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Direct-channel resonances are summed to build the two-body inelastic scattering amphtudes. The distribution

of direct-channel resonances over energy and angular momentum is given by the Chiu and Heimann statistical

bootstrap equation. By comparing with experimental data a phenomenological test of the Chiu-Heimann

results is made which discriminates between their various solutions and which determines the parameters of
their distributions. A good description of 27 differential cross sections corresponding to 23 differential inelastic

reactions is obtained.

I. INTRODUCTION

Hagedorn, utilizing the statistical bootstrap con-
cept, was the first to calculate the density of had-
ronic states as a function of energy. He found that
the number of states essentially increases expo-
nentially with energy. Phenomenological tests'
have revealed the experimental validity of the
exponential energy behavior of the hadronic den-
sity of states. Chiu and Heimann' have extended
Hagedorn's results by calculating the density of
states both as a function of energy and angular
momentum. We hope to exploit their results by
describing the two-body hadronic inelastic scat-
tering amplitude as a sum of direct-channel reso-
nances whose distribution is given by the Chiu-
Heimann density of states. Through this applica-
tion of duality we hope to provide a phenomeno-
logical test of the Chiu-Heimann result, to dis-
criminate among the three sets of solutions they
found, to determine the parameters of these solu-
tions, and, in addition, to describe the general
two-body inelastic scattering reactions.

II. KINEMATICS

The differential cross section is expressed by
the spin-flip and the spin-non-flip amplitudes, g
and f, as

d„' = If I'+ lg I' ~

The differential cross sections d&/dQ and do/dt
have the relation

dv X(s, m, ', m, ')&(s, m, ', m, ') d(r

The spin-flip and the spin-non-flip amplitudes
are related to the conventional f, and f, amplitudes
by

f=f, +f2 cos8,
(3)

g=f, sin8,

where 8 is the scattering angle.
Finally f, and f, can be expanded by the parity-

conserving amplitudes f,, and f, ,

(4)

f2= +(fi--fr ) I

where P', is a first derivative of the Legendre
function of /th order,

III. METHOD AND DISCUSSION

We assume that two-body inelastic hadronic scat-
tering can be built in the manner of duality by
summing all of the direct-channel resonances.
We assume that the Chiu-Heimann distribution
p(E, l) describes the density of direct-channel
resonances, and that summing over all the states
is equivalent to integrating p(E, /) over energy, E,
and angular momentum, /.

We assume that each resonance is described by
a Breit-Wigner form so that the spinless scattering
amplitude for AB-CD is given by

1
f(E, cos 8) = —— dE' dl(2l+ 1)p(E', l)2k „

where

z(s, m, ', m, ') = (s'+ m, '+ m, ' —2srn, '

—2sm 2 —2m ~m 2)i'
2

and m, is a mass of the ith particle.

x ~, c~. P, (cos8),E —E +2zF~

(6)

where y», y&D, and F~ are functions of E and E

and represent the partial and total widths of the
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resonances. We then assume that the narrow-width
approximation is valid so that the Breit-Wigner
denominator becomes a 5 function in energy. The
scattering amplitude after integrating over energy
then reduces to

f(E, cos e) = — "s cD
~l d/(2/+ 1)p(E, /}

x P, (cos 8),

where y» and y~~ are functions of energy only.
In the narrow-width approximation we are using
we ignore the real part of the amplitude.

In summing the direct-channel resonances we
have assumed that the resonances add coherently.
In addition to the coherent sum there is also a con-
tribution to the cross section from the incoherent
contribution of the resonances. This contribution
depends on the partial widths and the density of
states such that the incoherent contribution falls
off exponentially with energy; we have ignored it
and restricted ourselves to high-energy data. 4

We shall attempt to describe all two-body in-
elastic reactions for which there exist high-energy
differential cross-section data. Because we have
made the narrow-width approximation, our am-
plitudes are purely imaginary and hence we cannot
describe the polarization data. Most of the two-
body inelastic differential cross sections that have
been measured are either initiated by pions or
antikaons on nucleons. There exist some data, for
proton-antiproton initiated reactions as we11. All
of the gN inelastic scattering amplitudes will be
built from the same density of states, i.e. , the
gN, qN, EZ, KA, etc. resonances. All of the KN
inelastic scattering amplitudes will be built from
the same KN density of states which in principle
might be different from the zN density of states.

Both the zN and KN reactions are described by
two partial-wave amplitudes f,. and f, correspon-
ding to the even- and odd-parity states. The den-
sity of states for the parity-even and parity-odd
states will be essentially the same aside from a
scale factor since the bootstrap equation for the
two sets of states is identical. The coupling of the
initial and final states to the individual parity-even
and parity-odd resonances may vary from reaction
to reaction. However, we shall assume for the
sake of simplicity that for a given reaction the
ratio of the coupling to the parity-even states and
parity-odd states is the same for all the reso-
nances, so that for a given reaction f,, and f,- in
Eq. (4) are proportional, viz. , f,-=tann f,+.' The
ratio tan+ may vary from reaction to reaction and
is varied in order to fit the two-body inelastic
differential cross sections. When considering
nucleon-antinucleon reactions we will assume that

the five spin amplitudes needed to describe these
reactions can be approximated by f,.and f,-.

Chiu and Heimann' were unable to find a unique
solution to their bootstrap equation. Instead they
found that the following three forms satisfied their
equation:

I p(E, /,)=,~, exp '„, y~l, 0&D&B

II p(E, /, )= ~ cosh ~, 0&D&Bp(E)

(8)

III p(E, /, ) = cosh ', 0&D&Bp(E)
'

m/,
(10)

ikp(E) Dt
(mDE)~~2 P 4E

(12)-

The other two solutions are proportional to
[cosh(g/2D)b] ' and [cos(m/2D)b] ' and hence give
rise to diffraction peaks that do not expand with
energy. Unfortunately, these solutions do not give
rise to diffraction peaks which shrink logarithmi-
cally. In order to reproduce the correct energy
dependence expected on the basis of Regge theory,
one would want to find a solution to the bootstrap
equation which behaved like

p(E) h m/,
RllE 2E(D+B'inE)) (13)

There is no reason to believe that Eq. (13) would
not satisfy the bootstrap equation, but this must
be carefully examined first. ' Although the second
and third solutions of Chiu and Heimann do not pro-
vide the detailed logarithmic energy dependence

where B= 7 GeV " in (8) and B= 7 GeV ' in (9) and
(10) and p(E) = (p, /E') exp(EB) is the density of
states Frautschi"' obtains by refining Hagedorn's
equations. The density of states, p(E, /), is re-
lated to p(E, /, ) by

p(E, /) = ——p(E, /. )
d

die z,.z

Of the three distributions the first, Eq. (8), can
be eliminated on the basis of energy considera-
tions. Experimental evidence indicates that the
diffraction peaks of the inelastic reactions tend to
shrink logarithmically. The first distribution
gives rise to a diffraction peak which expands
linearly with energy for y = 1 and more than lin-
early with energy for y&1. If one substitutes Eq.
(8) into Eq. (7}, defines the impact parameter
b= //k=//E, and approximates P, (cosa) by
Z,(be) then Eq. (7}becomes
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required by experiment, these distributions do give
a good approximation to the data and hence will be
utilized. We found no qualitative and little quan-
titative difference between solutions II and III and
chose to concentrate our effort on solution II. The
limitation of the energy dependence (no shrinkage)
of the Chiu and Heimann solutions restricts our
aim in this work to a description of only the angu-
lar dependence of differential cross sections.
These points can be summarized in Fig. 1 in which
we display m p- gn data at three energies normal-
ized at t = 0. We also show the best fit of the three
Chiu-Heimann solutions at these energies. As ex-
pected from Ell. (12), the Gaussian solution does
not shrink, but broadens, providing a poor fit
while the cosh ' and cosh ' solutions are very sim-
ilar, energy-independent, and consistent with the
data.

Because of our ignorance of the scale factor, p„
and the partial widths y„e(E), yc~(E), y„e(E), and

ycD(E) (y and y refer to the pa.rity-even and parity-
odd couplings, respectively), we have two param-
eters corresponding to the scale of the parity-
even and parity-odd amplitudes. These scale
factors change from reaction to reaction. One of
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the scale factors, proportional to p, and the par-
tial widths, is determined by demanding that the
calculated cross section at t=0 agree with experi-
ment. The other scale factor, related to tan@, is
determined by a X fit in which the highest-energy
data are weighted most heavily. tan+ is the one
free parameter available per reaction. Hence for
m p-m'n, for example @=50'for the three ener-
gies, the fit deteriorating at the lowest energy.
The only other quantity to be determined is D
which must be the same for all the gN reactions
or the same for all KN reactions. The value of
D is not necessarily the same for zN, KN, and
NN induced reactions. However, we found that we
were able to describe the data best with the same
value of D for all reactions, namely D = 1.6 GeV '.
In Figs. 2(a) and 2(b) we display the 27 differential
cross sections' "describing the 23 reactions we
obtained by fixing D = 1.6 GeV ' and varying n from
reaction to reaction. We feel that our results are
exceedingly encouraging considering the scope of
the reactions we describe and the crudeness of our
model. Our least satisfactory fit is to m p-m'n.
We are confident that the density of states, p(E, I,),
in Eq. (13) will improve this fit. The presence or
absence of dip bump structure in our model de-
pends on tan@, the ratio of parity-odd to parity-
even couplings of the initial and final states to the
direct-channel resonances. The width of the dif-
fraction peak is determined to zeroth order by the
constant, D. However, the ratio tann can effect
this zeroth-order value of the diffraction peak.
This explains why we are able to describe so many
different diffraction peaks using only one value of
D. It is interesting to note that for a majority of
the reactions the parameter n falls within the
narrow range 95' to 133' (see Table I). We have
no explanation at this time for this apparent coin-
cidence.

TABLE I. Table of two-body inelastic reactions.

Reaction
p lab

(GeV/c) (deg) Reference

X p-E'n
Kp~Kn
Kp m' Z+

z p-~'A
K p 7r Z+(1385)
~ P -K'Z'
r p-re
~ p-~'n
n p-n'n
m'p~r n

%oh
m'+n K+ A
m' n~K Z

pp nn

pp g+ g+

PP —Y*(1385) Y~(1385)'
rp K Z+

n+p p+p
++p ~ ~g+ +

xp~gp
x p~fD
n' p~fA
~+p p Og++

n' p Agp
m' p A3p
r+p ~B+p
n' p A2p

12.3
14.3
14.3
14.3
14.3
15.7
48
13.3
40.6

101
15.7
5.1
5.1
9
5.7
5.7

14
15
8.04
8.04
8.04

13.1
13.1
8.04
8.04
8.04
8.04

133
133
133
123
114
95

133
30
30
30

171
114
114
114
95
19

9
95

133
104

88
88
66

0
114
114
104

17
16
16
16
16
13
14
21
15
15
13
18
18
17
19
20

8
12

9
9
9

11
10

9
9
9
9
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