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%'e employ the method of group contraction in order to study diFraction scattering at high energies. The
elastic scattering amplitude is assumed to be pure imaginary. %'e then obtain that do.l d t = (do.l d t)0e ', where

b = a, '/(16no. „).This simple result explains in a universal manner m p, K p, pp, and pp scattering data over a
wide energy range.

I. INTRODUCTION

Recently several models have been proposed in
order to explain high-energy collisions of hadrons.
Some of the interesting models are the Regge-
pole model and the impact-parameter model. The
former is a consequence of the 8-matrix theory of
hadrons whereas the latter follows from geomet-
rical considerations and receives support from
field- theoretic calculations. The impact- param-
eter representation has been useful in the study
of high-energy diffraction scattering, and it is
useful in the forward direction at high energies.

The purpose of this paper is to study high-energy
diffraction scattering using the method of group
contraction. As we shall see later, it turns out
that at high energies the group O(3) is contracted
:o E(2) in an appropriate kinematical region.
This region corresponds to the near-forward
direction in the scattering process. Thus, one
is able to study the scattering amplitude in the
E(2) plane and make an expansion in suitable
variables in this plane. %e feel that this also
provides an alternative basis for the impact-
parameter representation.

This paper is arranged as follows: In Sec. II
we briefly recapitulate the method of group con-
traction. The necessary results are dexived in
Sec. III. %e discuss various aspects of this model
and compare the predictions of the model with
experimental data in Sec. IV.

II. GROUP CONTRACTION

At high energies, for small scattering angles,
the polar region of the projectile, i.e. , the near-
forward direction in the c.m. frame of reference,
can be viewed as a, plane. If we take a sphere of
radius g, with polar angles 8 and y, and consider
the near-forward directions, with c6) remaining
finite as g- ~ and 8-0, we obtain the Euclidean

plane in two dimensions. In this manner, we can
obtain the representations of the Euclidean group
E(2) by the contra, ction' of the group O(3}. We
shall use this group contraction in the context of
the little group O(3) of O(3, 1) going over to the
little group E(2) of O(3, 1) at high energies. Let
Z,. be the generators of O(3) and define 8, = cQ„

c M„with Z, unaltered. Then the standard
commutation relations [Z, , J,.] =i&,, J»»are trans-
formed to [Z„Q,] =i@», [J„Q»]= ig„-nad [Q„Q»]
= 0 in the limit of c-~. Clearly, Q, and Q, are
momentum operators in E(2) and Z, is the usual
rotation operator. Let us next consider the rota-
tion R,(y)R, (8)R,(-y) and take the limit 8-0 and
c-~, such that t."8 remains finite. Then we get

R,(y}R,(8)R,(- y) = T(c8 cosy, c8 siny),

where T(c8 cosy, c8siny) denotes translation by
(c8 cosy, c8 siny) in E(2). Now consider a particle of
mass m at rest. The corresponding little group of
O(3, 1) isO(3). Letus apply the Lorentz boost I„such
that L„(m, 0, 0, 0) = (p', 0, 0, p), where p is the magni-
tude of the three-momenta. %e see that the above
four-vector approximates p(1, 0, 0, 1}when p- ~
and (1,0, 0, 1) has E(2) as its little group. ' Now

consider the Lorentz transformation

L, 'R, (y)R, (8)R,(- y)L,

in the limit 8- 0, p/m —~, but with p8/m remain-
ing finite. Direct simplification of expression (2)
is straightforward in the above limit. %e shall
now relate p/m —~ with c- ~ of Eq. (1). For this
purpose we verify that the Lorentz transformation
(2) corresponds by Eq. (1) to the Lorentz trans-
formation of translation by (c8 cosy, c8 siny),
which keeps the vector (1,0, 0, 1) unaltered, ' pro-
vided we take p/m =c while taking the limits. In
fact, we get for (2)
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which we identify with T(c8cosp, o8sinq') given as

1+—,c282 c8 cosy e8 sing —,'e282

g8 cosp

g8 sing

p8 sin(p

t."8cosp

where we have retained only leading terms in (3).
Thus, with q =(q,'+q~')'~~, we get

(p/~)q, = (I + —.'),
where q, is the magnitude of momentum in E(2)
corresponding to l.

III. ELASTK SCATTERING

The partial-wave expansion for the scattering
amplitude F(s, t) in the spinless case is taken as

F(s, t) = Q (2t+1)a, (s)p, (cos8) . (
Ws

l=O

We make use of (4) and write a, (s) =a{q„s).
now make the assumption that the scattering am-
plitude is dominantly pure imaginary. Present
high-energy data seem to support this assumption
in the near-forward direction, ' which is our region
of interest. We note that a(q, s) for fixed s is a
function of momenta in E(2), with -~ &q,& ~ and
-~ &q~&~. We thus take

a(q, s) =tnexp[ p'( ~q+q 2)-]

2 2 2 2-2p'8' -c8sln(p -&8cosp 1 —2c'8'

obtained with group contraction' giving rise to
Lorentz transformation with E(2) as the little
group. ' With this identification we utilize the con-
traction of O(3) to E(2).

As defined earlier the momenta Q, and Q, are
generators of E(2). We further have for the spin-
less case

+2++2++2 —c2(Q 2+@ 2)++2

Let the momenta {q,, q, ) specify a representation
of the translation subgroup in E{2). We then ob-
tain that

c'(q, '+q ') = (p'/~~')(q, '+q, ') = (I+ 2)',

a.s the first term in an expansion on E(2) in terms
of Hermite polynomials. In Eq. (6), a and P are
real constants which may carry an s dependence.
Notice that unitarity demands that

o, (s) =—,Q (2l+1)Ima, (s)
4?t

f =0

n exp{-P q )qdq
Bm 1"

2 2

O

Note that in converting the above summation to an

integral we have used 0 q, = m/p and have retained
the leading contribution.

S1mllax'ly we de r1ve

a„=—,Q (21+1)~ag(s) ~'

(10)

Combining Egs. (9), (10), and (7) we get

o;,/a', = o/2 ——'

??1. 0p-2
Bmo„

Notice that if e is independent of s, as seems to
be the case, we get P 'cc o, (s).

Again, Eg. (5) with approximation (6) yields

2i Wsp
, t) a exp(- p'q')q dq J,(p8q/m)

(&3)
4

exp[t/(4m'P') ] .

Also using Eg. (4) we get for large l and fixed
p8/m

P,(cos8) = J', ((p/m)q, 8) (6)

in the limit p/m —~ and 8-0 with p8/m remaining
finite. Now application of the optical theorem
leads to the relation
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inary automatically gives that (do/dt)o = a, '/(16m).
We notice that Eq. (16) describes all elastic scat-
tering processes in the near-forward region in
terms of a universal variable p.

IV. DISCUSSIONS

IO It is interesting to note that (16) resembles the
hypothesis of geometrical scaling. Indeed, since
o, =Og'(s)) and o„=O(R'(s)) we get

-2
IO

10
IO 20 30

If we consider the general case of a, (s) =a(q, s)
then the above integral becomes

FIG. 1. 7I+p elastic scattering data are compared
with Eq. (16): p = -to& 2/(4xo, I). Pion laboratory momen-
tum is 100 GeV/c.

—~R'exp(+R't) .
dt

Barger et al. ' have found that recent Fermilab
data for ~'P, K'P, pp, and Pp are consistent with
the hypothesis of geometrical scaling. It is amaz-
ing that we are led to a similar conclusion from a
different approach which takes into account vari-
ation of o„/o, with energy and process. Thus the
prescription in Ref. 5 to take the slope as propor-
tional to o, /o„receives some justification here.
We find that experimental data are in good agree-
ment with (16).

We compare in Figs. 1-6 the experimental data'
for m'p, K'p, pp, and pp from Fermilab at labora-
tory energies 100 and 200 GeV/c with our pre-
dictions. We find that the present data support
our prediction within experimental errors. The
solid line is the universal curve exp (-p/4), and
the data points are taken from Ref. 6. It may be

F(s, t) =, q dq a(q, s)J,(v-tq/m),2vsp
0

which easily illustrates the impact-parameter-
like representation of the scattering amplitude
with the impact parameter as 5 =q/m. However,
the present analysis gives us a different under-
standing of the problem. The differential cross
section in our approximation is now given by

da m F(s t)
dt P' ~s

~l~

b!~

IO

TT P 200 GcV/c

exp(- p/4),
40

(16) IO-'l

where

p = —t(T( /(47HT i) .

This corresponds to slope

b = o, '/(16m o„). (18)
I

IO

I

20 30

Furthermore, the optical theorem together with
the assumption that the amplitude is purely imag- FIG. 2. ~+P data at 200 GeV/c.
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FIG. 3. 71 p data at 100 GeV/c.
FIG. 5. K+p data at 100 and 200 GeV/c and E p data

at 100 GeV/c.
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FIG. 4. ~ P data at 200 GeV/c. FIG. 6. pp andpp data at 100 and 200 GeV/c.
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FIG. 7. Equation (16) is considered for small values
of p for pp and pp elastic scattering. Dotted line is the
unitary bound of Singh and Roy. The graph is reproduced
from Ref. 7.

FIQ. 8. Equation (16) is considered for small values
of p for x'p elastic scattering. The graph is reproduced
from Ref. V.

noted that Singh Rnd Roy' had introduced

p = («/dt). (-4t)/cr„

ill collllectlon with the collslclel'atloll of unltar1ty
bounds of the elastic a.mplitude in the forward
direction. When the amplitude is pure imaginRry,
the two expressions coincide. Although the satura-
tion of the Singh-Roy unitarity bound in the diffx'ac-
tion region was unexpectedly good, it now appears
as an approximate saturation of Ecl. (16) for
small tr with a slightly different slope (see Figs.
7 and 8).

%6 would like to remark that McDowell and
Martin' made a rough estimate of the diffraction-
peak width n as given by n, ' o cr, '/(16rrcr„) and
then 1lgox'ously dex'lved the bound

tr o cr, '/(18rrcr„) .

We have derived here the rough estimate above
which very nearly saturates the exact bound. Also
we trivially see that' if

dcrldt = (dcrldt), exp(trt),

tr = (d crld t),/o„,
which is Ecl. (16) above. However, this extrapola-
tion is obviously false, e.g. , for backward pp
scattering, so that such a naive way of looking at
things is really inadequate.

We note here that the scattexing amplitude was
considered for the spinless case. %'hen we include
spin, we shall have a larger number of terms in-
cluding the type of contribution considered here.
It RppeRx's from the agreement with experiments
that the coxrections to what has been derived will
be small. Also the other internal quantum num-
bers have not been considered. It is reasonable
to assume that at high energies spin flip or change
in other internal quantum numbers for diffraction
scRtterlng ls highly inhibited. Hence the desex'lp-
tion of the scattering in this xegion by a single
scattex'lng amplitude which does not chRnge spin
or unitary spin becomes reasonable. This may be
behind the fact that we are able to describe dif-
fraction scattering up to an order of 10 ' in a
universal manner, with no free parametexs, ir-
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respective of energy or the process under investi-
gation with a simple universal variable p.

In our approximation the agreement is expected
to be satisfactory for

(d Idt) ( 'Ip')(doj«)o. (20)

This is so since in our identification of generators
of E(2) with those of O(3) in the group contractions
involved in Eqs. (1) and (2), the first one geomet-
rical and the second one kinematic, we neglect
terms such as m'/p' in comparison with unity.
This is the r eason we consider up to p = 30 in our
comparison with experimental results.

We may note the similarity of the present model
to the geometrical model and to the impact-param-
eter model. In fact this identification in many

ways is expected in a heuristic manner. The
particle has, in the E(2) plane which we have con-
sidered, "coordinates" (p 8/m)cosy and (ps/m) single

a (s) = inexp- m P t{f+1)
p' (21)

Equation (21) is an approximation of a, (s), which
has nothing to do with E(2), and thus, we would

hope, we can replace Eq. (6) by (21) and consider
scattering at all angles. In particular, for 8= 90',
we ean use"

whose canonical conjugate "momenta" have been
taken as q, and q, . For the impact-parameter or
geometrical picture one ean see that the names
should be reversed, so that q, jm and q, /m will
be the components of the impact parameter.
Thus the above analysis gives a group-theoretic
justification of the impact-parameter representa-
tion in Eq. (15) for forward scattering.

Also, the following results may be noted. Equa-
tion (6) taken in E(2) is equivalent in O(3) to the
assumption that

E ~eos6)

and calculate from Eqs. (5) and (21) dajdt at
g = 90 . Proceeding as earlier with taking the
leading terms and replacing the summation by an
integral, one gets the contribution as too large
and the power behavior as s ', which is too slow
by several orders of magnitude. One may also
use p, (cos8) = (-I)'p, (-cosg) and consider back-
ward scattering in some cases. Again the result
is bad. This illustrates that the approximation
(21) in O(3) is bad but the equivalent approxima-
tion (6) in E(2) for forward scattering is quite
good. In fact that (6) is the first term in the ex-
pansion in E(2) has no corresponding relevance
for (21) in O(3).

Another remark is worthwhile. We note that"

1 —cos (9
e', c,ccee) =e'{e e, -e; e;

yields the approximation (8). For large values of
E, if we take the next-order approximation and
retain terms of lower order in m/p, we then ob-
tain after complicated calculations that for small
t (how small we cannot specify)

GV 0'~ 1 - 2bt —5't'
16md

—=16 exp(-'bt) 1
24b ~ -(24bp')-'
24bp2

(24)

Equation (24) yields that for large values of ,'bt, --

dajdt approaches a constant at fixed energy. But,
since 24bp' »p'/m', the corrections in {24) are
really not valid. However, an interesting qualita-
tive feature emerges which is similar to geomet-
rical models. It may be noted that for

t„,= (2/b)1 (—24bp'}

dojdt vanishes. For pp scattering with v s= 53
GeV/c, we have b =12.4 GeV ', and thus —t„,= 2
GeV'. This is a satisfactory qualita/ive feature
when we consider that here

(dajdt)j(dajdt), = 10 ',
drastically violating Eq. (20).

We thus see that a good universal approximation
becomes possible for forward elastic scattering
at high energies on using group contraction of
O(3) to E(2), and the method is related to and
gives additional understanding of allied geornetric-
al and impact-parameter models.
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