMISSION OF MASS-ENERGY BY AN INCIPIENT
BLACK HOLE

The outgoing energy spectrum due to the single
zero-point radiation mode ®2it&i"€ being switched
off is

(energy) 1
(mode)(unit area)(unit frequency) M d(Mw)

11 1
57 |9 (@5 Brnt ) |2w2]7[d(Mw)
11m/M
“4n7% aw, )

1 1 .__cosB,;,, )

(2 * 5 1 T sinhdniie ) 2 M@)- -1

The factor (47)"! arises from averaging over a
sphere surrounding the incipient black hole. The
second factor arises from applying Parceval’s
formula,?? and hence Eq. (4.8), to the energy flux
b, (=19 1% associated with the wave field, Eq.
(4.6).

The rate at which modes are amplified by the
collapsing star is (see Appendix C)

(number of amplified modes) dn
(unit time) “dt

_aw, 1
T2rM’

(9.2)

Multiply this rate by the energy, Eq. (9.1), and
obtain thereby the spectral power flux due to the
amplification of all those modes &,,,, that have
fixed integers I and m.

For a given frequency w but for different quan-
tum integers I and m, the number of those modes
that are actually able to surmount their centri-
fugal barriers, Eq. (4.2), and thus are able to
escape (or enter) a black hole, is

fl(21+1)dl=l(l+1)
=2T(Mw)?. 9.3)

The upper limit of integration is determined by Eq.
(4.3).

The spectral power flux emitted by an incipient
black hole and received by a distant observer is
thus the product of Egs. (9.1), (9.2), and (9.3),
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(outgoing energy) 1 AMw) =

(unit time)(unit area)(unit frequency)M

Thus a distant observer measures both outgoing
thermal radiation as well as zero-point radiation.
However, vacuum fluctuations are composed of
both ingoing and outgoing zero-point radiation
modes, and the modes carrying energy into the
black hole must not be ignored.

The ingoing part, for all times, is exhibited in
the expression for the standing-wave mode ®,,,,
Eq. (2.4). The squared amplitude of each ingoing
mode averaged over a sphere surrounding the
black hole and other several modes centered
around w, is

1 7z

( ](I)ingoing|2> = p 4awn .

nlm

(9.5)
The density of such modes that are able to enter
an incipient black hole is

(number of modes) _dan
(unit of frequency) dw,

- (%) 2TMw,)2. (9.6)

The first factor is the number of modes (of fixed
total angular quantum numbers ! and ) per unit
frequency associated with a sphere of radius a.
This factor is multiplied by the total number of
those modes of frequency w, which are actually
able to enter a black hole, Eq. (9.3).

The energy density associated with the mode
Plreoine jg (|pineoing|2y, 2y Consequently, the spec-
tral energy flux into the black hole is, with the
help of Eqgs. (9.5) and (9.6),

(ingoing energy) 1
(area)(time)(frequency) M

dMuw,)

dn 1
- ingoing |2 2 Ut -
=(|@ Yor? o a4,

nim
1 /M (1 3
= Mw). (9.7
4nv227M <2>27(Mw) dMw). (9.7
The subscript » has been dropped from the last
expression.
The net spectral energy flux emitted from an in-
cipient black hole to a distant observer is the dif-
ference between Eqs. (9.4) and (9.7),

(net energy) 1
(area)(time)(frequency) M

d(Mw)

1 n/M 1
P L <e8m- l)zv(Mw)Sd(Mw). ©.8)

It follows that the rate at which an incipient black
hole is losing energy is

/M 1 (1 1
27M 4mv?

5+

2 eBﬂwM 1)27(Mw)3d(Mw)- (9.4)

(energy) _ dMy,
(time) dt

AU

[\

B [ M) d0t)
T 21M Yy

B M &

T 2rx15x8f ME” (9.9)

In terms of geometrical units, this equation as-
sumes the form given by Eq. (1.3). Integrating
this equation yields the total lifetime, given by
Eq. (1.4).

The correctness of the evolution equation, Eq.
(9.9), rests upon three implicit assumptions to
which one could object:

(1) The correctness of (a) the frequency w, ex-
pression, Eq. (2.3), for ¢,,,, and hence the num-
ber of modes amplified per unit time, Eq. (9.2)
or Eq. (C4), and (b) the number, Eq. (9.3), of
those travelling modes of frequency w which can
surmount the potential barrier Eq. (4.2), and
hence of the density of modes, Eq. (9.6).

(2) The correctness of the zero-point energy
subtraction process which gives rise to Eq. (9.8).
(3) The correctness of the shift in the time of
amplification, Eq. (C2), which gives rise to Eq.

(9.2), the rate at which modes get amplified.

There is evidently overlap between objections to
assumptions (1) and (3). They have, however,
been listed separately because the objections can
be made on different grounds. As seen below,
objections to assumption (1) are inconsequential,
objections to assumption (2) are answered in
Sec. X, and objections to assumption (3) need to be
answered by means of another paper. Focus on
the first assumption first.

(a) Equation (9.2) is based by means of Eq.
(C1) on Eq. (2.3). We are implicitly assuming
that the wave field ®,,,, has its angular eigenfunc-
tion integer ! low enough so that inside a sphere
of radius 7 =2M the radial factor (spherical Bessel
function) will undergo some oscillations. It can
thus be easily shown that the circumstance 2M< q,
i.e., collapse taking place inside a very large
spherical cavity of radius a, implies I<n. Hence

the basis for Eq. (C1), is indeed a very accurate

expression for the oscillation frequency of ®,;,,.
(b) The power spectrum of the net radiation

emitted by an incipient black hole is given by
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Eq. (9.8). This blackbody spectrum has its maxi-
mum approximately at

1

v (9.10)

w=
The minimum angular momentum carried by a
photon is [I(I+1)]Y/%1 =V 2k. Consequently, the
minimum height of the potential, Eq. (4.2), which
separates the black hole from a distant observer,

1S
1/2\% 1
W min = §<"3'> M'- (9.11)

Emitted radiation of frequencies near and below
that given by Eq. (9.13) is not totally transmitted
over or through the centrifugal barrier, Eq. (4.2).
It follows that Eq. (9.3) does need to be modified
for w<w,;, and that the power spectrum seen by a
distant observer is therefore not quite the one ex-
hibited by Eq. (9.8), but rather a version which is
somewhat distorted and diminished below fre-
quencies of the order given by Eq. (9.11), which is
slightly above the frequency, Eq. (9.10), of the
blackbody spectrum maximum.

If the black hole is immersed into a blackbody
radiation field whose temperature equals that of
the black hole, is one to conclude from the exis-
tence of this distortion that an incipient black hole
cannot stay in thermodynamic equilibrium with
its surrounding? The answer is, of course, no.
Just as the emerging radiation spectrum is dis-
torted, so is the spectrum of the radiation which
surmounts or tunnels through the barrier, Eq.
(4.2), in order to be absorbed by the black hole.
The transmission and reflection through the bar-
rier is symmetric as far as ingoing and outgoing
radiation is concerned; it follows that the radia-
tion which is lost down the black hole is precisely
gained coming up out of the black hole. In other
words, if the black hole is immersed in blackbody
radiation of temperature given by Eq. (1.2), equi-
librium is preserved between the black hole and
the blackbody radiation outside it. The existence
of the barrier merely makes the black hole emit
blackbody radiation “masked by a filter.”

The second implicit assumption, discussed in
more detail in Sec. X touches the more important
issue of principle, namely, what unambiguous
principles one refers to, in dealing with the
seemingly unlimited number of field oscillators;
their combined zero-point energies yield an un-
limited energy-density permeating space. A
superficial but straightforward qualitative applica-
tion of Einstein’s gravitation theory would argue
very forcibly for profound global gravitational
effects, which are not observed in reality 2’24
One should note, however, that this infinite energy

1495

associated with the unlimited number of Klein-
Gordon (KG) degrees of freedom is problematic
only to a classically formulated black-hole theory
(or, more generally, gravitation theory). It is
therefore not so obvious whether the problem per-
sists in a theory that analgamated the KG degrees
of freedom with the microscopic internal degrees
of freedom?!® of, say, a macroscopic black hole.
The third assumption underlying Eq. (9.9) is
Eq. (C2). Starting with the resonance time Eq.
(6.22b) for ®,,,, or better yet with Eq. (B9),

t=vy,-2M +2M In4dMw - 2M IndM w

161(1+1)
—MIHT
=tn res -Mln 161;{;-1)1 (9.12)

in order to take into account the centrifugal
barrier also, one obtains

Aw,

At =2M +2AM1ndMw, - 2AM IndMw

» 161(1+1) )

-AM o7

(9.13)
In other words, the approximation that went into
Eq. (9.4), the rate at which modes get amplified,
is that M stays constant. Evidently the number of
modes that get amplified during the time interval
At is substantially influenced by the amount of
mass, AM, lost by the incipient black hole during
At

Let us see what consequences are entailed by
incorporating changes in black-hole mass into
Eq. (9.2). Introduce Eq. (9.12) into Eq. (9.13) to
eliminate the logarithmic terms, use Eq. (C1),
and obtain instead of Eq. (9.2)

(number of amplified modes)
(unit time)

_dn

Tdt

_awy 17, dM 1

T M[l‘ i M(t‘”")}' (8.14)

Let us make the tentative assumptions (a) that in
spite of variable black-hole mass the outgoing
energy spectrum is still given by Eq. (9.1) and

(b) that the zero-point energy will not appear in
the net-energy ledger. Then the differential equa-
tion for the evolution of an incipient black hole,
Eq. (9.9), gets replaced by

ar _ _LW_Z[I @1(1 v_)]
a ‘U a\mw T um

or
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avM _ L, 1
7“"‘7‘?—1 L2/ g\

- 74‘"(117 - M)
Here a=27(27x15x8%) !, L,=®G/c®) ~® is the
Wheeler length. This modified evolution equation
evidently yields a black-hole lifetime different
from the one given by Eq. (1.3).

Owing to the present nonexistence of more gen-
eral well-formulated principles, one may there-
fore not as yet exclude the possibility that once
mass-energy loss has been incorporated into the
radiation production mechanism and into the
evolution dynamics of a radiating incipient black
hole, the general properties of such a black hole
are substantially different from its first approxi-
mation considered in this paper.

X. NET ENERGY NECESSARY TO DEFORM THE
ZERO-POINT FLUCTUATIONS IS CUTOFF INDEPENDENT

In the process of identifying the phenomenon of
zero-point fluctuations as the common denomina-
tor which explains other directly observable
phenomena of nature, one is invariably confronted
with the problem of dealing with an unlimited num-
ber of field oscillators in their ground state and
hence with an unlimited amount of zero-point en-
ergy. Instead of defining (i.e., identifying) gen-
erally applicable principles, one usually deals
with the problem on a case-by-case basis as it
arises in the phenomenon under examination. The
derivation of the Planck radiation formula for an
incipient black hole is no exception.

Consider the integrated energies associated
respectively with (a) the outgoing energy spec-
trum, Eq. (9.1), due to a single mode ¢ ,,,,

/M <l+ 1 , 0528,
aw, 2 &™Y_1" 2sinhdtMw

)(Mw)d(Mw) )

(10.1)

(b) the outgoing spectral power, Eq. (9.4), due to
the amplification process,

/M (1 1 ) s
211'—M (2 + eSﬂ'Mw_ 1 27(Mw) d(Mw) N (10.2)
and (c) the ingoing spectral power, Eq. (9.7), due
to zero-point radiation absorbed by the black hole,

W/m

5oL (10.3)

(%)2‘7(Mw)3d(Mw) .
The upper limit of integration in all of these ex-
pressions should not be set to infinity. It is,
however, permitted to set the upper limit of the
total net energy, Eq. (9.9), associated with net
spectral energy, Eq. (9.8), equal to infinity.
The reason for the imposition of such a double

standard is that, strictly speaking, none of the
integration limits should be set to infinity. Con-
sider specifically the integration limits of the ex-
pression in Eq. (10.1), the total energy emitted by
a black hole and caused by a standing wave of fre-
quency w, inside the star. According to the dis-
cussion in Appendix A the expression for the
Fourier amplitude, Eq. (4.7), and hence the total
energy, Eq. (10.1), is only applicable for those
(conserved) Schwarzschild frequencies w, for
which

w<¥w,.

Consequently, the upper integration limit in Eq.
(10.1) can be very large as long as w < w,, which
is always the case during late stages of collapse.
Furthermore, during the whole lifetime of the
incipient black hole, w, can only assume finite
values—finite values because the emission of
radiation from an incipient black hole is caused by
interior standing waves of successively high
frequency [see Eq. (5.16b) or Eq. (9.12)], the
highest frequency being the limiting frequency of
the sequence {w,; arrived at in Sec. VIII. This
limit is characterized by the integer = given by
Eq. (8.6). It starts entering the picture only near
the end of the life of the classical incipient black
hole. The conclusion is therefore that a large but
finite cut-off frequency should be assigned to the
integration limits (10.1) and(10.2). As a result, the
emitted radiation, zero-point plus blackbody, is
finite. To determine the net radiation emitted,
focus on ingoing radiation, Eq. (10.3), with the
same cutoff, perform the subtraction frequency by
frequency, and obtain the net rate of energy emis-
sion, Eq. (9.8). The only frequencies that actually
enter into the subtraction process are those that
characterize wave fields that have actually been
amplified by the collapsing shell star. Other wave
fields need never be mentioned in the energy led-
ger. Furthermore, the expression Eq. (9.8) ap-
proaches a finite limit as the upper integration
limit approaches infinity, i.e., the final result

is cutoff independent.

XI. ENERGY SPECTRUM AND FLUCTUATION SPECTRUM:
BLACKBODY VS INCIPIENT BLACK HOLE

(1) Both a blackbody and an incipient black hole
emit radiation characterized by Planck’s black-
body radiation formula. To facilitate a compari-
son between the two emitters, follow the argu-
ments of Einstein®® and de Broglie®® by recalling
the important features of the Planck spectrum,

-hw/eT -2RW/RT -3hw/kT

~holkTy 7 =€ +
e(MWRT) _ | e

+e foee,

(11.1)



14 THE MECHANISM OF BLACKBODY RADIATION FROM AN... 1497

and of the mean square of the fluctuations associ-
ated with the energy deposited into, say, AG,
=8ma’w?Aw/(27)® phase-space cells,

. AG Jiw AG Jiw
(e >=7’Zw<ehw/kr -1 + (e"‘”/”— 1)?

(11.2a)

= 1w(AG Hiwe ~"/*T) + 21w(AG  fiwe ~2"/*T)
+37w(AG ,iwe "R Yy oo (11.2b)

This dispersion {(€?) is that of a mixture of sta-
tistically independent Boltzmann gases of single
quanta 7w, pairs 27w, trios 37w, etc. The Planck
spectrum itself refers, of course, to the mean
number of quanta in each phase-space cell. In
view of the nature of the dispersion (€?), the oc-
cupants of a single phase-space cell are single
quanta Zw, or pairs 27w, or trios 37w, etc., the
mean number of n-tuples being given by the re-
spective terms of the sum in the Planck spec-
trum, Eq. (11.1).

Thus one is led to consider the blackbody radia-

tion as an ensemble of thermalized quantized
J

(energy)

_MAw h’_w 7t
(mode)(unit frequency) w= aw,

_Maw Fg+ fw
m L2 e™v_1

The first term refers to the unamplified zero-
point energy. See Egs. (6.2) and (6.4). The re-
semblance of the other terms in this expression
to not only the blackbody energy spectrum, Eq.
(11.1), but also to its fluctuation spectrum, Egs.
(11.2), is striking. If one wishes to apply to the
radiation from an incipient black hole the under-
lying principles of the theory of blackbody radia-
tion—and the nature of the fluctuation spectrum
indicates that one must—then it is necessary to
assume that the radiation from an incipient black
hole is in the form of quanta. Indeed, the coef-
ficient of cosB,;, in Eq. (11.3a) is the root mean
squared fluctuation in the energy of radiation
consisting of quanta and waves, or alternately
of single quanta, pairs of quanta, trios of quanta,
etc. as we have learned from Einstein and
de Broglie.

The necessary assumption that the radiation is
in the form of quanta carries with it, as seen
below, a price (or bcaus): One must assume that
the emission process is also quantized, and that
the emission of quanta due to the vacuum fluctua-
tion modes ¢ ,,;,, is therefore governed by proba-
bility concepts.

field oscillators: The field oscillator whose fre-
quency is w can be excited only in steps of energy
7w; the nth term in the sum refers to the proba-
bility of exciting the field oscillator to its nth
energy level by virtue of the simultaneous pres-
ence of n photons each of energy 7Zw. In other
words, given the Planck blackbody radiation spec-
trum, together with its fluctuation spectrum,
Einstein’s and de Broglie’s arguments lead to

the ideas that (a) blackbody radiation consists of
quantized field oscillators, and that (b) the prob-
ability for exciting the oscillator of frequency w
by one step (and thereby creating only one photon)
is given by

e( -hw/kT) .

An incipient black hole, like a blackbody, also
emits radiation characterized by a Planck radia-
tion spectrum. Indeed, as a result of parametric
amplification (by the collapsing star) of a vacuum
fluctuation mode ®,,,, the spectral energy [see
Eq. (9.1)] emitted into the exterior Schwarzschild
vacuum geometry is

w h—w h—w 27172
2 + eﬂ‘nMw_ 1 +coszﬁnlm[ﬁw<eaﬂﬂlw_ 1>+<e81er_ 1) ] } (11.33.)

+AWCOSPy (e 8TH Y+ 278TH W2 L ZgTETH W, L )1/2] .

(11.3b)

(2) The rate at which the vacuum fluctuation
modes ®,,,, play their active role along the star’s
surface is, Eq. (C4),

It follows from applying this equation to Eq.
(11.3a) that the mean energy emitted in a
(Schwarzschild) time interval At is

(energy) _(fw fiw >AtAw
(time)({frequency) AtAw—( 2 TEe_1) 3y -
(11.4)

Consider those modes having fixed angular in-
tegers land m. The density of these modes in
phase (i.e., t,w) space is such that the phase-
space volume assigned to one travelling mode
(i.e., the volume of one phase-space cell or one
field oscillator) is

AtAw =27, (11.5)

Indeed, the notion of phase space and phase-space
cells (and the “Planck oscillator”) has been made
precise by means of the set of orthonormal wave
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packets P () in Sec. VI. One such traveling wave
is assigned to each phase-space cell. Its frequency
interval is Aw=€. The interval of time within
which each traveling wave is localized is A¢=Au/2
=2n/e. The phase-space volume of each mode is
therefore given by =q. (11.5).

The mean energy in each phase space cell is
thus

(energy) Tw fiw

(unit phase-space cell) 2 & &™9_1

(11.8)

By contrast, in the given frequency interval Aw,
each single mode @, causes the emission of en-
ergy which in the mean is

(mean emitted energy) =(@ L Tw MAw
(mode) 2 ™Y _1) pur

(11.7)

The square of the deviation from the mean ener-
gy, Eq. (11.6), deposited into a unit phase-space
cell, is, according to Eq. (11.3a),

7w w ¥
coszanlm[ﬁw<eS1er - 1) +(es1er _ 1> ] .

Having averaged this expression over several vacu-
um fluctuation modes & ,;,,, one obtains

(11.8)

(€2) =3[Awhw e ®™v) + 27w (hw e~ “2)

+ 37w (fiw e 8™ W3) 1 o0 0 ], (11.9)
This is the sum of the mean squared energy fluctu-
ations (in one phase-space cell} due to a mixture
of statistically independent Boltzmann gases. (For
an isolated black hole considered here, the factor
3 expresses the fluctuation of only the outgoing
part of the blackbody radiation; in our considera-
tions, ingoing blackbody radiation is absent.)

Such a fluctuation spectrum suggests therefore
very strongly the following meaning to the mean
energy, Eq. (11.6):

nw w —@H'Twe

— 4 T = -8TMw
2 e -1 2

+Hw e 8THW2

e SIS s (11.10)

each exponential factor e 8"#“"gjyes the mean num-
ber of »-tuples of photons in a unit phase-space
cell (i.e., the relative probability that a given field
oscillator is excited to the rth state).

One can draw three conclusions from the exis-
tence and the nature of the energy fluctuation as-
sociated with the amplification of vacuum fluctua-
tions.

First, the radiation from an incipient black hole
is thermal radiation in the precise sense of the
term, i.e., the outgoing radiation is characterized
not only by a Planck-type spectrum, but also by
fluctuations which only blackbody radiation has.?’
Such a fluctuation spectrum implies®! (i) that an
incipient black hole is an entity endowed with
densely spaced quantum levels and (ii) that there-
fore the basic laws of statistical mechanics can be
applied and, thus, used to explain the thermal
radiation emitted from a black hole.

Second, for given angular integers ! and m, over
a short enough time interval and frequency interval
(At Aw ~27) the amplified energy is dominated en-
tirely by its fluctuating part, Eq. (11.8), especially
at higher frequencies. Indeed, it is evident from
Eq. (11.9) that for high frequencies the root mean
squared energy fluctuation from one phase-space
cell to another phase-space cell,

1
(Ae)ms ___<€2>1/2 “’72=h'we—4"'lw ,
is much larger than the mean amplified (non-zero

point) energy, Eq. (11.6), deposited into a phase-
space cell,

(amplified energy)

-8rMw
(unit phase-space cell) :

~fiwe

The radiation, therefore, is emitted in the form of
single quanta 7Zw in the roughest sense of the term.

These single quanta can be pictured to be re-
sponsible for the relatively large energy fluctua-
tions from phase-space cell to phase-space cell.
In view of the fact that they are negative as well
as positive [ -1 <cosf,;,, <1 in Eq. (11.3)], the
energy density due to the amplified radiation can
be negative at the surface of the collapsing star.
Indeed, even though the energy condition®® is sat-
isfied in the mean, it is likely that it is not satis-
fied statistically and that for this reason the focus-
ing theorem?® will not apply and hence gravitational
collapse will not evolve into a standard black
hole.?®

Third, a single vacuum fluctuation mode &,
can be said to stimulate the emission of a photon
with a probability
-8TMw

M
—e

ot =probability for &, to cause

the emission of a single photon.
(11.11)

Such an observation is arrived at by first observing
that the amplification process is linear and there-
fore can also be applied to a vacuum fluctuation
mode & ,,,. However, an attempt to do this to many
such modes runs into an illuminating contradic-
tion between (a) the mean spectral energy, Eq.
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(11.7), produced by a single vacuum fluctuation
mode and (b) the fluctuations in this energy. On
one hand, the fluctuation spectrum dictates that
the amplification and hence the deposition of ener-
gy into phase-space cells is in the form of quanta
7w, especially at high frequencies. On the other
hand, it is evident from Eq. (11.7) that, classical-
ly, a single mode &, cannot marshall enough en-
ergy to fill a single phase-space cell with the mean
energy given by Eq. (11.6), to speak nothing about
enough energy for the emission of a single quantum
7iw. The contradiction can be circumvented by as-
serting that Eq. (11.7) is understood to hold only

in the mean, and that the factor

M 1 M 8TM M M
“ =L (BTHY | p-sTHLE 4 p-8THWS |, )
™m ™Y 1 mm

refers to the probability of ®,,,, causing the emis-
sion of a single quantum 7Zw, or a pair 2%Zw, or a
triple 3%Zw, etc. Thus for high frequencies the
first term, which expresses the emission of single
quanta, is the dominating one, and is the one given
by Eq. (11.11). The first term inside the parenthe-
sis, the probability of finding a single quantum in a
a phase-space cell, is the quantity which Hawking®*
determined and from which he found the Planck
spectrum.

XII. CASIMIR EFFECT, INCIPIENT BLACK HOLES,
AND SAKHAROV’S VIEWPOINT

The relationship between zero-point fluctuations
and Einstein’s geometrodynamics is not new.
Sakharov, evidently referring to the energy neces-
sary to deform the zero-point fluctuations, points
out that the “metric elasticity of space” can be
considered as the underlying principle from which
Einstein’s geometrodynamics follows.3°

It is possible to point to at least two macroscopic
phenomena in nature which support Sakharov’s
idea, namely, the Casimir effect®'' %233 and the ef-
fect discovered by Hawking,**%+3¢: 35 which in this
paper has been reformulated and extended in terms
of zero-point fluctuations. The Casimir effect,
we recall, consists of an attractive force between
two uncharged capacitor plates at the same poten-
tial. This attraction arises from the fact that it
takes a negative amount of energy to deform
adiabatically the zero-point energy density between
two plane conductors. This negative deformation
energy has an effective mass and hence should be
an active source of gravitation.*® In other words,
one should identify the deformation energy of the
zero-point fluctuations with Sakharov’s metric
elastic energy of space.

When a star undergoes collapse it is possible to
draw a sharp distinction between (a) the background

geometry and (c) perturbations of this geometry,
or other (e.g., electromagnetic) fields evolving in
the geometry. This distinction during the evolution
of an incipient black hole allows one to assert that
although the dynamic geometry deforms the zero-
point fluctuations in an adiabatic fashion during the
early stages of collapse, the geometry deforms

the zero-point fluctuations also decidedly nonadia-
batically during the late stages of collapse. Were
it not for these nonadiabatic parametric excitations
of the zero-point fluctuations the exterior geometry
would evolve into the vacuum Schwarzschild geom-
etry as seen by a distant observer. As it stands,
however, the existence of the blackbody radiation
should be viewed as the extra amount of negative
work that the collapsing star is doing in deforming
the zero-point fluctuations nonadiabatically. Con-
sequently, the total (adiabatic plus nonadiabatic)
deformation of the zero-point fluctuations should be
associated not merely with an interior geometry
together with an exterior Schwarzschild geometry
but rather with a geometry that differs “slightly”
from it (possibly a variant of the radiating Vaidya
geometry ?)*” From Sakharov’s viewpoint the ex-
istence of the additional qualitatively different
(nonadiabatic) deformation of the zero-point energy
is therefore to be associated with the difference
between the metric elasticity of the exterior space
endowed with the Schwarzschild geometry (corre-
sponding to only “adiabatic deformation of space”),
and that of the exterior space endowed with a radi-
ating Vaidya (?) geometry (corresponding to “adia-
batic together with nonadiabatic deformation of
space”).

XIII. EFFECT OF VACUUM FLUCTUATIONS
ON BLACK-HOLE FORMATION

The existence of a vacuum black hole formed by
a collapsed star is a sufficient condition for the
production of blackbody radiation. It is, however,
not a necessary condition. Indeed, the assumption
that a black hole in the standard sense of the term?®®
is actually formed leads to a direct conflict with
the resonance mechanism described in Sec. VI.

We must accept therefore an alternative picture of
blackbody radiation emitted from a collapsing con-
figuration. This picture is based on classical field
theory applied to zero-point radiation permeating
the spacetime of a collapsing star.

The essential aspect of our picture of the produc-
tion of blackbody radiation is not the existence of
an event horizon but the existence of a radius of
resonance, Eq. (6.22), for any two modes &,
(inside the star) and ;% (outside the star) having
the same angular integers [ and m. As we have
seen in Sec. VI, it is difficult to account for the
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behavior of the emitted radiation except to attri-
bute it to being manufactured at the surface of the
collapsing shell star. Indeed, within the context

of classical field theory there is a process by
which a zero-point fluctuation mode ¢,,,, gives rise
to a packet of radiation which in the mean has a
Planck spectrum. Each spectral component, re-
gardless of its frequency, is manufactured during
a retarded time interval

Au=8rM
at the retarded resonance time

U

"IICS(

w)=v,-4M+4M1n4Mw, - 4 MInd Mw

along the history of the star’s surface. These pro-
cesses involve the modes &,,,, in a time-sequential
way and thereby give rise to a well-determined

rate at which the packets of radiation are produced:

(number of amplified modes)
(unit time)

: (number of switched off modes)
(unit time)

1
&&

5

_aw, 1
T2 M-
The packets, as we saw in Sec. VII, are, on the
average, identical, each one carrying a well-de-
termined amount of energy as given by Eq. (9.1).
The energy is carried along outgoing null trajec-
tories from the history of the star’s surface
towards future null infinity. The fact that the
radiative energy has its origin along the history
of the star’s surface implies that the star will not
collapse through its » =2 M surface. Indeed, if one
assumed it did, then an unlimited amount of ener-
gy would be emitted by the star by the time its
surface pases through » =2M. This follows from
the fact (a) that the amount of mass-energy radiated
per unit Schwarzschild time from the star’s sur-
face is a steady nonzero quantity and (b) that as »
approaches 2M, the Schwarzschild time at the
star’s surface approaches infinity. An unlimited
amount of energy would therefore be extracted
from the surface of the collapsing star. In view of
the conservation of energy-momentum, this ex-
traction would have an unlimited effect on the col-
lapsing matter itself. It is difficult to avoid such
a paradox unless one did not make the above as-
sumption, which is that the star will collapse
through its » =2M surface.

An objection might be raised to the effect that the
above conclusion cannot be trusted because it is
based on an analysis which is done within the

framework of merely classical field theory; in
view of the fact thatthe emission of blackbody radi-
ation is a quantum process, an analysis that in-
corporates this fact into its very foundation might
lead one to a different conclusion. In response to
this objection the following reply can be made:
The amplification process operating on waves
emerging from the collapsing star is a linear one
and is therefore applicable to classical wave fields
of large as well as small amplitudes. As was
pointed out in Sec. XI, the thermal fluctuations in
the high-frequency part of the emitted Planck
spectrum become so large that the characteristic
quantum nature of the emission process comes in
direct conflict with a strictly classical identifica-
tion of the process. This conflict we resolve by
extrapolating the classical correspondence limit
from large amplitude waves to small (zero-point)
amplitude waves and thereby asserting that on the
average results obtained within the classical
framework coincide with those within a quantum-
mechanical framework.

XIV. INCIPIENT BLACK HOLE: AN INTERMEDIATE
CONFIGURATION IN THE EVOLUTION TOWARDS
THE FINAL STATE

If the two simplest and most universal principles
of physics are the law of gravitation, which identi-
fies and embodies phenomena of the macroscopic
“classical” world, and the law of blackbody radia-
tion, which identifies and embodies the essentials
of the microscopic “quantum” world, then the
formation and evolution of an incipient black hole
(1) evidently concretizes the direct logical link
between the two, and (2) leads to a reformulation
of the issue of the final state within the context of
a collapsing star.

The classical version of the issue of the final
state of stellar gravitational collapse focuses
attention on the inapplicability of the Einstein field
equations in those regions of spacetime which are
inside the event horizon. The inevitability of the
paradox of gravitational collapse, “the greatest
crisis of physics of all time,” follows from the
universal law of classical gravitation.3®

By focusing attention on collapse as such, it is
easy to identify analogies between the paradox of
the collapsing atom formulated by Rutherford and
Bohr and the paradox of the gravitationally col-
lapsing star. The former, the greatest crisis of
physics during its time, was a dominant factor in
the motivation towards the identification and codifi-
cation of the quantum aspects of matter. The
latter nowadays serves the same purpose in re-
gard to similar aspects of space itself. In view
of (a) the blackbody radiation emitted by an in-
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cipient black hole and (b) the consequent finite
lifetime (as seen by a distant observer) of the
classical entity, an examination of the total evolu-
tion of an incipient black hole should have a high
priority.

To gain a qualitative perspective of its evolution
and its ultimate ground state, recall that informa-
tion about a black hole, such as size, position,
etc. is contained in scattering (most generally by
waves) experiments. The scattering waves may,
for example, be matter (Klein-Gordon) waves,
radar signals, or even the zero-point fluctuations
permeating the universe. These waves must sat-
isfy two necessary conditions in order that one
learn the features and hence the existence of a
black hole:

First, the wavelength must be short enough so
that details can be seen, i.e.,

A==<M.

(14.1)

C
w

—L—

(MASS)

BLACK HOLES

BLACK HOLES ARE
DETECTABLE

1501

Here A is the reduced wavelength of radiation
emerging from the black hole. The quantity w is
the frequency and equality would imply that the
black hole is being observed at its diffraction
limit. In terms of conventional mass units the
mass is M =M ,,G/c*. Consequently, the inequal-
ity is

c*\ 1
<5> —(;SMconv-

Second, the frequency must be low enough so that
the black hole suffers no excessive recoil:

n
(z.‘z’)wsMconV'

(14.2)

(14.3)

Equality implies that the mass energy of the scat-
tered quantum (scalar particle, photon, etc.) is
so large that it is impossible to describe the pro-
cess in term of a perturbation propagating in a
sharply distinguishable background geometry. In

BLACK HOLES ARE
NOT DETECTABLE

T DETECT.
ARE NOT DETECTABLE WHEELER MASS = (hc )n/z
Ve i ~
{7 BLACK HOLES DO NOT EXIST
- ; <
! —
1
wy, w—

(SCATTERED FREQUENCY)

FIG. 4. Realm of observability of classical black holes. The abscissa measures the frequency scattered (or absorbed)
by a black hole. The ordinate is a coordinate that allows simultaneous comparison of (1) black-hole mass with the
mass-energy of a photon scattered (or absorbed) by that black hole, and of (2) the black-hole size (in mass units) with
the wavelength (xc?/G =mass units) of the same photon scattered (or absorbed) by the black hole. For a fixed black-
hole mass the “recoil limit” curve gives that frequency of a scattered photon beyond which the black-hole curve would
suffer an excessive recoil; in other words, the wave field of that single photon no longer constitutes a small perturba-
tion on the black-hole geometry. For a fixed black-hole mass the “diffraction limit” curve gives that frequency of a
scattered photon below which the scattered radiation has such long wavelength that it is incapable of furnishing infor-
mation about the geometrical features of the black hole. It is evident therefore that a black hole is detectable only by
scattering off it of radiation of frequencies between the two indicated limits. If one uses frequencies outside these limits
a black hole is undetectable. An entity about whose existence one can not learn anything by scattering is not an entity;
not being endowed with any distinguishing features, it is not anything in particular. In other words, classical black
holes whose mass is smaller than the Wheeler mass do not exist. The solid curved arrow depicts the evolution of an
incipient black hole. As discussed in the text, it emits radiation which at any instant of time has a spectrum that is
peaked at the frequency w ~ (8t M)~1, which is slightly below the diffraction limit. Evidently the evolution is towards
some lowest—mass-energy state near the Wheeler mass.
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other words, first-order perturbation analysis is
inapplicable. The limits on the detectability of
black holes by scattered radiation is elaborated
upon in Fig. 4.

What is the path of an evolving incipient black
hole along the mass-frequency diagram, Fig. 4?
Recall that according to Eq. (9.10) the power spec-
trum of emitted photons is

(number of photons X7 w)
(unit time)(unit frequency)

_2TMw)  hw
- 27 esver -1

(14.4)

The energy of the photons emitted most frequently
is
Ric

nw= i (14.5)
It is evident that the incipient black hole radiates
blackbody radiation predominantly at a wavelength
comparable to the dimension of the black hole. It
follows that a black hole radiates its irreducible
mass in such a way that most of the radiation
emerges from the black hole at the “diffraction
limit.”

Implicit in the whole analysis of this article is
that one can make a sharp distinction between the
wave fields and the arena, the background geome-
try, within which they propagate. This is an ex-
cellent approximation provided the emitted black-
body photons are of sufficiently small energy in
comparison to the instantaneous mass of the black
hole itself. It follows from Eq. (13.5) that this
happens as long as

_81”%<< MCOnch M
This inequality guarantees that the black hole is
going to suffer a negligible recoil upon the emis-
sion of blackbody radiation. In view of this in-
equality the analysis of the interplay of vacuum
fluctuations and geometry becomes in applicable
for black-hole masses of the order

1 (mc\/?
Msz<_G_> , (14.6)

i.e., when the mass is of the order of or less than
the Wheeler mass. As a matter of fact, as the
caption of Fig. 4 indicates, classical black holes
below that mass are nonexistent; if a classical
incipient black hole is to have a state of lowest
energy, it cannot have a mass less than that giv-
en by Eq. (14.6).

The updated version of the issue of the final
state of stellar gravitational collapse poses there-
fore the following central question: Given an

evolving incipient black hole. Put it into a sur-
rounding which contains no radiation which that
black hole can absorb. Let it radiate its mass
energy. It will do so at an ever-increasing rate
for only a finite total time. Question: What ave
the featurves of the entity that vemains aftev the
runaway evolution has run its course ?

Pﬂasently, very little is known about the answer
to this question. With the recent astronomical dis-
covery of black holes it is more difficult than ever
to avoid facing this version of the issue of the final
state.

XV. SUMMARY

Those results of this article that should be clas-
sified as new are:

(1) a reformulation of the radiation mechanism
from an incipient black hole in terms of zero-point
fluctuations,

(2) tracing the cause of the emitted blackbody
radiation to the amplification of the uncorrelated
vacuum fluctuations by the collapsing star,

(3) characterizing the amplification mechanism
in terms of a simultaneous resonance time,

(4) determining the sequential order in which the
standing-wave modes inside the star cause the
emission of statistically identical blackbody radia-
tion packets,

(5) relationship between black-hole entropy and
the logarithm of the total number of relevant stand-
ing-wave modes inside the star,

(6) the statistical fluctuations in the emitted
radiation are those of thermal radiation,?” and

(7) the conclusion that the emission of blackbody
radiation prevents a star from collapsing through
its » =2M surface.3®

APPENDIX A: FOURIER SPECTRUM OF STANDING-WAVE
MODE AT THE SURFACE OF A COLLAPSING SHELL STAR

This appendix exhibits the steps leading to the
Fourier amplitude, Eq. (4.7), of the radiation
emitted from the surface of a collapsing-shell
star. The basis functions are the outgoing travel-
ing modes of the separated wave equation Oy =0
in Schwarzschild geometry, Eq. (3.1). The equa-
tion for that factor of y which depends on the radial
coordinate only,

w? [(1+1)

1-2M/r ]RZO’

1 d,, dR l:

ol (r —2M'r)dr +
becomes upon introducing (a) the new dependent
variable @ =¥R(r), and (b) the tortoise coordinate
r*=7 +2M In(r/2M - 1) as the new independent vari-
able, simply
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azQ (l+1) 2m 2M
dr*2+§w2—[—;2—+—r—3]<1—7—> Q=0.
It is therefore evident that the traveling-wave modes are correctly expressed by Eq. (4.12) in regions near
the star’s surface during late collapse, near a distant observer (large »), and also in between these two in
the approximation which neglect the effective potential.

The function to be Fourier-analyzed is the wave field of a standing-wave mode, Eq. (2.1) evaluated along

the history of the surface of the star near » =2 M (see Fig. 1.) The Fourier transform of this function, i,,
is

“transform” = <2>1/2 -——ﬁ—l f“m sin[w,t; () + Baym] SiN [7(14) - l—n] etwnd (A1)
- aw, (277)1 2 u=ug Onlinl nim Wn 2 star’s surface u.
Here u is the retarded Finkelstein time coordinate,
7
u=t-r*=t—r—2M1n<m—1) , (A2)

which characterized not only the histories of outgoing (expanding) wave fronts, but also parametrizes the
history of the collapsing-shell star surface. The Fourier analysis starts at u=u,, which in our analysis
is taken to correspond to very late retarded time. This history of the stellar surface is characterized by

tin+7 =7, (A3a)

t+r¥=v,. (A3b)

Thus on the star’s surface

U=v,—2r*

—vp-2r —ain( 5 -1), (a4)

and very large u characterizes therefore the very late stage of collapse. The field of standing wave in-
side the star is the superposition of an expanding and a contracting wave front:

I3 » 1 ® 27 /2 -1 iwp,(t; +7)+iB —iln/2
transform” = W aw T [e n\tin nim +c.c.
ug n

—etnlin D Bt iz _ce ], Lo, e du . (A5)

Only the expanding wave will contribute to radiation emitted from the surface and traveling to a distant ob-
server. Consequently, the first two terms will be omitted from further discussion. The evaluation of the
integral is facilitated by using the radial coordinate » as an integration parameter. As a matter of fact,
introduce the dimensionless variable

v
Pt
Rewrite both the retarded time u on the star’s surface [Eq. (A4)] and 7 in terms of p,
u=v,—4M —-4Mp—-4MInp , r=2M +2Mp .

The integral, Eq. (A5), becomes

o \/2
“transform” = (271)15 <a_<f,, > Me'w (o=2H4)

py=ro/2M-1 . o . dp
x f (¢ nim=siMon +wprIng) 4 gmibnim=tiM e ps D) (1 4 p) 52 (49)
0
—
Here the additive phase constant 3 I7 - 4w, M +w,7, transform. Later evaluate it analytically. The
has been absorbed into the random phase B,;,, of integration is performed over the whole history
the field oscillator ®,,;,,. of the surface of the collapsing star. This col-

First, determine the qualitative features of the lapse history is divided naturally into three stages:
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early stage: 1<p= EZM_ 1; (ATa)
intermediate stage: p= 2—71\7 -1~1; (ATb)
late stage: p =g —1<1. (ATc)

Here we shall discuss only the early and the late
stages of collapse. The predominant contributions
to the integral come from those ranges of p over
which the two exponentials have constant phase.

Early stage. The upper integration limit in Eq.
(A6) extends up to 7,> 2M. The contributions from
the early stages come from 7 >2M, i.e., when

Inp <p. (A8)

Thus, dropping the logarithm from the exponents,
discover that

“transform” ~ e ®nimd(w, + w) + e Primd(w, - w).
(A9)

This result implies that the converging ingoing
part of the field oscillator &,,,, is converted into
an outgoing (scattered) travelling wave emerging
from the star. The number of field oscillator &,
is unlimited. Hence the present formulation leads
to the well-known difficulty that flat space is per-
meated by zero-point fluctuations whose total en-
ergy

J

1 2r\/2 ; »
“transform”=(2 . 2( ) Mezw(v0-4M)<elﬂnlmf
) A

aw,

It is evident therefore that during the late stages
of collapse the phases are stationary and the
transform therefore differs appreciably from zero
only for those frequencies w which satisfy

Iw [ <L w,. (A14)

This is also eminently reasonable from the follow-

ing direct physical argument:
Consider an outgoing wave packet inside the star,

4+
: Yo’
an’mocf ez(tin r)wnf(w:')dw;,
oo

characterized by the mean frequency w, [i.e., f(w})
is nonzero in an interval centered around w,]; thus

(A15)

anlm..,ei(tin-r)w,,.

This wave packet travels towards the surface of
the collapsing star and there gives rise to a cor-
responding wave packet

ge,,~et e, (A16)

with a mean frequency w. This wave packet will

b
4iM (W p+w 1“”’%+e'i5nlmf °e41‘M(wnﬂ“° 1np)d71’> .

1
tnw, (A10)
all field oscillators
characterized by m, 1, m

is not finite. This difficulty is circumvented by the
theory of renormalization.*® This circumvention
embodies the fact that field oscillators above some
cutoff frequency do not have a basis in any known
facts of reality and that usually only deformations
of the (formally infinite) zero-point energy embody
observable effects. Thus we conclude that during
the early stages of collapse the radiation coming
from a collapsing star is due to the nonadiabatic
deformation of the zero-point energy of space.
This radiation is, however, not what is calculated
here. Neither do we determine the radiation emit-
ted during the intermediate stage of collapse. In-
stead focus on the following:

Late stage. To determine the contribution to the
transform from the late stages of collapse set the
upper integration limit to

%o
Po "W -
This eliminates in the integral all contributions
from the early and late stages. In this limit dur-
ing the whole integration interval p satisfies

(A11)

p<1< |Inp]. (A12)

Dropping therefore the appropriate linear terms
results in a simplified integral:

(A13)

0

travel in the exterior vacuum geometry to some
distant observer.

To verify Eq. (A14) by a direct physical argu-
ment it is necessary to determine the relationship
between frequencies that characterize the two wave
packets Egs. (A15) and (A16). First, recall that
the phase difference A¢ between the histories of
two successive wave crests of a packet is a con-
tinuous function across the shell star’s interface

A¢in= A¢out‘ (A17)

Second, recall that the phase difference inside the
shell star is

A=A, ~7) wnl bpirer =T 2w,Ar. (A18)
[\]

Outside this difference is

A(bout = A(t - 1’*) w I t+r*=vo= - 2(-0A1’*
Ar
== 21w (A19)
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Third, recall that the coordinate # is continuous
on spacetime. The above three equations (A17)-
(A19) imply therefore that

0= (1 —27M>w,,. (A20)

This is the relationship between the frequencies
of the wave packet inside and outside the star at
the instance when its surface has the radius 7.
During the late stages of collapse 1 -2M /7 << 1.
Thus

W< W,

This verifies Eq. (A14) for positive frequencies w
and also completes the discussion of the qualita-

1 27 \2
“transform” = ( ) Metw(v0-4M+4M Indw, M)
n

@2m) 2\ aw

tive behavior of the integrand of the “transform”,
Eq. (A16) and Eq. (A13). Additional significant
features of the “transform” are discussed in Sec.
VIIL.

The context of the phenomenon under examina-
tion (star during late collapse) demands that we
evaluate, Eq. (A13), the transform whose upper
integration limit is

po=grr— 1< 1. (A21)

This Fourier transform becomes a Mellin trans-
form by introducing the new integration variables

z=4w,Mp. (A22)

The expression for the transform becomes

Zp=4Mw by ) . Z=4Mwpby ;
X (eiB",mf e-zzz—4sz-1dz+e-tBn,mf etzz-4sz-1dz> . (A23)
o

To evaluate these integrals as Mellin transforms*
of e**?, two conditions are necessary: (1) The in-
tegrals must converge, and (2) the error in the in-
tegrals must not be too large if one replaces the
upper integration limit by z,=+=.

The first condition is satisfied if the integrands
have suitable convergence properties at z=0,
namely z7%“#~ 0 as z - 0. That this actually hap-
pens follows from the fact that the “transform”,
Eq. (Al), is to give a Fourier representation of a
causal function, i.e., one which is nonzero only
for u,<u <. Consequently, w is always under-
stood to have a “vanishingly” small positive imag-
inary part:

w—-w+i€, 0<e<K1.

The embodiment of causality in this form guaran-
tees that the integrand has the necessary conver-

gence properties.
J

1

0

The second condition requires, as is evident
from Eq. (A22), that w,, the frequency, be so
large that even though Eq. (A21) holds (i.e., we
focus attention on late stages of collapse), never-
theless

1< (5%_ 1>Mw". (A24)

In view of the previous discussion about outgoing -
wave packets the physical meaning of the second
condition is that inside the star only those stand-
ing waves may be considered which have a high
enough frequency w,. So high, in fact, must their
frequency w, be that they give rise to wave packets
[Eq. (A16)] at » =7, which are characterized by
Schwarzschild frequency w > 1/M.

Return now to the evaluation of the transform,
Eq. (A23). Replace the upper limit of integration
by z,=+ and obtain a Mellin transform, which is

1/2
27 ; . . . -
“transform” =(_’_<aT Me'® o4+ 1ndwpiDT(_ 450M) [¢Bnime 2" (1 4 error) + €Bnim e*2"¥(1 4 error)].
n

2_”)1 2
(A25)
Here I is the gamma function. The error, which is obtained by a more detailed examination using conflu-
ent hypergeometric functions, is

w

Ierror| N_——(vo/zM— Do,

(A26)
Omitting the error terms, obtain the square of this transform by using the identity

I'(4i 2. T .
|T@iwn)| 4wM sinhdr @il ’
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2
“transform” | 2 =E M S
aw, 21 \4wM sinhdrwM
X (2 cosh4rwM +2 cos2B,,,) (A27)
J2EME
T aw, 21 oM
1 1 cos2fB
X [ = nim
(2 + g _ 1 *3 sinh41er> :

(A28)
Equations (A25) and (A27) are the expressions used
in Eqgs. (4.7) and (4.8) of this article.
APPENDIX B: HISTORY OF AN OUTGOING WAVE TRAIN

Consider a shell star during its late stages of
collapse. Focus attention on a scattered outgoing
wave train, which inside the star is represented
by

27

_ 1/2 1
govtmine_ (__> 5-C08[0,(t 1y = 7) + By JY 76, ).

aw,
(B1)

Here ¢, refers to the interior time of the star as
specified by the flat metric, Eq. (3.2).

Inside the star the frequency w, is constant.
What is the frequency at the shell star’s surface
as ultimately seen by a distant observer? To an-
swer this question, evaluate the wave field at the
surface in terms of the exterior Schwarzschild
time. Note that the events on the star’s surface
are coordinatized by

t=v,—-7"
=vo_r_2M1n<—"—_ 1> (B2)
2M
and
Ln=7o=7 (B3)

in terms of interior and exterior time, respective-
ly. Both v, and 7, characterize an ingoing null
cone, the history of the collapsing shell star.

Near the “incipient event horizon” (»=2M), Eq.
(B2) becomes

¥ =2M +2M exp (%%) et/2M (B4)
~ _v._.°__ ~-t/2M
2M + 2M exp <2M 1) e

and Eq. (B3) becomes

tin=¥o — 2M - 2M exp (5%;’[—— 1) e™t/2M, (B5)

Consequently, the wave field at the surface of the
collapsing shell star is

tgoi | 2ﬁ L2 1 ( t/2M )
Dpreoing| o =<——> ——cos(b,e” +B,;
mm s T\aw,) 20T )
where (B6)

b,=4Mw, exp <§1_)1l2/1_ >

and an additive constant has been absorbed into
the random phase B,,,. Viewing the wave train as
a succession of wave packets, assign a frequency
to each one, and designate it as the instantaneous
frequency of ®25t%°1" at the star’s surface as seen
by a distant observer. Evidently this instanta-
neous frequency is

_ld. iiom

=w, exp (2_01\02" 1) et/ (B7)

This frequency is a function decreasing monoton-
ically with time. Consequently, after a certain
time the frequency will be low enough for the po-
tential barrier, Eq. (4.2), to prevent any further
transmission of wave packets. This happens when

10+1)

> w¥(t), (B8)
i.e., when
t = (v = 2M) + 2M In(4Mw,) = M ln—lig;—l—)
=t, off—Mln-!—s—l-g—,]tl—). (B9)

The time £, ¢ is the effective switch-off time for
douteoing  After the time given by Eq. (B9), wave
packets of angular quantum number / and mean
frequency given by Eq. (B7) have too long a wave-
length to surmount the centrifugal barrier. They
do not reach a distant observer.

APPENDIX C: RATE AT WHICH SCATTERED OUTGOING
MODES ARE AMPLIFIED AND EXTINGUISHED

Each scattered outgoing wave, Eq. (B1), inside
the star undergoes a red shift in frequency as it.
crosses the star’s surface. Outgoing modes of
successively higher frequency w, are red-shifted
out of a distant observer’s view at successively
later times as given by Eq. (B9). This appendix
determines the rate at which this happens. Let
An be the number of scattered outgoing traveling
modes of fixed angular quantum number and having
frequencies between w, - 3Aw, and w,+3Aw,.

According to Eq. (2.3)
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An =%Aw,,. (1)

According to Eq. (B9) the time interval necessary
to red-shift these modes out of the view of a dis-
tant observer is

At =sz Aw,. (c2)

n
n

Consequently, the rate at which scattered outgoing
waves of fixed quantum number ! and of frequency
w, are red-shifted out of the view of a distant ob-

server is

(switched-off modes) _dn
(unit time) Tdt

v, 1 3
2T M’ (C3)
Instead of referring to Eq. (B6), consider Eq.
(6.22b), the time at which a wave mode gets am-
plified. Obtain there by a similar expression

(amplified modes) _dn
(unit time) Tdt

_aw, 1

Tor M’ (C4)
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