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Nucleon polarizabilities and m —t2y, vP —t2y decay rates from Compton-scattering amplitudes
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The difference of the dynamic electric and magnetic polarizabilities of the nucleon a —P is estimated on the
basis of sum rules obtained from unsubtracted backward dispersion relations for the relevant nucleon
Compton-scattering amplitudes in the framework of the two-particle unitarity approximation. The s- and u-
channel contributions are then evaluated in terms of pion photoproduction data while the contribution of the
two-pion state in the t channel is shown to contain a large positive piece, explicitly computed, which could
bring the theoretical prediction into qualitative agreement with the existing experimental results. It is
consequently pointed out that if the ordering a & P is further confirmed experimentally, the annihilation-
channel exchanges should be strongly responsible for this fact. The importance of the two-pion continuum for
the dispersion determination of the q ~2y decay rate from the superconvergence of certain nucleon Compton-
scattering amplitudes for fixed s and large t is also particularly emphasized.

I. INTRODUCTION

ot proton= (10.7+ 1.1)X 10 fm
(1.2)

P prot'on = (-0.7 + 1.6) x 10 fm'.

The recent work of Ericson and collaborators'

According to the well-known low-energy theo-
rem, ' the nucleon Compton-scattering amplitude
at fixed angle is completely determined up to
second order in the photon energy by the'mass,
charge, and magnetic moment of the target and
two structure-dependent constants o. and P, usually
called the dynamic electric and magnetic polariza-

, bilities of the nucleon. The sum a+ p can be
theoretically found in a model-independent way
from the Gell-Mann-Goldberger-Thirring' dis-
persion relation for the forward spin-averaged
amplitude in terms of the total photoabsorption
cross-section v . In their analysis of forward
Compton scattering, Damashek and Gilman' found

1 ~ d(d
(Q + p)proton =

2 2 2 ~proton(tt )
27T „,th CO

=(14.1+0.3) x10 ' fm'.

The theoretical calculation of n and P separately
is a much more difficult task, requiring many
other dynamical assumptions than those needed to
derive Etl. (1.1).

Experimentally, after the first measurement of
these parameters made many years ago by
Goldansky et al. ,

' a better determination (which
essentially confirmed the old results) has been re-
cently done by Baranov et aI,.' These authors,
using the expression of the differential cross-sec-
tion as given by the low-energy theorem for a
least-squares fit of experimental data in the labor-
atory photon- energy range 80 & ~ & 110 MeV ob-
tained the values

renewed the interest in both experimental and
theoretical investigation of nuclear and elementary-
partiele polarizabilities. In a paper devoted to
nucleon polarizabilities, Bernabeu, Ericson, and
Ferro Fontan' calculated n and P starting from an
approximate sum rule obtained from a backward
dispersion relation for a certain combination of
Compton-scattering amplitudes (neglecting the
contributions to the dispersion integral coming
from the annihilation channel) and found no„t„
= 4 &&10 fm', P&roton--- 10&&10 fm'. The ordering
P &o. would be in agreement with simple but not
compulsory expectations based either on quark-
model arguments or on the fact that the most im-
portant excited states of the nucleon are of mag-
netic nature tthe N*(3/2, 3/2) 1236 MeV resonance
appears, for instance, in a magnetic multipole].

In this paper we shall present an alternative dis-
persion analysis of the nucleon dynamic electric
and magnetic polarizabilities arguing that if the
ordering a & P is further confirmed experimentally,
the consideration of the annihilation channel ex-
changes in a dispersion approach could help un-
derstanding the situation. The need for taking into
account the contributions of the singularities in
the t channel to the dispersive integrals comes
from the bad asymptotic behavior in the forward
direction (at least as far as the Regge-pole model
is concerned) of the Compton amplitudes which,
at threshold, define the combination n —P. Thus,
unlike the case of a +P, the model dependence en-
countered in the dispersive determination of a —P
makes the theoretica1 result for this quantity much
more uncertain. In any case, working in the
framework of fixed-angle (6 =180') dispersion re-
13tions for which a better asymptotic behavior is
expected for the relevant amplitudes, we shall
show that the first thing which comes in mind with
respect to the t -channel singularities, the consi-
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1336 I. GUIASU AND E. E. RADESCU

deration of the two-pion state, is capable by itself
of giving a large positive contribution to n —P,
thus ensuring the ordering n + 8.

The needed kinematics is presented in Sec. II.
In Secs. III (which also contains a detailed account
of a previous short communication') and 1V two
different sum rules for n —P based on backward
dispersion relations are presented and evaluated
within the two-particle unitarity scheme. The
treatment of s- and u-channel contributions is
given, as usual, in terms of pion-photoproduction
data while, as far as the t -channel singularities
are concerned, we give here an explicit calcula-
tion of the two-pion-state continuum contribution
in the approximation of keeping for the matrix
elements of the processes NN -7T~ and ~~-yy only
the corresponding Born poles plus the constants
dictated by the existing low-energy theorem for
~w- yy. The results of both approaches appear to
be very close to each other and agree qualitatively
with Eqs. (1.2). In order to see how some of the
approximations for the evaluation of s- and u-
channel contributions work, in Sec. V an estima-
tion of n +P using only the pion+nucleon inter-
mediate states in the absorptive part of the forward
spin- averaged amplitude is presented.

As a byproduct, the same two-pion model for the
annihilation-channel exchanges employed in Sees.
III and IV in connection with the nucleon dynamic
polarizabilities is used in Sec. VI for the calcula-
tion of a piece so far disregarded in a sum rule'
for the g'-2y decay amplitude coming from the
supposed supe rconvergence" of a certain nucleon
Compton-scattering invariant amplitude at fixed
a =0. It is shown that the theoretical prediction
for the q'- 2y decay rate, ' known to be much lower
than the experimental value, is thereby consider-
ably increased.

The conclusions of this paper and the results of
other related approaches are briefly discussed in
Sec. VII. Technical details which also establish
notations and conventions needed for the evalua-
tion of the s- and u-channel contributions to the
dispersive integrals considered in this work are

given in Appends A, whale Appends B contains
details about the two-pion model for the t -channel
contributions. Because at times in this paper the
pion+nucleon continuum contributions to the sum
rules have also been compared with the results of
a simple saturation with the N*(3/2, 3/2) reso-
nance in the zero-width approximation, we found
it useful to collect in Appendix C the N* contri-
butions to the s-channel absorptive parts of the
six invariant Compton-scattering amplitudes be-
longing to the particular set we were working with.

k(p) and k'(p') are the photon (nucleon) momenta
before and after the collision; m is the nucleon
mass. In terms of the three independent vectors

Q=k' —k =P —P', K = (k+k'), P= —,'(P+P'),

(2 2)

the usual Mandelstam invariants are

s =(k+ P)' =m'+2P. K —-', Q',

t =(k —k')' =Q'

u = (k —P')' =m' —2P K—
(2 3)

K2 = —— P2 =m2 ——
4 )

P.K=- v= —,(s —u), P @=K Q=O .
We shall work here with the six scalar invariant

amplitudes A,-(s, t) (i = 1, 2, . . . , 6) of Bardeen and

Tung, " known to be free of any kinematical singu-
larities and zeros:

6

Mpv CA As s, t,
where

II. KINEMATICAL PRELINIINARIES

The scattering matrix for the nucleon Compton
effect is

S„.= 6„.—t(2zz)'6(p'+k' —p —k)(2zz) 'm(4k, k,'pp,') 't'

x e„' +(k')u (p')M„, (p', k'; p, k)u(p) e (k).
(2.1)

g, =K g~~ —2K~K~)

2z = zK [y&(y'K)y~ y~ (y'K)y&] (P'K)(K&y&+y&K~) +(y K)(K&P~+P&K~ )~

2, =m(y K)g„, —(P.K)g» —,'K'(y y„—y, y )+K—„',[(y.K), y ]+-,'[y„, -(y.K)]K,-m(K y„+y K„, )+(K p, + p K„)
24=K (y„P, +P„y„)—(P K)(K„y, +y„K, ) —(y.K)(K&P, +P„K,)+(P K)g» (y K) mK g»+—2mK&K» (2.4)

25=K PpP, —(P K)(KqP„+P„K„)—z [P K —(P K) ]gq, +PzK„K„,

Z6 = P&P~(y. K) —z(P K)(y„P, +P&y~ ) + ~(P.K)[y&(y K)y, —y„(y K)y&]

+ wzK (y&y, —y y~-)+ 2zzz(P K)g~ 2P g» (y'K) +K—&K, (y K)

+ —,
' m (K&y, + y„K, ) —

z m(K„P, + P K, ) —4mK& [ (y K), y, ] ——~ m [ y, (y K)]K„.
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where

+R';"(m' —s) '(nP -I) ', (2.5 )

R," = -(2/(e+/t')/2m, R',"=4m/32, R, =0,

R,' =(2R(3+/t2)/2m2, R2"=4e(e+k), R, =0,

R, =(2M+it')/2m, R'," =R,'=0,

R,'=02/2m', R',"=40(B+/t), R, =0,
(2.6)

A', "= —8kem, g,'=g, =0,

The amplitudesA. . . , are even whileA3
~ 6 are

odd under s-u crossing. The structure of the s-
and u-channel Born pole terms of the amplitudes
A. ; is given by

A, (s, t, u) =R'; [(m' —s) ' +(m' —u) ']

+R, [(m' —s) ' —(m' —u) ']

A(22"" = —(2/m)g, „„3.,F, (p.' —t) '

+(2/m)g„„„E„(//. „'—f) ', (2.7)

t = -2q, '(1 —cos8),

q, = (s —m')/2s"',

(s —m')'
t(s, cosg) = — {1—cos8) .

28

(2 6)

In particular, at 0 =180

where F„F„and g,», g„»are the meson decay con-
stants and couplings with the nucleon while p. and
p, „denote the mass of the pion and q meson
[g „„:—g„=(41/ 0&14.5)' '].

In the barycentric system, denoting by q, the
magnitude of the photon (or particle) three-mo-
mentum and by 8 the scattering angle, one has the
following kinematical relations:

R3 = —/('/m', R3 =R3" =0 (s —m')'
S

{2.9)

The charge and magnetic moment matrices e and
k are defined as The photon energy in the laboratory system cv is

related to s through the relation
e 0 ex~ 0

. S = 2m&+ Vl (2.10)

with e'/4l/=1/137, /(/, =1.79, /(„= —1.91. The
pseudoscalar (1/' and q') meson poles in the t chan-
nel only contribute to A, :

The connection between the invariant amplitudes
A, and the six independent helicity amplitudes
describing nucleon Compton scattering is given
by the following relations:

2m 8 4s —2(s+ m') sin'(-,' 8) f 2m s"'
1 sin( 8)(s m2)2 -1/2 -1,1/2 1 (s m2)2sin2( 8)cos( g) 1/2 -1,1/2 1 sin( g)(s m2)2 fl/2 —l, -l/2 1 )

2s'" 2(s+m')[2s —(s -m')sin'(-, '8)]
sin( —8)(s —m')' "' "" m(s m')'sin—'( '8)cos(-'—8)

2s'" [4s —(s —m') sin'(-,' 8)]
(s —m ') 'sin'(-' 8)

(2.11)

(2.12)

2m s'l' 2(s+ m') 2m s'l'
3 sin(1 g)(s m2)2 f-1/2 -1,1/2 1 (s 2)2cps(1 8) fl/2 -l, l/2 1 sin(1 8)(s m2)2 f1/2 -1,-1/2 1 t

2m 4m'[2s —(s —m') sin'(-,'-8) ]
4 (s m2)2cps( 1

g) 1/2 1 1/2 1 sl/2( s m 2)3sin( 1
g) cps2( 1

g)
f 1/2 1 Il/2 1

2m[s(s+ Sm2) —m'(s —m') sin'(2 8)
s(s —m2)3cos3( g)

(2.12)

(2.14)

&6m''" 16m'
sin(1 g)cos2(1 g)(s —m2)3 "» 1'» cos'{18)(s-m2 )'

4m
6 (s m2)2cps(l g)

f 1/2 1,1/2 1 sl/2(s 2)2cps2( g)
f 1/2 l, l/2 1 s(s m2)-2cps3(l g)

-1/2 l, -l/2 1 '

(2.15)

The helicity amplitudes appearing in the above relations are those of Ref. 11 divided by 2m with a different
sign definition only for f,/. . ./». Some sign errors inside the curly brackets in the first of Eqs. (51)
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and the first of Eqs. (52) of Ref. 11 have been corrected in our Eqs. (2.11)-(2.16).
The continuum parts of the invariant amplitudes are, by construction,

and the dynamic electric and magnetic polarizabilities o( and P are defined by

(2.17)

o. —(8=& A', (s=m', t=0), (2.18)

n+ P =—A'(s = m 2, t = 0) +—A', (s = m', t = 0) . (2.19)

III. BACKWARD DISPERSION RELATION FOR A,

In this section we shall derive and evaluate a dispersion sum rule for o. —P involving the amplitude A,
from the decomposition displayed in Eqs. (2.4). Our main hypothesis is that the amplitude A, goes to zero
when s- ~ at fixed 6= 180', so that it satisfies an unsubtracted backward dispersion relation. The ampli-
tude A, cannot be expected to satisfy a forward unsubtracted dispersion relation, at least as far as the
Begge-pole prediction is concerned. As a matter of fact, we simply explore in this section what would
come about from the supposed convergence of a backward dispersion representation for the amplitude Ay
which directly defines c( —P. Forgetting for the time being the contribution of the single-nucleon state
(which will be discussed later on, when we shall have already specialized our considerations to 8= 180'),
an unsubtracted fixed-angle dispersion relation for an invariant Compton amplitude even under s-u cross-
ing looks as follows" (see also Ref. 13 for details):

A(s, c) =—1
w

, A' [s', t(s', c)] 2 '", 1

+2)2 S —S 1T (sss+2)2 S~(u ) —S (u )

i s(1 ~ c) —s„(u') ' 1+c ' s(1+c)-s (u') ' 1+c ' )

where c stands for cos6', and

tgt') „, t (t')
s(1 —c)-t (t') 1 —c ' (3.1)

t,(t') = m'(1 —c) —t' ~ ([m2(1 —c) —t'J' —m'(1 —c)')"',

s,(u') =m'(1+ c) —u'a $[m'(1+c) -u'J'+m'(1 —c')j'" .
(3.2)

(3.3)

The absorptive parts A', A"' are given by the unitarity condition in the direct and annihilation channels.
At g=180 one has

s,(u') m'
s, (u') =0, lim —+--—=, , s (u') = —2u',

c —'-1 1+g g' ' (3.4)

t,(t') = 2m' t'+i[t'(4m' —t'—)]'", t (t') = 2m' —t' —i [t'(4m' —t')]"' . (3.5)

The second term of the integral over u' in Eq. (3.1) at 8= 180' contributes at most a subtraction constant,
which in the case considered here is zero by hypothesis. We supposed here that the amplitude A, (s, cos8
= —1) tends to zero as s-~. Recalling the definition Eq. (2.18), we are interested in having a, dispersion
representation for A'„so that we must now carefully analyze the Born term A, At cos0= —1, from Eqs.
(2.5) and (2.6) we find

4me's ( ke+ k')
(3.6)m'(s m')' 2m'—

This means that our assumption

A, (s, cos8= —1) — —„-0

implies
(2ke+ s2)

A, (s, cos8= -1)=—A, (s, cos8= -1) -A, (s, cos 8= -1); =„+
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In view of all these considerations, the needed representation reads

284 1T (m+ pP S S 7( ( ())2 zz'(u's- m')

f (f') „, t (t') , ,
2s-f (f') (3.7)

which for s=m' implies the following formula for the difference of the dynamic electric and magnetic
polarizabilities:

(o. P) =—(o' 0)"—+ (n 0)"—+ (o. 0)"—', ,3.8)

4m 2' 3 (3.9)

))z' AI[s', t = -(s ' —)zz')'/s ']
dS

S —Pl
(3.10)

f, (&') t,(f'), t (f') t (t')
2 ' J, t,(t') —t (t') 2) ' t(f') '-2 ' 2)zz'-t (t')

(3.11)

= arccos(1 —2p'), (3.12)

(s.is)

The contributions of the different singularities
in the complex s plane (at fixed 8 = 180'), as given
by Eq. (3.'f), can be read off on Fig. 1, where the
corresponding cut structure is displayed. So,
as can be immediately checked, the integral over
s' in Eq. (3.'t) represents the contribution of the
right-hand cut in Fig. 1, the u' integral represents
the contribution of the segment [0, m'/()z)+ )z)'] of
the other cut on the real axis, while the first of the
two integrals over t' (the one which extends over
f' values in the interval [4p, ', 4m']) expresses the
contribution of the circular cut (along the curve

( s
~

= m') and the last integral over t' (for t' )4)zz')

corresponds to the cut (-~, 0] along the negative
real axis in the s plane. As noted in the figure,
the circular cut extends up to the points gz'e""0,
where

2p(1 —pz)) /

y =arctan—0 1 —2p"

(a P)('„), „=+2.40 x 10 fm',

(n P)(„(,)„„,„=+1.29 x 10 ' fm'.
(3.14a)

(3.14b)

We shall estimate the quantity ((z —P)") as given
by Eq. (3.10), restricting ourselves to the consid-

u =(m+p p. ) 2

) I

)m s

9~2
t =Op. 2

$ -p2

~m2 Re s

The s' integral in Eq. (3.10) by means of s-u cross-
ing takes into account both the contributions of the
direct s-channel right-hand cut and of the cut on
the interval [0, ))z'/()n+ p.)'].

We proceed now to evaluate numerically the
different contributions to o. —P according to Eqs.
(3.8) —(3.11). For (n —P)") we have from Eq. (3.9)

The threshold of the three-pion state (t' =9Z),')
corresponds to the points n~'e""& on the circular
cut, where

u= {m+p.) 2
{m+ 2p. }2

(m++) 2

sp(4 —9p')' '
X, = arctan

2 9 2 FIG. 1. Cut structure in the complex s plane.
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eration of only two-particle (pion+ nucleon) inter-
mediate states in the unitarity sum. We then use
pion-photoproduction data, and these are taken
from the analyses of Hefs. 14 and 15. The inte-
gration over energy will be extended well outside

the threshold of double pion photoproduction, con-
sidering that this extrapolation does not introduce
drastic modifications. In terms of tabulated photo-
production multipoles (see Appendix A for nota-
tions) our formula for (o! —P)"' reads

( )&, ) 1
"

ImA&(s, 8= 180') m'
proton&ncntron} 47&2 S —O'I S(m+u)

+thr

+ 61+D3/nl 2 I+p3/n + lflDn/21 + 2 I+s t/n I

—21& , /. I' —41-4 /. &"41& ./. I' —31fl /. I"31fl / I'~

+ 6—Be[2(Bp 3/n/ip 3/2 -ff D'3*/A&t'3/2) + 3(+p 3"/2+ p~/2 +D, /2 D' I 3)32
7'2'1

(s = 2nz&d+nc, eth, = p+ hL /2n&), (3.15)

(o. p)&„P„„= 7.40 x 10 ' fm'. (3.16a)

For the neutron, corresponding to the three ener-
gy regions mentioned above, we found

(c& —P)„",-„'„,„=(+ 0.17 —6.14+ 0.26) && 10 ' fm'

= —5.71x10 ' fm'. (3.16b)

(Here we used the second paper of Befs. 14) for
rd &250 MeV, and Bef. 15 for &o &250 MeV).

We observe that if one tries to saturate the in-
tegral in Eq. (3.15) only with the N*(-,', —,') (M = 1236
MeV) resonance in the zero-width approximation,
one would find

(~ p)
& 2 ) & ter rtr ) (~ p)

&2 ) &N rtr )

82 1 ~2+ fi'l2

4m 8m Al —m

3+4——3 ., G~
1V1 M'

12.3 x 10 4 fm'. (3.17)

G~ is the magnetic N*N transition form factor

where only waves with the total angular momen-
tum/= —,', —,

' have been retained.
For the proton, the integration in Eq. (3.15) over

the low-energy region (the photon laboratory en-
ergy &u from 180 MeV up to 250 MeV) using the
analysis from the first paper of Bef. 14) yields a
contribution of 0.13 & 10 ' fm', the integration over
the domain of (d from 250 MeV up to 750 MeV gives
-7.83 x 10 'fm', while the region 750 & ~ & 1210
MeV contributes with + 0.30 x 10 ' fm' (for &d &250
MeV the data of Ref. 15 have been used). So, ne-
glecting contributions coming from energies higher
than 1210 MeV, we found the result

(G~=3). The other transition form factor, G~,
which is very small with respect to G~ (see the
analysis of Jones and Scadron") has been set equal
to zero, The resonance-saturation scheme can
sometimes represent an useful laboratory in which
one simply gets a rough estimation of different con-
tinuum contributions otherwise hard to compute;
so we give in Appendix C some details about this
procedure and display there the N* resonance
contributions to the s-channel absorptive parts of
the amplitudes A,. in terms of the NN* transition
form factors G~ and G~.

We start now estimating (n —t6)&3' as defined in
Eq. (3.11). For this purpose, we shall consider
only the contributions to the absorptive part A~
coming from the two-pion intermediate states.
Because our lack of knowledge of all but a few
of the matrix elements in the sum over interme-
diate states precludes any exact calculation of
the absorptive part 4~1, we shall use two-particle
unitarity in Eq. (3.11) all over the t integration
region. We are then left with the needed absorp-
tive part expressed in terms of the product of the
amplitudes of the processes NÃ- ~m and mv-yy,
which will be both taken in the Born approximation
(that is the cova, riant matrix element for NZ- t&t&

will be approximated by nucleon-pole terms alone,
while the reaction mm-yy will be approximated
by p~le terms plus the constants required by the
existing low-energy theorem). This simple model
for the annihilation-channel contributions has been
previously employed by Holliday" and by Baranov,
Filkov and Sokol", among others, in their disper-
sion-theoretical treatments of nucleon brompton
scattering. We hope that it can also give some
qualitative indications about the structure -depen-
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dent constants n and P. We note first that within
this (21&} model one gets

so w are left with

Using the reality condition

A, [-.t (f'), t'l= (A, [-.t.(t'), f'])*

1

4 2

dt'
A Ill&2 tt) [ t (tt ) &tt]

m

for 4 i12 & t' ~ 4ln' in Eq. (3.

1 &4m

(o& —P)"' =, dt'
4m

+ , J dt'

11) one arrives at

ReA, [2t, (t'), t']
tl

ImA~[ —,' t, (t'), t']
[t'(4&422 —t')]"'

A, [-,'f, (t'), f']
tI

In the particular model considered for A. , it turns
out that A',"&2"[-2't, (t'), t'] is a purely real quantity
in the t' integration region from 4p. to 4m and

(3.18)

The different (211) contributions to the t-channel
absorptive parts AI"(s, t) of the invariant ampli-
tudes A. ,- are found in Appendix B. In the t' inte-
gration regions from 4p, 2 to 4m2 (corresponding to
the circular cut in the s plane} and from 4m2 to ~
[corresponding to the cut (-~, 0) in Fig. 1], the
integrand of Eq. (3.18) is expressed through Eqs.
(B17), (B19), and (B20). After also evaluating the
integrals over 2 in Eqs. (B19) and (B20) and sub-
stituting their expressions into Eq. (B17), one
finds the result

(~ —&3)&l!1..= (~ —0)&".&,:
e' g„2 2p' "

I (x' —p2)'~2 -4x' + 2x'(2 —p2+ —,'p') + ( p4 ——,
' p') x + (x' —p2)'~2

4 11 112212 ] x2[ p4 + 4(1 p2)x2] x2[ p4 + 4 (1 . p2) x2] 2 x (x2 p2}1/2

where

4 (x' ——,
' p2) (-,

' p4 +x')
x'[ p4+ 4 (1 —p2) x'] ' Y x) (3.19)

2(1 „.),y. „„„2[(1-')( '- p')]'"
2x —p

Y(x) =

for p&x&1

2x —p + 2[(x —1. )(x —,02)]'"' ""'""-'- [("- )("-' )]" "'"' (3.20)

[p = p, /I and the integration variable t' has been
changed to x = (t'/4m2)'~2].

The numerical value of (o. —p) 2'„'„„&„,„„,„& as given

by Eq. (3.19) is

(o. —P}' ' =17.51&&10 fm (3.21)

(n —&3)2„„„=(2.40 —7.40+17.51)&&10 ' fm'

=+12.51&10 4 fm' (3.22a)

(&2 —p)„,„„,„=(1.29 —5.71+17.51)x10 4 fm'

=+13.09x10 4 fm'. (3.22b)

If we join to Eq. (3.22a) the determination of
Damashek and Gilman, Eq. (1.1), we get

The result of the integration over x &1 in Eq. (3.19}
is practically negligible.

Summing up the three contributions to n —P
found in Eqs. (3.14a), (3.14b); (3.16a), (3.16b); and

(3.21) one finally obtains

np, „to„=13.3&10 ' fm', jap, ot,„=0.8&10 fm',
(3.23}

to be compared with the experimental result given
in Eqs. (1.2).

We note that even if the t integration in Eq. (3.19}
is extended only over the small region from 4p. '
up to 9p2 (the threshold of the three-pion state)
where two-particle unitarity is exact, one would
still get a large positive contribution to &2 —

&I

amounting to (&2 —&3)&2' =+11.0x10 ' fm', the order-
ing e & I3 still being preserved.

The presence in &2, —j3 [as given by Eq. (3.8)] of
the piece (u —P)&" expressed in terms of nucleon
anomalous magnetic moments seems surprising in
view of the fact that the dynamic polarizabiLities
are intimately related to continuum and not to pole
contributions. The quantity (&2 -p)&1' should be
taken only as indicating a small but non-negligible
amount to &x —P (as calculated in this section) intro-
duced by a presumably needed subtraction at infin-
ity hard to handle by more precise considerations.
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IV. BACKWARD DISPERSION RELATION FOR A 1 A 3

We present and evaluate here another sum rule
for n —P, analogous to the one derived in the pre-
vious section but obtained using the combination
A ] A 3 instead of the ampl itude A, The main
assumption here is that A., —A, vanish when s —~
at fixed 8= 180 (as u-channel Regge-pole argu-
ments would suggest), so that an unsubtracted
backward dispersion relation for A, -A, can be
written down. Noting that A.„unlike A„ is odd
under s-u crossing, and using the same procedure
and notations as in Sec. III, the following sum rule
for o. —P emerges:

1
n —p=

4 [(A, -A,)- (A&~-A. 3~)](s =m', c=-1)

(o& P)&3 )

im(A),)&-A',")-
[t'(4m' —t')] '"
III III1 dt, A, A,

4lr', 2 t' [t'(t' —4m'}]' '
(4.3)

where the arguments of the amplitudes in the inte-
grand of Eq. (4.3) are the same as in Eq. (3.18}.
The absence, in this approach, of any contribution
in terms of nucleon anomalous magnetic moments,
similar to (o& —P)

&t) of Sec. III, is a consequence of
the following structure of the nucleon Born term
(A, -A, ) at &) =180'

with

(OI P)&2') + (O, P)&n') (4.1) 4me2As)proton ( (s —m')

[4 —(2)&, + )tp')]e'
m (s —m')

(4.4a)
2 2

gB ~B)neutron (3 m(s —m') ' (4.4b)

I

A', (s', c =-1)

(4.2)

which imply (A, —A, )e(s, 8 =180')—0 when s —~.
We evaluate the sum rule Eqs. (4.1}-(4.3}using

the same model and approximations as in Sec. III.
In the same notations, we find

4 3/2

&o -e),",.l, ;,.„,) = f „. r —+t I&el&*",r I'+elI& g I'+elIn,"g I'+ellen) I'+el&". gill'+ l le~Pe&I')
~thr

—(2IA p, t.l'+4IA p', t.l'+ 3l&"y.l'+ 3IA"ly. l'+6IA" g. l'+-'.
l
&',&g, l')]

(4.6)

and

e' ~ ' 2p' " dx x+ (x' —p'}' ' 2x' —p'
4 )) 4)) )&m', x'[ p' + 4x'(1 —p')] x —(x' —p')'~' 2x (1 —x') (4.6)

The necessary steps to get Eqs. (4.5} and (4.6)
are given respectively in Appendixes A and B.
Numerically one gets

(&p P)„,„„,„=12.71 x10 ' fm'.

Equation (4.9a) together with Eq. (1.1) gives

(4.9b)

(&P —P)p&'„'„„=-4.92x10 ' fm',

(&p —P)",.r„,=-4.32X10 ' fm',

(4.7a)

(4.7b)

(yp„„„-13.& x10 4 fm',

/proton —1.0 x 10 fm
(4.10)

and

(&P —P)'p'„'„„--(o.' —P)&„",„'„,„=17.03 x10 ' fm', (4.8)

(a —P)„„,t,„-—12.11x10 ' fm', (4.9a)

so that finally, in this approach, there results

We observe that the above numbers are quite
close to those obtained in Eqs. (3.22a), (3.22b),
and (3.23).

Here we also give the result of N*(—,', —', } satura-
tion in the zero-width approximation for (ct.'—P)" '

[Eq. (4.2)], obtained using the projections from
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Appendix C:

) )proton(neutron) 4& mn(M2 ma) (GM + GE )

=-10.9&&10 4 fm' for G~=3, G~ —-0
Ef we restrict the integration in Eq. (4.6) to the

small region (p &x &-,'p) where the two-pion states
saturate the t-channel unitarity, we get instead of
Eq. (4.6)

(n - P)&') =10.9x10 4 fm',

e.g. , a large positive contribution. to e —P is pres-
ent in any case and therefore the ordering e & P is
still obtained.

We note that the sum rule for o. —P represented
by Eqs. (4.1)-(4.3) can be written as

1+2—
~]hr

contribution in terms of nucleon anomalous mag-
netic moments actually appears.

V. CALCULATION OF (a+P)

From the exact relation (1.1) the theoretically
numerical value of o. +P for the proton is already
known in terms of total photoabsorption data. In
this section we shall compute the sum e+ j3 of the
nucleon polarizabilities along the same lines as
done in Secs. III and IV for the s- and u-channel
contributions„ in order to see how the different
approximations work. %e shall make the same
two-particle (pion+nucleon) unitarity approxima-
tion and we shall also employ the photoproduction
data not only up to the threshold of double pion
photoproduction, but well outside it. So we are
calculating o. +P defined in Eq. (2.19) from a for-
ward (t =0) unsubtracted dispersion relation for the
combination of amplitudes A.4+ &md. ,:

[o(AP =yes) —o(AP =no)j (o, + p) = —[g,'(s = m', t =0) +-,'mg;(s = m', t =0)]

+ (annihilation-channel contribution),

(4.11)

where, as seen from Eq. (4.5), v(SP =yes) and
o(bP =no) contain respectively the parity-flip and
non-parity-flip multipoles. By writing an unsub-
tracted backward dispersion relation for A, -A,
we then recover the sum rule from Ref. 7}, with
the difference, however, that no supplementary

m " „,fm(A, +-,'-~a, )(s', t =0)

1
"

d
0'r(&d)

2lT2 CO~thr
(5.1)

where, within our approximations and in terms of
quantities defined in Appendix A, we put in Eq.
(5,1}, instead of vr(cu), the total photoproduction

o "'""'"""(&t))= '
~ (GlAq't)~l +6lAp&t)~l'+12lAp~", )pl +12lA~'g~l +9lBpp'g

l
+9lBpn"'

l

10 't((2sr +m)

+4I&,g.l'+41& p'tg. l'+ 6I&~ g, l'+6I&,"g,l'+6I B~g. l'+6I B g, l');. (5.2)

The multipoles appearing above are again those
to be found in tables in Hefs. 14 and 15. The
result of numerical integration up to the photon
laboratory energy (d =1210 MeV gives

(o. + p) „„„=11.50x10 ' fm',

(o.'+ p)„,„„,„=13.05x10 ' fm'.

(5.3a)

(5.3b)

The region from near threshold up to 250 MeV
contributes 2.82 for the proton and 2.89 for the
neutron, the region 250-750 MeV contributes
8.47 for the proton and 9.95 for the neutron, and
the region 750-1210 MeV contributes 0.20 for
the proton and 0.21 for the neutron, in units of
10 4 fm'. The smallness of the contribution
coming from the la.st energy region is to be noted.

The result expressed by Eq. (5.3a) is not ex-
ceedingly far from the value obtained by Damashek

and Giiman, ' Eq. (1.1).
It is perhaps instructive to note that if one sa-

turates Eq. (5.1) only with the N*(~, ~) (M = 1236
MeV) resonance (see again Appendix C for no-
tations and procedure), one gets

»(x*) e» 1
t )proton(neutron) 4 ( )t N } r 2 p)7T rn ~M —m

(5.4)

that is

for G~ = 3 and GE 0.

VI. m
o ~ 2y &o ~ 2y DECAY RATES

The (supposed) superconvergence of certain
Compton-scattering amplitudes at fixed s and
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la, rge t implies sum rules for the residues of the
t -channel. pseudoscalar ~P and q' meson pol. es
E, and F„, related to the n 2y and q -2y decay
rates T, and t„by

where

CI" =e'[4+6K@+Kg ]=1.65, (6.4)

(6.5)
64m 64m
3F 2 & TnP 3FjL ~ P~

(6.1)

In this section we sha, ll reconsider the sum rule
analyzed by Choudhury and Hajaraman, ' which
in terms of the:Bardeen and Tung amplitudes A,
[Eqs. (2.4)] reads

du' Im A2 ——A3 s = 0, t' = 2m' -u', u' = 0,

(6.2)

1 + 73 (P)2mg~~~ F„73—2m gq~~ F q + C,

C~{. 0
2 1 2 3 (6 3)

and we shall point out that the consideration of
the two-pion continuum in the t channel could
improve the agreement with the experimental
number for the g-meson decay rate.

Separating in Eq. (6.2) the contributions coming
from the t- and u-channels single-particle poles,
and using s-u crossing, the sum rule to be eva, lu-
ated can be rewritten as

du'[mA, ' +A,']~ "
7l J{~+p )2

(u', f' =2m'-u', s=0), (6.6)

C&(~) df i LmAm Anr ]P(~)
3 r 0 2, 2

—
3

Q ]LI

(s =0, t', u' =2m' —t').

The superscripts P(n) in the absorptive parts under
the above integrals refer to proton Compton scat-
tering [corresponding to T, =+1 in Eq. (6.3)] and
to neutron Compton scattering (r, = —1) in Eq.
(6.3).

The continuum integrals (6.6) and (6.7) are esti-
mated within the same two-particle unitarity
scheme and using the same approximations and
model as in Sees. III-V for the polarizabilities,
with the only difference that now we are not
working at fixed angle but at a fixed value of s
(specifically at s=0). With the notations and def-
initions of Appendix A al.ready used in the pre-
vious sections one finds

m co i 40
C, ("i=10 ' t — 2 —+1 8 —

( —2)A~', /, ~'+2]Av~', /, (' —3)A~~(,"/L, )'+3)Ag(,/l, (')
~thr

—12 —+ 1 2 —+ 1 [ 2 Re(B~ 3/2 ~p3/2 Bg) 3/2A D 3/2)

2

+ 3 Re (B~(,"),A (,"),—BD(,"/,*AD,"/, )]

The result of numerical. integration up to ~ =1210 MeV is

C', = -0.90,

C2 = —1.59.

(6 8)

(6.9)

(6.10)

We start now considering the t-channel contribution as given by Eq. (6.7). If only the two-pion state is
retained in the corresponding unitarity sum, one finds C, =C, and so, within this approximation, the value
of F, (unlike that of F„) is not affected by the annihiLation-channel exchanges.

The model for the evaluation of C~("~ is the same as the one used in Secs. III and IV (see also Appendix 8
for details). From Eqs. (85), (86), and (810) one gets for the needed integrand the following expression:

—S=P
(6.11)
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Working out the above relation using Eqs. (B.ll)-(B14) one gets, setting t' = 4m'z, p = p/m,

[mA"' -A',"](s=o, ) =4m''z)= ', ,~, I
[o+p')z —4c' —-'p*]w, (z)+[o-p*)z+-.'p*]w, (z)

(1-2 ),„+[ ( -P')]"'
z'/' z —[z (z —p')]

where

1 [4z' —z(3p'+1)+ p']+((z —p')[ —p'+z(4z —1 —p')']}'~'
]. P'-+z[4 z—(1+P')n" [ 4z' z(3P-'+1) +P'] -f(z P'-)[ P'-+ z(4z —1-P')']]' ' '

if [—p'+z[4z —(1+p')]'] )0

(6.12)

(6.13)

2 [(z P')-f P' -z(4z —1-p')']]"
]ojg g a cta

[ p g
) p]

if [ p +z 4z 1 +p ] ]' 0

[z(1+p') -p']-f.(z —p )[z(1 p)'- p-'])' '
[z(1 p')' -p']"-' [z(1+p') p'] -+f( z p')[z(1-p')' p-'])"'-'

i«(1 P')' P-'~-0

( -') -'=[z(1+p') - p'] '

„t „((z-p')[p'-z(1- p'g)' )"
[p —z(1 —p ) ] [z(1+p ) —p ]

(6.14)

The numerical integration up to t' =9P,' (the
threshold of the three-pion state) gives

CB = CB —= CB = 0.40.

Collecting the results one has

m&„„„z,= [-,'(c", —c,') +-,'(c,"—c', )]

=(- 0.33 —0.17)

= —0.50,

(6.15)

(6.16)

=(0.49 —0.62 —0.22) = —0.33. (6.17)

Taking for purposes of orientation g„» =g, NN,

Eqs. (6.16) and (6.17) imply

l

given in Ref. 18, and

~-~ =2.06x10-" sec
7]Q ~ (6.22)

given in Ref. 19.
Using the approximation of taking in the photo-

production integral all multipoles except EQ+ the
same for proton and neutron, the authors of Ref.
15 found for g, o a value (v„o =0.53x10 ~' sec)
closer than ours to the experimental number,
while the result of their analysis for z pwas 7.

Q

=10.3x10 "sec. So we see that the contribution
of the continuum to the superconvergence sum rule
Eq. (6.2) is not negligible and, moreover, helps
lower the theoretical prediction for the q' 2y life-
time.

T o = 0.34x 10 "sec,

v„o=1.2x10-i8 sec,

to be compared with

7',"o =0.85&10 "sec
for m'-2y and the experimental values

T~o = 0.63 x 10 "sec,

(6.16)

(6.19)

(6.20)

(6.21)

VII. DISCUSSION OF THE RESULTS AND CONCLUSIONS

%e have seen that the calculations of u —P pre-
sented in Secs. IG and IV gave results very close
to each other and both are in qualitative agreement
with the actual experimental values, Eqs. (1.2).
Apart from the asymptotic behavior of the rele-
vant Compton amplitudes, taken as given, which
ensures the validity of the dispersion representa-
tions used, an important dynamical ingredient to
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get numbers has been the model adopted for the an-
nihilation-channel contributions for the absorptive
parts of the corresponding amplitudes. The need
for a careful consideration of the f-channel (2w)

continuum in the case of nucleon yolarizabilities
received further support from the results of Sec.
VI where a great existing discrepancy between the
prediction (based on a superconvergence sum rule)
for the decay rate of g'-2y and the experimental
data has been mitigated.

However, in syite of the approximations made,
our main conclusion, e.g. , the presence of a large
positive contribution to n —P from the annihilation
channel-exchanges remains. Indeed, it has been
shown that if one restricts the integration region
over the t-channel singularities only to the inter-
val from 4p, ' to 9p, 2 where the t-channel two-parti-
cle unitarity becomes exact, one still gets the or-
dering ~ &P. Of course, even in this small inte-
gration region we had to make the strong ayyroxi-
mation of keeping in the amplitudes for N&-mn and

mn-yy only their Born poles plus the needed con-
stants (to ensure the low-energy theorem for the
last process), but in any case, we computed ex-
actly an important piece which is there and found
out that at least this exactly computable quantity
cannot be blindly neglected. A more detailed in-
vestigation of the t-channel exchanges, including
the contribution of meson resonances, would be
desirable, although such an attempt should perhaps
be postponed until better experimental determina-
tions of the nucleon dynamic electromagnetic po-
larizabilities have been performed. The experi-
mental number Egs. (1.2) taken for reference in
this work could still be quite uncertain. We note,
for instance, the slight disagreement existing be-
tween the determination of n + P in terms of total
photoabsorption data and Egs. (1.2). Also in this
context we mention that because the energies con-
sidered by the authors of Ref. 5 may still be too
high to allow a precise determination of n and P
from the third-order low-energy expression of
the differential cross section alone, in a subse-
quent paper Baranov, Filkov, and Starkov' ex-
tracted the proton dynamic polarizabilities from
a fit of the data from Ref. 5 with a modified formu-
la for do/dQ which includes also the contribution
to the differential cross section of the w' meson
pole. They found in this way

a, „„,„=(13.9+2.1)x10 ~ fm',

(e —P) „„„=(19.9+4.4)xlo ~ fm'.

Considering the present experimental situation
as well as the difficulties of the theoretical ay-
proaches to determine a and P separately, it would
be perhaps safer now to look for model-independent

results involving these structure-dependent param-
eters, either as done by Bernabeu and Tarrach"
or by trying to find rigorous analyticity bounds
for them. " For the time being we conclude that if
the dynamic electric polarizabiiity n is indeed
greater than the magnetic one P, then the f-channel
exchanges should be strongly responsible for this
fact. The question of possible large contributions
coming from the singularities in the annihilation
channel has also been touched on by Ericson, ' who
considered the exchange of a c(0') resonance.

Our above-mentioned conclusion is also in agree-
ment with the results of a different analysis recent-
ly done by Akhmedov and Filkov" in which disper-
sion relations for the relevant amplitudes in s at
fixed t and in s and I; at fixed u are consistently
used to eliminate unknown subtractions. The more
complicated analytical structure at fixed angle in
our approach has the advantage that at 8 =180' the
pion photoproduction amplitudes aypear under the
dispersion integral at physical values, the evalu-
ation of s- and g-channel contributions being so
less affected by extrapolations.
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APPENDIX A

From the two-particle (pion+ nucleon) unitarity
condition in the s channel, one has the following
relation between the imaginary parts of the Comy-
ton-scattering helicity amplitudes and the partial-
wave amplitudes for pion yhotoproduction:

(s)
lmf y

0

x Q Q (J + ) (zA, &„ I
"T (s) I z~ o&

where A. =A., -A.» p. =A., -A,„, 7' is the isosyin super-
script, and q is the pion momentum in the bary-
centric system of the intermediate mN state. This
exact relation up to the threshold of double pion
photoproduction [s = (m +2p. )'j has been, however,
used all over the integration region, considering
that this extrapolation could not drastically modify
the results. Also, in the sum over the total angu-
lar momentum J, only waves with J = —,

' and J = —,
'

have been retained.
To meet the notations and units used by the au-
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thors of Ref. 15 in their tables for the yion-yhoto-
yroduction partial waves, we introduce the follow-
ing definition: (A5)

ji 1, ),(s).

1/2 ~here, in the notations of Ref. 15,

A, -=&s'ulalyp&

= —(-') 1/BA V3+A.',
(A6)

Noting that in the center-of-mass system

s-m 2

2g1/2

one has then instead of E(l. (Al) the relation

Im~+
16ms

( — ')

(J'+—') ["4 „, „(s)]*

jt,-=&~'p lalyp)
(2)1/B~V3+ (1)1/Bogy

and for neutron Comyton scattering

Q I
'jul' =

I A I' +I A„,l'

=2[21& I
+SI&"

I ]

where

(A7)

x ["A. „,(s)]d~1 „(8). —(1)1 /~BVnp /in
(A8)

We mention also the phase rule

(AS) &„.-=&2'n I&l yn)
—(2)1/B~V3 (1)1/BAn

T' J' r~"A'-u. -~ =-'Av ~ (A4)

To perform the isotopic spin summations one uses
for proton Comyton scattering the yrescriytion

The connection between the quantities appearing
in the s-channel integrands in this paper and A~& „
is furnished (for J =-,', 2) by the following set of
linear combinations:

A1/2, 1/2 (2) (+S1/2 +P 1/2)y

y4 1/2 yl/2 (2) (+P 3/2 AD3/2 ) y

1/2 ~ 1/2 (2) (AS 1/2 APl/2) y

+-1/2, 1/2 (2) (+P'3/2 +D3/2) '

A1/2y3/2 (8) (BP 3/2 BD3/2)y
3 1/2+-1 /23 2/(8) (BP 3/2 + BD3/2)y

1/2 1/2A 1/2, 3/2 A 1/2, 3/2

(A9)

The relationship between the quantities A»/„A. »/„
A /„PBB /„PBetc. (that is, A. l J l, g/2 Ag1, Bl ~lgl/2

B») tabulated —in Ref. 15 and the Chew-Goldberger-
Low-Nambu' multiyoles E„,M« is given by

[10 '/(
I (1 I lg )'j ]A 1

= —,
' [( l + 2)zg, +1M

g ],
[lo-'/(I q I

)'8, )'/']A(„, )
=-,' [(l +2)M(„,) —lz(„,) ),

(A10)[lo-'/(I q I u, )'/']B„=-M„+z„,
[1o '/(I al/. )'"]B(g 1)- M(g+1)-+E(g+1)- ~

APPENDIX B

In the framework of the model for the t-channel
contributions to the different sum rules considered
in this paper, the quantities A+ ~ we are interest-
ed in should be picked up" from the following ex-
pression for the t-channel absorptive part of the
tensor uM„, u defined in E(l. (2.1):

Abs(uMIg„u) =-'(2gg) m '
(2"gyP ) u(P')

2$,r„2l„r„
x g (2gg) ' '(2/8', 2r, 21, )

' '(-2e') -g„„+ 2 (l &)2
+

-
y r (1+F3) y ~ l(1-~3)x(-1) (2gg) 8/Bm'/2(2r, 2l,p, ) '/'g„B ), , +

( l 2 2 u(p) ~ (r+l —(I))

(Bl)
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where x and l are the four-momenta of the inter-
mediate n, v, g„ is the pion-nucleon coupling con-
stant (g„')/4)/=14. 5), w2 the usual isospin Pauli
matrix, and the sum extends over the allowed mo-
menta. of the intermediate pions.

If one works in the basis of the four mutually
orthogonal vectors K„, Q„, P„', and N„, with

I' K
P)' =P) —

~2 +u &2=') 6) P'&6Q1

A. ',""~ can be quickly found by a straightforward
projection using certain properties of M &'„" . Pro-
jecting and identifying the coefficients in the rela-
tions

AbsNqM~q'Q)N„=p, (y P') +5,(y K) +p, (y Q),

AbsP„'M„'„'P„'= p2(y ~ P')+5, (y E) +p, (y Q),

A',"(' ) (s, t) =—4g, + 2, (g, +g,), (B5)
((, 22 1, 2(s -m l

1

~n((2 (()(s l) g2 g4
2m'

,n(„)( )
2(4m' —t)g6 —[2(s —m')++t(g, —g, )

2m[(s —m')'+ sl)
(87)

~H((2(() (s l) — (gl g2) g6
(s- 22'")2+ st ' (B8)

~P mP,
+1 ™py2~ S2 A(2

~)(((2.)(, l)
t(g'- g4)+2[2(s- m')+ ljg6 (B9)m[(s —m')'+ st]

where

one gets

g',n(") (s, l) = — 2(g, +g,)—,' (g, +g,), mQ' ~(2
g5 t g6 (P(2)l./2(A12)1/2

(B4) and

(1+T ) (1 —T )
l4' —2P Q+2P l V' —2P'l (B11)

2

(1 + T, ) (1 —~2)
)L' —2P Q+2P l (2' —2P l

5 —2 ) N — / N

x(l SC) ——,—(1+v, ) (1 —& )
p' - 2p Q+2p l p'- 2p 1J ' (B12)

il(Q' —2Q() P'* —(( &')'(( ~
—

( ~,)]
(1 +T.) (1 -&2) '

(12 —2P Q+2P ~ l P. —2P ~ l, ' (B14)

o(2= +—" —, 5(Q' —2Ql) (l P')(l N)
e'g„ 1 d $ I 1

i k'

(1+~2) (1 —&.)
W

—2p Q+2P. l V —2P'l+ 2

In the backward dispersion relations considered in Secs. III and IV one needs some of the above expres-



14 NUCLEON POLARIZABILITIES AND m -+ 2y, q ~ 2y DECAY. . . 1349

sions of the absorptive parts A',"("'(s,t) for the values

s —+ =m ——+—[t'(4m —t')J +,t+(t')
2

'
2 2

(816)

of their arguments (s, t). From Eqs. (84) and (810) we then have for A',"("'

nl(„& t, (t')," 1 p, p, . [t'(4m' —t')]'/'
(817)

and from Eqs. (84), (86), and (810) we have for A,',n('" -A'2" '" (at the same arguments)

gill(2%) glB(22) 1 + ~ [t ( ~ t )] ~ )L)1 P22' I' (818)

Working in the center-of-mass frame of the annihilation channel, we obtain from Eqs. (Bll)-(814) the
following express ions:

t), , P, e' . (t' —4)/')"' 'd (1 —s')(e' —l),') (1 —z')'(z' q, ')—
N2 Qy2 4~ y (t))1/2(422~2 t)) (s2+ ~ 2)2 +

(
2 2)( 2 2) (819)

e2 2(t 4)~2)1/2
N2+P)2 4~gy t)(412~2 t))1/2

+1 +2
dz — 1 +

Z + g Z g 1
(820)

where

~l (t 4 2

2]L(,'- f'
[(4m' —t')(t' —4 p. ')]"' ' (822)

APPENDIX C

We shall display here the N (—,', —2)(1236 MeV) resonance contributions to the s-channel absorptive parts
of the nucleon Compton-scattering amplitudes A, defined in Eqs. (2.4). They are picked up by a straight-
forward but tedious projection from the expression

Absu(p')M("„)(p', k', p, k)u(p) =-2, e'(/6(s —m')u(p')[[- k' y, + (k'y)g, ]G,(0)

+ 2 [k,'(2p,' +k,') —k) (2p' + k')g, ]G2(0)jy, (M +p+ K)

1 2)' s + y ys +
&M (y —( p + Xi) —y8 (2, +1')l + &(2+K,) (P,,,+28,

I
y,

&& ][-k2y„+ (k y)g2„]G((0) +-,'[k2(2p, +k„) —k(2p +k)g2„]G2(0)]u(p), (C 1)

where M is the mass of the resonance and the transition form factors G,. are defined through the following
form of the NN* electromagnetic current vertex":

(N*(p+k) ~j (0) ~N(p)) = —teu2(p+k)(G, (k')[kgy —(k y)gg ]+G,(k') —[k2(2p+k) —k(2p+k)g2 ]

+ G,(k') (krak, —k2g2, )]y,u(p). (C2)

The isospin convention is such that (—,)'/' should be introduced in the above relation for yPN
' and this ac-

counts for the factor —', in Eq. (Cl). Our y, is y =iy,y,y y 2T2he form factor G,, does not contribute to real
(k' =k" = 0) Compton scattering and this is why it does not appear in Eq. (C 1).

Below, for completeness, we list the N resonance contributions to all the six absorptive parts of the .
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amplitudes A,.:

ImA I '(s, t) = —', e —z(6(s—M') G, '(0)—(3M' nz') +G, (0)G, (0) 2M-
3M ' ' 3 3 m 2m

6M' M0 m'M mM' M t
6 2m 6 6 4m

(c3)

ImA,'" '(s, )) = ——,'s'ss(s —M') IG, '(0) (3M'+ ') ~ G, (0)G,(0),(3M'+ 5M's —5Mm'+2sr') s3M' ( 3tH 28'1

+G, (0), —+ 2(M —m)(3M +4zzzM —m ) ("4)

2 2 g'B2 2'8'lImA3("*)(s, t) = — zz6(s —VP) G, '(0) + G, (0)G,(0)3M 3 3 2'
AS, 2 3IVt

+ G (0) —M'+ nz —2m('(I+
6 2m

2 2
I~4("*)(s,t) = — zr6(s —M') G, '(0) —,(3M'+ nz')+ G, (0)G,(0) — 3/ ——(& +m)

3

2' mM t
3 3 3

(c6)

ImA I"*)(s, t) = — zz6(s —VI') [4G,(0)G,(0) + G, '(0)2(M —nz)], (cv)

2 2 2 2

20™0((, )s=-Sss(s —M') G,*(0) —,(3M' —m')+G, (0)G, (0) + —2M)
2

3)f'+ m' 2mM t (c8)

The relation between the form factors G„G, and those appearing in the paper, G~ and G~, is

nz(3M+ nz) nz(M —m) m(M —nz) m(M —m)
M 3~ 1 3 2) E 3' 1 3 2'

We also note here that from the analysis of Jones and Scadron" the value of G~ is around 3 while G~ is
very small with respect to G~.
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