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We demonstrate that the hypothesis of asymptotic level realization of SU(3) in the algebra IA, , A, ] = if,,„V„
added to the assumption that a ninth I = 0, J =

2 baryon A' exists with a mass around 1700 MeV implies
that deviations from the good results of SU(6) or SU(6) O(3) schemes can be derived theoretically, without
invoking the notion of SU(6) symmetry. The Cabibbo angles are determined to be sinOI, = 0.227 ~ 0.008 and
sin8„= 0.224 ~ 0.037. We find that D/(D+ F) 0.678. Hyperon semileptonic decays in the presence of the A'

are analyzed in detail. Partial widths for several 2 ~-,' + m decays and branching ratios for the strong
decay modes of the A' are discussed.

I. INTRODUCTION AND SUMMARY

In our previous paper' (cited as I), (a) chiral
SU(3) 8 SU(3) charge algebra, ' (b) asymptotic SU(3)
symmetry, ' ' (c) "exotic" commutation relations'
(CR's), and the existence of a ninth I=O, 8~=2'
baryon were used to show that several types of
SU(6) problems' had a common solution. Here we
demonstrate that the addition of a new theoretical
constraint (d) —the hypothesis"' of asymptotic
level realization of SU(3) in the algebra [A„A,]
=if,,~V» (i,j,0 =1,2, . . . , 8)—allows us to derive
theoretically the deviations from the good results
of SU(6) or SU(6) 80(3) symmetry schemes zzith

out invoking the notion of exact SU(6) symmetry
We emphasize that the use of asymptotic level
realization permits a theoretical derivation (with
a minimum of experimental input) of the success-
ful but phenomenological fit to the semileptonic
hyperon decays discussed in paper I. We briefly
explain the hypothesis. Upon insertion of this CR
between the baryon states (B,(q, X)

l
and lB~,(j,

X)) belonging to the same SU(3)-irreducible rep-
resentation [cz, p, and X denote the physical
SU(3) indices, i.e., Z', A, A', etc. and helicity,
and s denotes the Z~ and other quantum numbers],
we obtain taking the limit q-~
»m (B...(4 ~)

I [A;,A;] IB.,.(4', ~))
q~ cO

= zf,~„lim (B, ,(q, A.) l V, lB~,(q', X)) -=g ~,

where the g z are pure numbers according to as-
ymptotic SU(3). As one varies in Eq. (1.1) the
SU(3) indices o and p (for a given s), the ratios
of the g ~'s may be regarded as representing the
asymptotic SU(3) contents of the CR [A, ,A&]=zf„~V,
We write the left-hand side of Eg. (1.1) as a. sum
over the sets of the intermediate single-particle

states sandwiched between the factors A, and A. z.
The hypothesis" is that these sets of intermediate
states can be grouped into the levels Bp By such
that each B,. separately realizes the asymptotic
SU(3) ratios of the g,z's. The success of this hy-
pothesis will depend in large measure on whether
there exists. an approximate asymptotic higher
symmetr'y f'dr hadrons or not. With the quark
model (in which the baryons have a qqq structure)
as a guide, the R, may be distinguished by a simple
angular-momentum classification. Thus, R, is
characterized by L, = 0, B, by I.=1, etc. In this
paper we take the ground state Ro as consisting
of the J~ =-,"singlet A', the 8 =-,"octet (N, A, Z,
:.), and the J~ = —,

"decuplet (&, Z*, :"*,0). We
neglect the possible existence of higher-lying 1.~
=0' states. The motivation to include the A'

comes, of course, from the fact that qqq, i.e.,
333(33=1+8+8+10, involves a singlet. Without
considering the existence of the A', Matsuda and
Oneda' have indeed derived under this hypothesis
the SU(6) result D/I' = —,', etc. , but without en-
countering the clearly bad result of SU(6), i.e.,
(G„/Gv)a= z

We note that the formalism presented here has
one degree of freedom less than the methods of
I [i.e., the theoretical model presented here has
the same number of degrees of freedom as in an
exact SU(3) two-angle Cabibbo analysis], resulting
from the addition of the theoretical constraint-
the asymptotic level realization of SU(3) in the
CR [A, ,A,.]=if,,„V„InSec. II, w. e use the broken
SU(3) sum rules developed in I in combination with
the "realization" constrainst derived with the aid
of our new theoretical constraint (d) plus some of
the latest hyperon semileptonic data"' to fix the
mass of the A' and to determine the axial-vector
and vector Cabibbo angles 8„and 8~, respectively.
We find that A' =1.736 GeV (we use m~, =-A', etc.),
sino~ =0.227+0.008, and sino~ =0.224 + 0.037.
Using the calculated values of ~', 0„, and 0~, we
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obtain and present in Sec. III axial-vector matrix
elements and branching ratios for various hyperon
semileptonic decays. In Sec. IV we calculate the
values of the newly defined D and F couplings, the
D/F ratio, and also the coupling G* between the
—,"decuplet and —,

"octet, defined by

G*'=-I' &p(q) IA, IA'&& 'IA, -lp(q')&
q» OO

We find that D =0.6V8, F =0.322, D/F =2.101, and
G*' =0.455. We also find that the fractional con-
tribution of the ground state R, (denoted by f,} in
Eq. (1.1) is fo = 65%. In Sec. V, using our value
for G*', normalizing I'(Z*'-Av') to 28 MeV, and

using p' (p is the decay momentum in the c.m.
frame) averaged over the mass distribution for
the particular decay mode under consideration,
we calculate partial widths, which are in good

agreement with experiment, ' for several —,
"--,' '

+ m decays. :

II. ASYMPTOTIC LEVEL REALIZATION OF SU{3),
THE MASS OF A ', THE AXIAL-VECTOR CABIBBO ANGLE,
AXIAL-VECTOR MATRIX ELEMENTS AND HYPERON

SEMILEPTONIC PARTIAL %WIDTHS

We single out for illustration the CR (A,+=A,
+ iA„etc.)

[A,„A., ]=2V,o (2.1)

for the study of Eq. (1.1),choose B„,(q, X) and

BB,(q, X) to be the ,"oc—tet,and vary the indices n and

p. The independent "realization" equations are ob-
tained, for example, by taking n=p=p, Z', and
Then with R, =(2' octet, —,"decuplet, A') we obtain
in the limit q-

I&pIA. IA&I'+ I&p IA, IA'&I'- I&pIA, -IA-&I'=f. ,

-'4l&&'IA, IA&l'+I&&'IA. IA'&I'+I&'i". IA', IE'&I'+I&&'IA, I&*'&I')=f.,

I&='IA I. &I' I&='IA I=. *&l'=f

(2.2)

(2.3)

(2.4)

(I.2.19)

where f, is the fractional contribution of R, to the
sum over the intermediate states in Eq. (2.1}.
From Sec. 0 of I, we have the following asymp-
totic SU(3) parametrization (q-~) of the axial-
vector matrix elements. We note that we have
used for the parametrization not only the CR [V, ,
A,.]=if, /, A„but a.lso the constraints obtained from
the exotic CR's [V„o,A,-]=0, etc. :

&p(q) IA. In& =G~~(D+F)

5' c0) in order to study a partial effect of SU(2)
mixing. G is simply a scale factor. In the absence
of the A' our D and F couplings can be shown to
coincide with the familiar D and F couplings of
exact SU(3). &o is the SU(3) A-A' mixing angle
which appears in the quadratic Gell-Mann-Qkubo
(GMO) mass formula as follows:

sin'(o[(A')' —(A)'] = Q[(n)2+ ( )']
—[(Zo)2+ 3(A)2]]-=n.

&E (q) IA,.IE'&=",, F, (I.2.20) (I.2.15)

where

51 I
~ .,„'„&p(q)IA, I.&, (I.2.18)

(1.2.20}

&E' A, + A'&=pcot&o&&'(q}IA, , A&

In addition we parametrize (using the CR [V„A/]
=if,»A2) the matrix elements &

—,"IA, I
—,'&, in our

TABLE I. Axial-vector matrix elements for 2
1+ 1+

+e v transitions calculated with the mass of A' =1.736
GeV and the SU{3) A-A' mixing angle =6.4300'.

Axial-vector matrix element

(Qo)2 (A)2 (go)2 (n)2
P (gO)2 (At)2 t P (gO)2 (At)2

(p)' —(~')'
(n)' —(E')'

~P = [I (2)1/25tpt] 1 I
D+F—= 1. In exact SU(2) 5'=0 and &'=1. If we
consider SU(2) breaking then A'-A-Zo mixing
takes place. In this paper we only consider SU(3)
A-A' mixing and neglect the SU(2) mixing. How-
ever, we keep SU(2) breaking in the masses (i.e.,

gg+ g0

gZ n

gpgo

gw'z+
gx03;-
g'go3, -

gnp

gz'w

+0.5713
-0.4411
+0.8925
-0.3119
+0.4211
+0.5924
-0.4411
+0.8832
+0.0908
-0.5319
+1.2490
—0.6276
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asymptotic limit, by writing

&~%) I&. I&'&«'I~, I»=-G*', (2.5)

where q-~. Then Eqs. (2.2), (2.3), and (2.4) be-
come

2G2(D+F)~ —2G*' =fo, (2.6)

where

2G'F' 2G'D'~ ' &' 2GDP
+ I2 + ~ n +2 ~3 p(p l ) 4 fOi

(2.7)
2G (F D)' 2v 3o,G(F -D)

3 p —1)'cos'&o '

With the broken-SU'(3) sum rules of 1 and our
parametrizations given by Egs. (1.2.18), (1.2.19),
(1.2.20), and (2.5), Egs. (2.6) and (2.8) yield, after
tedious calculation and assuming that G*'c 0,

yF2(R(8 —4v 65'P')+(O'P')[4v 6 —12(6'P')]] =3, (2'9)

where

y = G'/G*' and R =D/F .—

Similarly, from Egs. (2.6) and (2.7), we obtain

yF2 yP~2(1 —o ')+(6'p') 2V6a. ' (-')'" +(6'6')' 2 8 2
(p —1)sin'(o, I (8 —1)sin (d sin co j

i

s+~ ~ 'i'~I~"~' '
—i sin'ts '+ '~'~'

—i sin*s sin'tni " ' ' ' ' ' + sin'n

Equations (2.9) and (2.10) imply that

R'[8(1 o,2)+ (5'p')(o, ,~ —d/3)8~6+ (5'p')'(-12o, '+ 8/dp)]

+R[ 8+(O'P')(-2/3d+3)4v 6+(&'P')'(812 —P]/dP)] +[—4~6(&'P')+(~'P') (24 —89 —1)/dP)]=0,

(2.11)

TABLE Ig. Hyperon semileptonic branching ratios: (i) from experiment, (ii) from a one-
angle Cabibbo fit, and (iii) from an asymptotic algebraic realization of SU(3) andbroken-SU{3)
sum rules, where A' =1.736 GeV.

Decay process Branching ratio

7 npv
A peT
A~Pp v

Z —Ae v
+ +

Z Ae v

Ae v

~Ze v
w ~Ae v

-Zoe T
Ap v

~~0~ Z e v

(1.082 + 0.038) x 10
(4.47 ~0.43) x 10-4
(8.13 + 0.29) x 10 4

(1.57 +0.35) x 10-4
(6.04 +0.60) x10 5

(2.02 +0.47) xlp '
(1.15 0 55) xlp

&0.5xlp 3

(0.68 +0.22) x 10 3

&1.3x jp
& 0.005

&1.5x jp-3

1,07 xlp ~

4.95xlp 4

8.&3xlp 4

1.34xlo '
6.98xlp 5

2.28xlp 5

0.46xlp ~

0.55 x 10-3

1.08 xlp 3

4.80 x lp 4

7.74xlp 4

1.25 x 10-4
6.llxlp 5

2.00xlp 5

0,41 x lp
0,08 xlp ~

p.4gxlp 3

l.llxlp 4

1.01xlp 6

0.25xlp '
TA

=2.624 x 10 ~op

7 —=1.652x 10 ~os
7g+ =0.80 x 10~os

7=o =2.g6xlp 'os
Tg-=1.482 xlp ~ s

~See Ref. 7.
b Ualues presented in this payer.
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Decay process

Z nev
A pe v

e pev
~Z e v

A e v
= -Z0e v

w0 v

+(0.435+ 0.035)
0.658 + 0.054
1.250 + 0,009

(ii) a

—0.394
0.702
1.250

(iii) b

—0.435
0.733
1,250
1.232
0.074
1.232

-0.441

a See H.ef. 7.
"Values obtained in this payer.

TABLE III. Axial-vector coupling constant to vector
coupling constant, (G&)/(G~), ratios: (i) from experi-
ment, (ii) from a one-angle Cabibbo fit, and (iii) from
an asymptotic algebraic realization of SU(3) and broken
SU(3), where A' =1.736 GeV.

Using O„and 8~, we can easily compute axial-
vector matrix elements and hence (G„)/(Gv) ratios
and partial widths for a variety of hyperon semi-
leptonic decays. The results presented in Tables
I, II, III, and IV are in good agreement with the
experimental data available. The broad width of
the A' =1.1 GeV [we include the decaysI" (A'-Z*w)]
will obviously make its detection difficult.

III. THE D AND F COUPLINGS AND THE D/F RATIO

Using the value of A', we obtain from Eq. (2.11)
or (2.12) that

R =D/F =—2.101,

and from D+F =1 and Eq. (2.9) we find that

where d = n/[(Z')' —(A)']. However, from Eqs.
(1.2.20) we obtain immediately that and

D=0.678, F =0.322,

TABLE IV. Branching ratios for the strong decay
modes of A'(1736) calculated using broken-SU(3) decay
rate formulas.

Decay mode

k'n '
KP

F0~0 a

(go~) b

I(A'-all) = 1.09 GeV

Branching ratio

0.11
0.12
0.26
0.26
0.25
0.01

' See Eq. (I.7.1) for the decay-rate formula. The rele-
vant axial-vector matrix elements are given in Table II." The decay rate formula is given by Eq. (4.1). The
axial-vector matrix elements are presented in Table V.

D/F =—R =—W3(p —1)cosv c'~ . ;;, (2.12)

With the help of Eqs. (I.2.7) and (I.3.1); Eq. (2.12)
becomes

v 6(p —1)cost@(G„)c+~
(Gg).,+ (Gg) c-.

Using a computer, it is a simple matter to solve
Eqs. (2.11) and (2.13) simultaneously with ru and
A' [which are related by the GMO formula, Eq.
(1.2, 15)] and with the values of (G„)c+~, (G„)~,
and (G„)c-„given in paper I. We find that

A' = 1.736 GeV, (o = 6.4300'.

From the broken-SU(3) rule Eq. (I.4.2) we obtain

sine„=O.224 ~ 0.O37.

In paper I, we obtained previously that

sin8 ~ =0.227 + 0.008.

y -=G'/G*' = 1.714.

Thus, with (P ~A, +~n) =1.249 from Table I and Eq.
(I.2.19) we find that

G' =0.780, G*' =0 455

Thus, Eq (2.6) .implies that

f, = 65%.

Thus, the ground state R, contributes 65% of the
sum over the intermediate states in the CB [A,+,
&, ]=2&„o. The general realization of the CR's
[g, ~,]=if,,„p ([g...g~]=@~,, etc.) does not
yield a further constraint.

Previously, Oneda and Matsuda' —with the hy-
pothesis that 8, consisted of the &' octet and the
—,
"decuplet only (i.e., no A') (and also without
using the constraint [f"~,A, ]=0 which leads to the
Z-A degeneracy) —found that y and D/F attained
their exact-SU(6) values y = —'„' and D/F = ~ (which
are now not in good agreement with experiment)
but that (G„/G ~)g

———,' Mf~

Thus, with 6„=H„and f, = 56/o, they are able to
reproduce the experimental result (G&/G&)8 =1.25.
Now our inclusion of A' to the ground state 8,
explains the deviation of the D/F ratio from its
SU(6) value —,'. The latest one-angle fit to the ex-
perimental data"' gives (when D+ F is normalized
to 1)

D = 0.651+0.009, F = 0.349 + 0.008.

In comparing the experimental data to our results,
it should be noted that our D and F couplings are
not defined in the usual manner because of the
existence of the A' [see Eqs. (I.2.20)]. In the
absence of the A', our D and F couplings coincide
with the familiar D and F couplings of exact SU(3).
For a complete comparison, the data would have
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TABLE V. Axial-vector matrix elements for 2
+ Py and A 2 + Py trans it ion s, with the mas s of A'

=1.736 GeV and the SU(3) A-A' mixing angle cu =6.4300'.
See Eq. (4.1).

Axial-vector matrix element squared

TABLE VI. Width prediction for some 2 decuplet
strong decays with I'(Z*+ A7t'') normalized to 28 MeV.
Experimental values of P3 averaged over the mass dis-
tribution of the decay mode~ are used in our broken-
SU(3) decay-rate formula.

GA' z*7f
2

Gz*+A~+ 2

Gz*'zw
'2

Gz++p~+ 2

6~+4~2

0.0086
0.6742
0.2276
1.3656
0.4552

Decay mode

(1211) P r
Z* (1381) Z 7|'

Z+ (1381) (Zr)=*'-(=~)'
Z"—Z'~'

92.4
2.7
5.8
9.9
3.0

99.0 + 3.6
2.8+0.7
5.8 + 1.5
9.1 + 0.5

Prediction (Me V) Experiment (Me V)

to be parametrized within the context of our for-
malism. One should also note, in contrast to the
methods of I, that although we have introduced a
new coupling G* into our formalism, the realiza-
tion hyPothesis adds tuo const aivts. Thus, our
theoretical frameworks have the same number of
degrees of freedom as those in the exact SU(3)
two-angle Cabibbo analysis. We also note that
the realization among the —,

"decuplet [i.e., the
case when B,and Bs, in Eq. (1.1) belong to the
—,
"decuplet] is automatic even in the presence of
the A' and produces no further constraints.

IV. ~' ~ 2'+ n DECAY PARTIAL RATES

In calculating the partial rates for the strong
decays I'(Z*'-Z m'), I'(Z*'-Z'n ), I'(4"-pm'),
and I'(:"*'-(:"w)'),we use the broken-SU(3) decay-
rate formula" given by

GI'(B-B'+P ) = aa'» ps
4~f 2 (4.1)

where P, is a 8 =0 meson, fz is the appropriate
meson decay constant (we take f, = 0.132 GeV,
f~=0.157 GeV), P is the center-of-mass momen-
tum of the final-state baryon, and G», „ is the
appropriate axial- vector matrix element. Since
G~o~' =6*'=0.455, we can easily calculate other
relevant matrix elements via relations derived in

'We take the "pole" value for the mass of 4
b See Ref. 9.
~See Eq. (4.1).

our asymptotic limit from

(-.
l
[v w;] I-. ) = ~f;; (-. lw I-. ) ~

For instance,

«"l[v...A,.]lA) =0

yields

(&*'l&,.lA&= (-,')'~'cos&o&A lA lp),

so that G~* ~
'=-', cos'~G*' etc. We give jn Table

V values for a few —', '- —,
' ' +P„and A' -P, transi-

tions. We normalize 1 (Z*'-Aw') to 28 MeV and
use experimental values for P' averaged over the
mass distribution for the particular decay mode
under consideration. ' For the mass of ~", we
take the pole value b, (1211).'"

Our results are presented in Table VI and are
in good agreement with the data. '
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