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Assuming that electromagnetic interactions between quarks are Coulomb plus magnetic-moment interactions,
we derive an equality and several inequalities among the hadron electromagnetic mass splittings, including
two inequalities which relate mass splittings of strange baryons and mesons. None of the mass relations we
derive is in contradiction with the present experimental data.

I. INTRODUCTION

A number of authors have obtained sum rules
relating the electromagnetic mass splittings of
hadrons, assuming SU(3) or SU(6) symmetry of
the strong interactions.! Rubinstein and other
authors®® have obtained similar electromagnetic
mass relations without explicitly using any sym-
metry other than isospin invariance. Instead these
authors assumed that in baryons two-body quark-
interaction energies were independent of the pres-
ence of the third quark. Lipkin® has discussed the
connection between the approaches based on sym-
metry and those based on the independent quark
model with additive two-body interaction energies.

In our paper, we reexamine the electromagnetic
mass splittings of hadrons using the quark model.
We assume, following a number of authors,”? that
the electromagnetic mass splittings of hadrons a-
rise partly from the intrinsic mass differences of
their constituent quarks, and partly from the Cou-
lomb and magnetic interactions between the
quarks. In Sec. II of our paper, in which the for-
malism is given, and in Sec. III, which contains
our main new results, we do not assume SU(3) or
SU(6) invariance of the strong interactions. We
find we do not obtain the same results as Rubin-
stein et al.,® but instead obtain an equality and
several inequalities among hadron masses, none
of which is contradicted by the present experi-
ments. In Sec. IV, we do assume SU(3) and SU(6)
invariance to facilitate a comparison with previous
work.

Asinprevious papers,”* weneglect certainterms
including relativistic terms, which contribute to
the electromagnetic interaction. Our reason for
neglecting these terms, aside from the fact that
in positronium they are small, is pragmatic.

With these terms present, the expressions for the

hadron masses become so complicated that we have

been unable to obtain any useful mass relations

among the hadrons without assuming SU(3) invari-
ance. De Rijula ef al.® have obtained useful mass
relations even though including additional terms in
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the interaction (although neglecting some relativ-
istic effects). However, these authorshaveassumed
SU(6) invariance for the unperturbed wave func-
tions.

In our model, although the electromagnetic in-
teractions are all two-body interactions, the two-
body quark interaction enevgies are not indepen-
dent of the presence of a third quark, as assumed
by Rubinstein et al.® and by Franklin.® This is the
reason we do not obtain all the sum rules of Rubin-
stein et al.® Instead, we obtain (among other in-
equalities relating electromagnetic mass dif-
ferences) two new inequalities between baryon and
meson mass splittings. By assuming that the
strong interactions do not break SU(3) symmetry
too badly, we obtain additional inequalities. None
of these relations is in contradiction to the present
experimental data. We also find that if we incor-
porate SU(6) invariance of the spatial wave func-
tions, we indeed obtain the result that two-body in-
teraction energies in baryons are independent of
the third quark. We then recover the results of
Rubinstein et al.®* However, we also obtain from
experiment a result which contradicts one of the
original assumptions of our model. We therefore
prefer to keep the weaker relations which follow
from isospin invariance and mildly broken SU(3)
invariance of the strong interactions of quarks.

In the usual quark model there are three kinds—
or flavors—of quarks, which we denote by u, d,
and s. There is some indirect evidence that the
quark model should contain one or more heavy
charmed quarks as additional flavors. In fact,

a number of papers have already appeared which
treat the electromagnetic mass splittings of
charmed hadrons with a quark model.*'° Be-
cause, at present, charm is a speculative topic,
and it is not clear how many charmed quarks the
model should have, we prefer to confine our-
selves to hadrons not containing any charmed
quarks.

If quarks come in three colors, then it is pos-
sible to have a model in which the quarks have in-
tegral charge, as proposed by Han and Nambu,'!
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rather than fractional charge. However, if the
quarks have magnetic moments proportional to
their charges, we shall see that the electromagnetic
mass splittings of hadrons are independent of the
color scheme. The basic reason for this is that,
even if quarks have integral charge, the average
charge of all quarks of different colors but a single
flavor must be fractional. Therefore, we do not
need to concern ourselves with quark color.

II. EXPRESSIONS FOR THE HADRON MASS DIFFERENCES

We shall confine ourselves to hadrons which are
composed of quarks in states with zero orbital
angular momenta, as these are the states for which
the electromagnetic mass splittings are known ex-
perimentally. The experimental values, from the
compilation of the Particle Data Group,'? are given
in Table I.

As stated in the Introduction, we assume the
electromagnetic interaction between quarks is given
by a Coulomb term plus a magnetic term. This
interaction Hj, can be written’

H;j=Qin/T{j— —2'” ﬁ{'ﬁjé(?ﬁ); (1)

where @, is the charge and [; is the magnetic mo-
ment of the ith quark, and 7, is the distance be-
tween ith and jth quarks. We shall evaluate Hj,

in perturbation theory by taking its expectation
value with respect to eigenfunctions of the strong
interaction. Because the electromagnetic inter-
action between quarks is small compared to the
strong interaction between them, this should be

a good approximation.

In order to proceed further, we need to obtain
more detailed expressions for the quark magnetic
moments appearing in Eq. (1). If one assumes
that the quarks are members of an unbroken SU(3)
triplet, then it is plausible that the magnetic mo-
ments are proportional to their charges.'®* This
assumption enables one to calculate the ratio of
the neutron magnetic moment u, to the proton mo-
ment w,, and the ratio of the A moment u, to the
proton moment. The well-known results are

U/ == %, p/ =~ 3.

The calculated values agree very well with ex-
periment for the magnetic moment of the neutron,
but the calculated magnetic moment of the A comes
out a little bigger than the experimental one. We
therefore break SU(3) symmetry by writing the

1
Vs

(Hiyu= (| Q] n,,>[ <\1;

TABLE I. Experimental hadron mass splittings in
MeV from the compilation of the Particle Data Group
(Ref. 12). In this table, the symbol for a particle de-
notes its mass.

- 70 4.6043 £0.0037
p*=p° —4.4+2.4
K'_K* 3.99+0.13
K*0_ g 6.1+1.5
n—p 1.293 44 +0.000 07
= -3 7.99£0.,08
= _x0 4.87+0.06
joulcy 6.4+0.6
Ad_ ArH 1.4+0.4
hrL i L 4.1+1.4

a0

3.4+0.6

magnetic-moment operator of the 7th quark as
H;=§a56.’Qi ) (2)

where @, is the Pauli spin operator and the a; are
positive constants satisfying

a,=a;>a.

The factor # in Eq. (2) is inserted only for con-
venience so that if the quarks had Dirac moments,
the a; would be their inverse masses. The con-
stants a, and a, are chosen to give the known pro-
ton and A moments. Our Eq. (2) is a weaker con-
dition on the quark magnetic moments than is
usually made.’® Without our assumption, we would
not be able to understand the ratio of the neutron
to proton magnetic moments, and one of the most
important successes of the quark model would be
lost.

In letting a,=a, we are assuming isospin in-
variance., This approximation introduces only a
small error in the perturbation expression for the
expectation value of Hj;, and therefore causes only
a second-order error in the hadron masses.

An interesting consequence of Eq. (2) is that it
allows us to obtain expressions for the hadron
electromagnetic mass differences which are in-
dependent of the color scheme. A simple proof of
this, due to Franklin,' is given in Appendix A.

We take the wave function ¢, of a hadron (k=M
for meson or B for baryon) to be a product of a
function ¥, which depends on spatial coordinates,

a function y, which depends on spin coordinates,
and a function 7, which depends on flavor. We then
can write the expectation value (H; 4 in the form

qm>‘ zwgia’ CALAY AP Y 6('5,-1)‘1';:)1 ¥
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We next discuss the symmetry of the baryon wave

functions under the interchange of any two quarks.
It is often assumed that the baryons belong to the
symmetric 56-dimensional representation of SU(6),
and that their wave functions are symmetric under
the interchange of the coordinates (excluding color
coordinates) of any two quarks. We shall make

the less restrictive assumption that a baryon wave
function is symmetric under the interchange of the
coordinates (again excluding color) of any two
quarks of the same flavor.® In addition,we assume,
of course, that baryon wave functions are in-
variant under isospin rotations. We give the bary-
on wave functions in Appendix B. These wave
functions differ from those of Franklin® in their
spatial behavior. The meson wave functions are
simpler than those for the baryons, but, for com-
pleteness, we also give them in Appendix B.

In our model the mass of a hadron is given by the
sum of three terms. The first is the sum of the
effective masses of the quarks within it. The
second term is a strong-interaction energy V,.

The third term is the electromagnetic interaction
energy calculated in perturbation theory.

Then we can write the mass of a meson com-
posed of a quark 7 and antiquark j as

Mmy=my+m+ Vy+ (H Dy (4)

Likewise, we can write the mass of a baryon com-
posed of quarks 7, j, and & as

Mp=my+m;+m,+Vp
+(Hip g+ (Hip) g+ (HYp . )

The strong-interaction energy V, is independent

of the z component of isospin and therefore is the
same for all members of an isospin multiplet.

This quantity will therefore not enter explicitly
into any expression for electromagnetic mass dif-
ferences of different hadrons belonging to the same
isospin multiplet. Of course, there is an implicit
dependence of the mass difference on the strong
interaction because the hadron wave function ¥,
depends on it.

With the wave functions of Appendix B, we can
calculate expressions for the hadron masses in a
straightforward way using Eqgs. (3), (4), and (5).
We shall not write down all these formulas for
the masses, but only formulas for the electro-
magnetic mass differences. We let m,=m and let
m,—m=€. The electromagnetic mass difference
€ between the # and d quark is a parameter which
we do not attempt to calculate from first principles.
We introduce the notation

Cll=a¥,|1/7,|¥,), (6)

MY =2 raa,a,(¥,|5(F;,) | ¥, . @

We omit the superscripts ¢ and j for mesons, be-
cause there are only two quarks involved. Then
the electromagnetic mass splittings are

Mysm Myo=32C,+3M_, (8a)
Myo— Mys=€—FCp— My, (8b)
Mps — Mo = 3C,—3M,, (8c)
M ko= Mk = € = F Cpat TM (8d)

For the baryons, we can see from the symmetry
of the wave functions of Appendix B that we have
C3=C% and M =9M%. Therefore, we can eliminate
C% and M% from the expressions for the baryon
masses. Furthermore, because the A baryons
have completely symmetric spatial wave functions,
we can eliminate C} and MY} from the A mass
formulas as well. We then obtain the following
expressions for the baryon electromagnetic mass
differences:

m,—m, =€~ 3(C§ - M) , (92)

Mpo— Mpe=€ — 5(Cgf — M)+ 5(CLE+ 2ME) , (9b)

My-— Mpo= €+ 3(C2 ~ M) + 1 (CE+2MT) , (9¢)
Mge — Mgo= € + 3(CL + 2MYY) | (9d)
M — Mygs =€ —2(CF - M), (%)
Mpo— Mye=€— 5(CK - MY), (9f)
Mpm = Myo=€+5(C - M), (92)
Mgxo— Mpxe= € = $(Crik — M) + 3(Crl - ML)
(9n)
Mpke — Mmp*o= €+ 5(CL — M) + 3(CL — IMEY)
(91)
Mgkn— Mmx0= €+ 2(CL — ML) . (99)

III. RELATIONS AMONG THE HADRON
MASS DIFFERENCES

In obtaining the expression of Eqgs. (8), and (9),
we have not assumed SU(3) or SU(6) invariance of
the strong-interaction wave functions. We have
also not used any explicit assumptions about the

“spatial behavior of the strong-interaction wave

functions other than that these wave functions have
no orbital angular momentum, are symmetric
under the interchange of identical quarks, and are
invariant under isospin rotations. Therefore, we
obtain a relatively small amount of information
about the electromagnetic mass splittings.

But some things can be said. For example, the
Coulomb energy Ci’ and the magnetic energy Ny’
defined in Eqgs. (6) and (7) are both positive-de-
finite quantities. Therefore, we see from Eq.
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(8a) that
m,-v - m,-0> 0 ’ (10>

in agreement with experiment, as can be seen from
Table I. This inequality has been obtained pre-
viously by Gal and Scheck.* Furthermore, by com-
paring Egs. (8) and (9) we see that, independent of
the value of €, we obtain the following inequalities
between strange-baryon electromagnetic mass dif-
ferences and a strange-meson electromagnetic
mass difference:

M= — Mz0> W0 — My (11a)
~é-(2mz;- — g0 = M) > g0 — Mpr . (11b)

Such relations between baryon and meson mass dif-
ferences cannot be obtained from the usual SU(3) or
SU(6) symmetries, but follow from the quark mo-
del (with our assumptions) without these sym-
metries. As far as we know, these inequalities
have not been previously derived from the quark
model with quarks of spin 3. [Franklin'® derived
the inequality (11a) assuming that quarks have
spin 3.] From Table I we see that the inequalities
(11) are in agreement with experiment.

From Table I and Eqgs. (8) and (9), we can put
limits on the parameter €, which is the mass dif-
ference between the d and # quarks. We get

4.0<€< 4.3 MeV. (12)

From Eq. (9a) we see that we must have C¥?
>IM}?, or the n-p mass difference would be greater
than 4 MeV. This says that, in the nucleon, the
spatial wave function of the three quarks is such
as to make the Coulomb energy greater than the
magnetic energy. We may ask what the conse-
quences are if this same condition holds for
the other baryons. [We do not need to assume that
SU(3) and SU(6) are good symmetries, only that
they are not broken so badly as to preclude a
qualitative similarity of the baryon spatial wave
functions.] If we have CY>¥ for all baryons,
then we obtain from Eqs. (9) the following addition-
al inequalities:

Mg — Mg0> Mp0— Mp+ ,

Mge = Mp0> M p0— Mps>Mpe = Myer s (13)

Mp*= — Mp*0> M p*o — Mpks .
We also see that

Mp=— Mgo> €,

Mp-— Mp0> €, (14)
Mgk mD*o>€ s
Mg*- — Mg*o> € ,

where €>4.0 MeV. Within the experimental er-

rors, the inequalities (13) and (14) are all satis-
fied, although some have not yet been tested (see
Table I).

From Eqs. (9e)-(9g), we see that the three A
electromagnetic mass differences are given in
terms of only two parameters: € and the combina-
tion C¥ —9n’Z. We can therefore eliminate these
parameters to obtain the relation

Mpm—Mpes=3(Mp0 = Mps) . (15)

This relation has been previously obtained by
Rubinstein et al.® Unfortunately, the experimental
values of the A masses are not known sufficiently
well at present to test this relation. Likewise, we
can obtain expressions for € and C¥ - M,

€=mA-+on—2mA*, (16)
CR-MZ =m0 +Myus— 2M s (17

Again, the experimental mass differences are not
known sufficiently well to obtain the values of €
and C3Z - 2.

From the inequality (12), we can take €=4.15
+0.15 MeV. Using this value in Egs. (9), we obtain
the following values for certain Coulomb and mag-
netic energies:

Ci2_9mi?=8.6+0.5 MeV (18a)
CL+2M%=0.5+0.5 MeV, (18b)
CY+ 205 =3.2+0.9 MeV . (18c)

According to these equations, the Coulomb energy
C¥ has to be considerably larger than either C3
or CZ. This is not the case in some specific mo-
dels in which the baryon wave function can be cal-
culated. Therefore, some doubt is cast on our
initial assumptions. Nevertheless, in view of the
agreement of our inequalitites with experiment,
these assumptions may not be too badly in error.

IV. ADDITIONAL MASS RELATIONS

Further mass relations were obtained by Rubin-
stein et al.® using the assumption that hadron elec-
tromagnetic mass shifts are caused by two-body
quark-quark (or quark- ahtiquark) interaction en-
ergies which depend only on the flavor and spin
configuration of the two quarks. Furthermore,

Gal and Scheck* obtained relations among the meson
masses by assuming SU(6) invariance of the strong
interactions. We do not necessarily believe that
these are realistic assumptions. Nevertheless, it
is instructive to see what restrictions we must
place on the spatial wave functions to obtain the
results of Rubinstein ef al. and of Gal and Scheck.

If we impose SU(3) invariance on the strong-
interaction wave functions of Appendix A, then the
quantities Ci’ are the same for all members of an
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SU(3) multiplet. The Coulomb energies C}’ still
depend on the indices 7 and j for the baryon octet,
but not for the decuplet. The reason is that in the
octet the relative spatial wave function of the first
and third quarks will, in general, be different from
the relative wave function of the first and second
quarks, because their relative spin wave functions
are different.!® Later, when we impose SU(6)
invariance, we can drop the indices 7 and j. For
the magnetic energies, we explicitly take into ac-
count the difference in the constants a; for s and
u quarks in the expression of Eq. (7) for I’ by
multiplying it by a factor R=a,/a,<1 if one of
the quarks is strange and by R? if both quarks are
strange. The dependence of I}’ on the indices i
and j is the same as for C{'.

Then Eqs. (8) become

Mys = Mpo=3Cp+3Mp, (19a)
Myo—Mmyr=€—5Cp— RM, (19b)
Mps = Myo=3Cy—3IM,, (19¢)
M *0 = ¥+ =€ — 5Cp+5RM,, , (19d)

where we have used the subscripts P and V to de-
note members of the pseudoscalar- and vector-
meson nonets, respectively. Likewise Eqgs. (9)
become

My = My=€ - 5(CE - M) , (20a)

Mgo— Mps= € = 5(CY - MF) + 5(C + 2RME) ,

(20p)
Mp=— mpo= €+ 5(CH — MF) + 3(Cy + 2RMY) ,

(20c¢)
Mg — Mzo= €+ 2(CL2+ 2RINLY) | (20d)
My = Myss=€= 2(Cp= M), (20e)
Mpo—Mys=€—35(Cp=Mp) , (201)
My-—Mu0=€+5(Cp=Mp), (20g)
Mpxo— Mpxs=€="3Cp+3(2 = R)M,, (20h)
mn*-—mu*o=€+§cp— %(1+R)EIRD, (20i)
Magke— Mexo=€+3Cp— SR, (20j)

where we have used the subscript B to denote a
member of the baryon octet and D to denote a
member of the baryon decuplet.

It is interesting that Eqs. (19) for the meson mass
differences still contain so many free parameters
that we obtain no additional mass relations.

Turning to the baryons, we obtain from Egs. (20)
the well-known Coleman-Glashow'” relation

My — My= Mg = Mgt M0 — M- (21)

as well as the relations?®
on-mA"‘:mE*"mD**-—mz*O—mz*‘, (22)
Mpke+Mpks — 2Mp%0=Mp= +Wps— 2Mp0 .

The Coleman-Glashow relation is in disagreement
with experiment by only 0.3 MeV. The A masses
are not known well enough to test Eqgs. (22).

There are troubles, however. We can solve
Eqgs. (20a)-(20c) for € in terms of the nucleon and
Y~ mass differences. We get

€=m, — Mmy+ 5(Myg s+ Mp- — 2myo)
=1.9MeV, (23)

a result previously obtained by Franklin.® But this
value of € is incompatible with the inequality (12)
which we previously derived. Thus, we must
either give up SU(3) invariance of the strong-
interaction hadron wave functions or assume that
the effective mass difference € between the d and
u quarks is different in mesons and baryons. An
experimental test is possible of whether ¢ is the
same in mesons and baryons. We obtained the
value €>4.0 MeV from the measured K°-K* meson
mass difference. But it is possible to obtain the
value of € from Eq. (16) from accurate measure-
ments of the masses of the A*, A°, and A" bary-
ons. Unfortunately, because of the large width

of the A, sufficiently precise measurements will
be difficult to make. In any case, it is known that
SU(3) is a broken symmetry in strong interactions,
and thus we need not expect the hadron wave func-
tions to be invariant under SU(3).

Despite the fact that we cannot even maintain
SU(3) invariance for the baryons, we shall go on
to assume SU(6) invariance of the meson and bary-
on strong-interaction wave functions. We do this
to facilitate comparison with the work of Rubin-
stein ef al.® and of Gal and Scheck.* For the mes-
ons we set Cp=C, and M=, in Eqs. (19) and ob-
tain the inequalities

Mg — M0 >Mps — Mo (24)

W gx0 = M ks > W g0 — Mg (25)
Mys = M0 <Mgs = Mo = 3 (M x0 = M ys)
+3mgo—mys) . (26)

As can be seen from Table I, all these inequalities
are satisfied by the experimental meson masses.
In previous calculations assuming SU(6) invariance
of the meson wave functions, the mass difference
between the strange and nonstrange quarks was
neglected.**® This is a consistent approximation
because if the masses are different, one would ex-
pect that the dynamics would lead to SU(6) breaking
in the wave functions. If this mass difference is
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neglected, R becomes unity. Then the inequalities
(24) and (25) remain, but (26) becomes an equality.
This equality, which was implied by the work of
Gal and Scheck,* although not explicitly written
down by them, is not satisfied very well by ex-
periment. The left-hand side is — 4.4+2.3 MeV
and the right-hand side is 1.4+£2.3 MeV. How-
ever, the experimental errors are too large to
say that there is a definite contradiction.

For the baryons, we drop the indices 7 and j and
set Cyz=C,and My=IM,. We do not need to set R
=1 to obtain the following additional mass rela-
tions previously obtained by Rubinstein ef al.3:

My — My=Mp0— My 27
Mg +Mps — 2Mpo=Mp*-+Mp*s = 2Mgxo.  (28)

We also obtain the following inequality previously
found by Franklin®:

4(Mg- — Mz0) > Mz*- — Mo+ 3(m, —m,)
+Mg=+Mp+— 2Mgo0. (29)

Of these relations, only the inequality (29) can be
tested at present, and it agrees with experiment.

Rubinstein ef al.?”® and Franklin® have emphasized
that they obtained their results using the assump-
tion of the additivity of two-body quark interaction
energies without the use of SU(3) or SU(6) invari-
ance. The electromagnetic interactions between
quarks which we have used is a special case of
two-body quark-quark interactions. However,
this interaction does not give rise to additive two-
body interaction energies. Therefore, we were
not able to obtain all the results of Rubinstein
et al. and of Franklin without the additional as-
sumption of SU(6) invariance of the baryon spatial
wave functions.

We do not know how to construct a model using
conventional forces in which the two-body inter-
action energies are independent of the flavor or
configuration of the third quark without using SU(6)-
invariant wave functions. Certainly, our simple
model of two-body Coulomb and magnetic inter-
actions between quarks is not a model of the kind
that Rubinstein ef al. and Franklin envision.

In summary, we have assumed that the electro-
magnetic mass splittings of hadrons arise from
the intrinsic mass splittings of the # and d quarks
plus Coulomb and magnetic-moment interactions
between the quarks. We have also assumed that
the quark strong-interaction wave functions are
invariant under isospin rotations and are sym-
metric under the interchange of identical quarks.
We have derived a small number of relations be-
tween hadron mass splitting, including two in-
equalities relating meson and baryon mass split-
tings. Assuming SU(3) is not too badly broken,

we have obtained additional inequalities among
baryon mass splittings. None of these inequalit-
ies is in contradiction to the present experimental
data. Going on to assume SU(3) and SU(6) invari-
ance of the strong-interaction wave functions, we
have obtained additional mass relations previously
obtained by Gal and Scheck, Rubinstein ef al., and
Franklin. Most of these relations are satisfied
by experiment. However, we found that the as-
sumption of SU(3) invariance of the baryon wave
functions leads us to the conclusion that the ef-
fective mass difference € between the d and »
quark is not the same in mesons and baryons.
Whether we may take € to be a single constant for
both mesons and baryons even without SU(3) in-
variance could be decided by furture measure-
ments of the masses of the A baryons.

ACKNOWLEDGMENT

I should like to thank J. Franklin for very valu-
able discussions.

APPENDIX A

We here give a modified version of Franklin’s
proof** of the known result that the electromag-
netic mass differences of hadrons are the same
for fractionally charged quarks and for integrally-
charged Han-Nambu quarks.

From Eqgs. (3), (4) and (5) we see that each term
in the expression for the mass of a hadron is
either independent of the charges of the quarks or
depends on the charges of two quarks as a factor
Q;Q;. By the Gell-Mann-Nishijima formula, each
charge can be written

Qi=I,+Y;, (A1)

where I, is the z component of isospin and y; is an
operator which is independent of isospin. In the
usual quark model y; =3 Y,, where Y, is the hyper-
charge of the quark.

In the Han-Nambu scheme, each type of quark
comes in 3 colors, and the different colors may
have different charges, or equivalently, different
values of y;. If we denote the color index by a, we
have

Qin=1,i+Yi0, @=1,2,3. (A2)

We do not use a subscript a on I,; because the
isospin of a quark is independent of its color. For
any such scheme to work, the average value of
Q,, must be equal to the charge of the usual Gell-
Mann— Zweig fractionally charged quark, i.e.,

3
<Qia =3 Z Qia=@;, (A3)
a=1
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or equivalently,
<3’1a>=%23’m=3’¢- (A4)
(-2

Now in any color scheme, the mesons and baryons
are color singlets. This implies for mesons that
we must make the replacement

Q=% D Q1oQya- (A5)
-3
Then, using Eq. (A2), we obtain
?'!5_ Z leQjot:é Z IziIzj+% Z (Iziyja+lzjyia)
[+ o [+7

+%E Vie Yia - (A6)
o

Now the first term on the right-hand side of Eq.
(A6) is independent of @, and therefore of the color
scheme. Likewise, in view of Eq. (A4), the second
term on the right is also independent of the color.
The third term of Eq. (A6) does depend on color,
but it does not depend on I,. Therefore, it must
cancel out of any equation describing the mass
difference of two memebers of the same isospin
multiplet. Thus, we have proved that the electro-
magnetic mass splittings of mesons are independ-
ent of the color index o and consequently, independ-
ent of the quark charges.

The proof for baryons is very similar. In this
case we must make the replacement

Q=5 Y. @iafys> (A7)

o, B

where the prime on the sum indicates that we must
omit the term o =8. Using Eq. (A2) in Eq. (A7) we
find that the proof goes through just as for the
mesons. We omit the details.

APPENDIX B

In this appendix, the symbol for a hadron stands
for its wave function. We denote a baryon spatial
wave function which has no orbital angular momen-
tum and which is symmetric in all three spatial
coordinates of the quarks by ¥$. If the wave func-
tion is symmetric only under the interchange of
the spatial coordinates of the first and second
quark, we denote the wave function by ¥$(12). We
denote a baryon spin- 3 wave function by X and
.wo linearly independent spin-3 wave functions by
x5 and y{, the S and A denoting whether the wave
function is symmetric or antisymmetric under the
interchange of the spins of the first and second
quarks.

Using this notation, and incorporating isospin
invariance, we obtain the following expressions
for the quark-model functions of the baryon SU(3)

decimet:

L -

=uuuxs ¥y ,
*=uudy, 1y

A% =dduy,¥3 ,

A" =dddy, Y5,

TR =uus x, TS #(12) ,

SH=ydsy, ¥Ex(12) ,

TH=dds x,¥Sx(12)

EX0=ssuy, ¥S#(12) ,

EX=ssdy, ¥5*(12) ,

(B1)

Q =sssyg¥§.

Similarly, the wave functions of the baryon SU(3)
octet are

p=undy$¥5(12),
n=dduxS¥$(12),
Tr=uusxS¥5(12),
20 =udsxS¥5(12),
2 =ddsxS¥5(12),
A=udsx¥5(12),
E0=ssuxS¥i(12),

ssdxS¥5(12).

(B2)

-
'~
—_

For the mesons, we let the spatial wave functions
be denoted by ¥, and use the notation yx, and , for
spin wave functions corresponding to spin 1 and 0,
respectively. We can then write the wave functions
of the vector-meson nonet as

p*=udx,¥,

p° = (uii— dd)x, ¥,/ V2 ,

P =dﬂX1‘Ilp ,

K**=usyx, ¥px,

K*¥=dsy, ¥, *, (B3)

E*=sdy, ¥y*,

K* =sty, ¥y*,

w=(ua+dd)x,¥,/v2 ,

@=s5x%, .
In the above expressions, we have assumed that
the ¢ is composed purely of strange quarks and
the w purely of nonstrange quarks. Actually, both
the w and ¢ will contain small admixtures of the
other quarks. However, since the w and ¢ are
isospin singlets, their properties are irrelevant

for calculating electromagnetic mass splittings.
Likewise, the wave functions of the pseudoscalar
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nonet are
T =udx,¥,, w°=(uu-dd)y,¥,/V2Z,
T =dux,¥,, K'=uSx,¥y, K°=dsy,¥,
K°=sdy, ¥, K =sux,¥, (B4)

n=la(ui+dd)/VZ +bss]x,¥,, a®+b*=1
0 =[buw+dd)/VZ - ass]x, ¥, .

Here again, because the n and 7’ are isosinglets,
we do not need to know the values of the mixing
parameters a and b.

*Work supported in part by the U. S. Energy Research
and Development Administration.
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