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Test of the partial conservation of axial-vector current limit in pion-nucleon scattering
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A comparison is made of the on-shell amplitudes I' (0, t), obtained using interior dispersion relations, to
their off-shell current-algebra predictions in order to test the pion PCAC (partial conservation of axial-vector
current) limit in pion-nucleon scattering. It is concluded that, when v and t are used as variables, the on-shell
corrections to PCAC are on the order of 10% per pion.

In recent years, the advent of accurate pion-nu-
cleon scattering data, particularly near threshold,
and of improved dispersion-theory techniques has
made it reasonable to attempt to map out the sub-
threshold wN analytic amplitudes, as proposed by
Hohler, et al. Owing to its significance as a di-
rect measure of chiral-symmetry breaking, the
wN 0 term has received particular attention from
several authors, the application of numerous tech-
niques yielding a current "world value" o,„=(65+5)
MeV. ' There are, however, other points where
the values of the amplitudes are important to cur-
rent-algebra theory, or to be more specific, to
the pion PCAC (partial conservation of axial-vector
current) hypothesis. In particular, one which has
all too often been overlooked is the on-shell value
of the forward background amplitude,E"(v, t; q', q"},corresponding to the off-shell
Adler consistency condition' 3t g Op g

G"'(a, t) =A."(a, t)+ ' B"(a, t),t, —t
(2)

which is equal to E'+' for v =0, obeys an unsub-
tracted IDR, and has been successfully used earlier
in an IDR calculation of the mN cr term. ' At v = 0,

It is our purpose in this note to present an interior
dispersion relation (IDR) calculation of the on-shell
version of the amplitude E"as well as E' ', and
a discussion of their relevance as a measure of
pion PCAC.

Consider first the on-shell amplitude

E"(v, t) =A"(v, t)+ (v/4m)B" (v, t),
where v = (s —u}. Since E"does not obey an un-
subtracted IDR (a brief summary of IDR is given
in the Appendix), we use the amplitude

E"(0 t) =G"(a t )-—t —2
m 2(m' —a) '

where

t, = t(v =0, a)

2
F(+)(v t) = F&+)(v t) —g B

Bl V~ —V

v~ =t —2P,

G"(a, t) = G"(a, t) —G„",n„(a, t),

g' t, —t (t„—2 y, '}2
4m t.—t„ (m' —a)(t —t„) '

and

t„=t(s = m', a)

= p, '(4m' —t), ')/(m' —a) .

~e take g'/4m= 14.V (f' = 0.081), consistent with
IDR determinations of the mN coupling constant, '
but a variation in g of the order of 5% would not
noticeably affect our results. Except in the neigh-
borhood of t, =2@,', where it vanishes, the second
term on the right-hand side of Eq. (2) has the be-
havior

m 2(m' —a) m (m' —a)2

Using IDR's to determine G"(a, t,), as was done
for t, = 2 p.

' in the determination of the 0 term, ' and
making the comparably small correction for the
difference in the Born terms for E" and G", the
values for E~'(0, t), as shown in Fig. 1, were ob-
tained. Figure 1 clearly demonstrates that E"(0,t}
vanishes very near t= p, ', and obeys, within the
error bars, the relation F"(0, 0) = —F"( 20', ').
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At v=0, t= p.', the Hohler, Jakob, and Strauss
value of F,' + p, 'Fo()) is (-0.5+ 0.3)p ', ' while that
of Nielsen and Oades is (-0.27+ 0.10)i( '." A

semiphenomenological analysis givesii 0 1
Clearly, these numbers are consistent with (4).
An additional constraint on (5) is our previously
determined value of the o term which corresponds
to12

(1.06+ 0.13))(, ' CERN 71
F(+)(0 2~2)

(1.19+ 0.11)p,
' Mod. CBC.~ ~
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FIG. 1. I'+ (O, t) in units of p,
' is plotted against t for

both the CERN 71 and Mod. CBC solutions (solid dots).
The quadratic fits which give the values in (7) are shown
as solid lines. Error bars are shown at the points
representing the 0 term (t =2@2), the results in (4)
(t = p ), and E00 (t =0). Uncertainties in the other points
are comparable.

The vanishing of F"(p, t) near t= )).', when com-
bined with the off-shell Adler zero, Eq. (1), shows
that the effect of taking the PCAC limit, i.e. ,
going on the mass shell from q'=0 to q'= p.' with
v and t fixed, is very small.

At t = p, ', we obtain

(-0.16+ 0.12t( ' CERN 71
F(+)(0 +2)

(-0.15+0.10t(, ' Mod. CBC,
(4)

where CERN 71 and Mod. CBC correspond to two
sets of partial waves used: the 1971 CERN solu-
tion of Almehed and Lovelace' and a modified ver-
sion of the 19V3 Carter, Bugg, and Carter (CBC)
solution. ' A more detailed description of these
solutions as used in IDR's is given in Refs. 5 and
6.

The scale by which to compare Eq. (4) with Eq.
(1) is presumably of order 1p, ', the value of
p'()F"(0, t)/()t in the neighboring subthreshold
region. This implies a PCAC correction for fixed
v and t of the order of 10% consistent, which com-
pares favorably with the present 6% PCAC correc-
tions to the Goldberger- Treiman relation. '

The phenomenological value (4) is also an inde-
pendent constraint on the subthreshold on-shell
expansion'

Ignoring the term quadratic in t, we are led to a
value Eoo 1 4 p, ', consistent with most recent
determinations.

Inasmuch as the Born term contributions to (3)
are relatively small over the entire physical range
of the IDR path parameter a, F"(0, t) can be cal-
culated for a range of a values and extrapolated to
t = 0 (a= —~) to obtain a somewhat independent de-
termination of E,'0 The points, as shown in Fig.
1, are best fit by quadratic forms to give the fol-
lowlllg:

CERN 71 Mod. CBC

F'+'(i), ') -1 25+ 0.11 -1.49 + 0.10

Fo( )()u 3) 1.17+0.10 1.46+ 0.09

Fo( )(p, ') —o.02+ 0.01 —0.07+ 0.02.

(7)

(In Fig. 1, uncertainties are shown for the points
at t = p,

' and t = 2 p,', where extra pains were taken
to account for systematic errors in the calcula-
tions. The uncertainties for the remaining points
were taken to be comparable, except for those at
t= ,'t(' and t=-,'t('.-These last results are obtained
from IDR integrations over rather limited ranges
in the forward scattering direction and were
weighted less than the rest. See Ref. 5 for a
more thorough discussion of error estimates in
IDR calculations. ) The results given in (7) are
generally consistent with most recent determina-
tions, although it should be understood that they
were obtained from a fit of I"values at a single
fixed value of ) (namely ~=0), and that a more
precise determination requires fitting over a range
of t and v values. " The fits, as given in (V), tend
to displace our more precisely determined values
of F"(0, p, ') and o,„by slight amounts.

In the above, we have taken the variables v, t,
q, and q" as independent, with v and t being fixed
during extrapolations in q', as when comparing
(1) with (4). An alternative set of variables is
often considered'4: v, q'q, and q', q", where
q" q=-,'(q'+q" —t). If this latter choice were cor-
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rect (i.e. , if this were the correct set of variables
with which to test PCAC} the extrapolation from
(1), with v=q" q=q'=0, q"= p,

' (implying t= t('),
to v =q"q = 0, q'= q"= t(' (implying t =2i(,') takes
us to the o-term amplitude (6). This would mean
that a small o term is a necessary requirement
for the validity of pion PCAC. The result (4),
however, is roughly six times smaller in magni-
tude than (6), and we believe that this is signifi-
cant evidence in favor of the Mandelstam variables
v and t being the correct independent analytic
variables. Thus, the o term need not be small for
pion PCAC to be valid.

As additional evidence for this, we refer to the
soft-pion theorem for both pions soft,

F"'(0,0;0, 0) = —a,„/f,',
and invoke" o /f '=-E(+'(0, 0;0, 0) =E'+'(0, 2p, ')
along with the numerical result that F"(0, 0—)
=E"(0,2g'). This again implies that PCAC is
reasonably good if v and t are the variables to be
held fixed (v= t = 0 here). On the other hand, fixing
v and q" q at zero (implying t =0) and bringing both
pions on-shell results in a variation of t to 2JL(,

2 and
brings us to E('(0, 2p') =+1.0t( '. This represents
a change in sign and a net variation of approxi-
mately 2p, '. E"(v, t;q', q"}is thus seen to be a
much smoother function of the pion masses in the
PCAC limit with v and t fixed rather than with v

and q q' fixed.
An additional test of PCAC is the measurement

of the on-shell analog of the Adler-Weisberger
soft-pion theorem" (g„=1.25, f, =92 MeV)

H '(a, t)=4mv 'E' '(v, t) (10)

and proceeding as with G "(a, t) above. We have

4m v-'E( '(v, t) =H( '(a, t) -g'/(m' —a),

where the second term on the right-hand side is
the difference between the 4mv 'E' ' Born term (as
calculated consistent with fixed-t dispersion rela-
tions) and the H' ' Born term, as calculated from
the IDR. At v=0, and in the limit t, -0 (a- —m),
we have

4mv 'E' '(0, 0 0, 0)=(1—g„')/2f '= —0 62t), '
(9)

The on-sheQ value has been determined by Nielsen
and Oades" to be -0.52 p,

' and by Hohler, Jakob,
and Strauss' to be -0.44 p, '. We have performed
a determination of this parameter by writing an
IDR for the amplitude

3.0-
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1.0-

I I I I I I I

0 1.0 2.0
i

3.0 , 4.0t„(p.')
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FIG. 2. The values of H (a, t, ) (in units of p, ) as
obtained from the IDR for the CERN 71 solution (large
dots). The Mod. CBC values are essentially indistin-
guishable from these. The points are fitted by the linear
expression (solid line) H (a, t, ) =-0.49+0.85t, . Un-
certainties in the points are uniformly = 0.1p . The re-
sulting values of 4m(s -u) 'E, as calculated from
Eq. (11), are also shown (dashed curve).

consistent with the previously mentioned results
and with small pion PCAC corrections if v and t are
held fixed. However, if v and q q' were held
fixed, we would need to compare E(l. (9) with
F' '(0, 2p'), and would not have found the PCAC
correction to be as small.

In summary, we have presented IDR determina-
tions of E"'(0, t) which measure the validity of
pion PCAC in the pion-nucleon interaction. The
value of F"(0, t(,') is a particularly sensitive
gauge of PCAC on-shell corrections. Our results
indicate an on-shell pion PCAC correction of ap-
proximately 10/0 per pion, when the variables v

and t are fixed, consistent with other measure-
ments of PCAC. We also argue that the variables
v and t are the "proper" analytic variables in
terms of which to discuss PCAC.

Finally, we point out that, given this proven
validity of the pion PCAC extrapolation from q'=0
to q' = p, ', the on-shell amplitudes E"(0, t(') andF"(0, 2 p, ') = o,„/f,' can be used to obtain the off
shell spacelike-pion- momentum extrapolation of
the zero-energy (Fermi sea) amplitude so preva
lent in nuclear physics, ""

2 I2
E(+)(0 t. q2 qr 2) a /f 2 q + q E(+)(0 +2)

Extrapolation of H' '(a, t,) to t, =0 yields (cf. Fig.
2)

(—0.49+0.02)p ' CERN 71
4mv 'E (0, 0) =

(-0.52+0.02)i(, ' Mod. CBC,
(13)

4m v 'F' '(0, 0) = lim H' '(a, t,) .
0a

(12)
(14)
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This result predicts a reasonable three-body con-
tribution to the binding energy of nuclear matter"
of —,

' to 1 MeV.

We wish to acknowledge valuable discussions
with Dr. David C. Moir of the Los Alamos Scientific
Laboratory.

APPENDIX

Interior dispersion relations (IDR) are written for
reactions of the type

a+5- c+d,
a=- —Q(v, t)/t'. (A6)

function of v and t, spurious "kinematical" singu-
larities are introduced which must be included in

any dispersion relation written in the remaining
free variable. The discontinuity or residue of the
amplitude at this singularity being generally un-
known and unobtainable from the dynamics of the
interaction, the dispersion relation so obtained
has little value.

For symmetric amplitudes, a variable which can
be fixed to obtain kinematical-singularity-free
dispersion relations is

where at least m, =m, or m, =m„. Reactions for
which both mass equalities hold are termed elas-
tic, those for which only one holds are semielas-
tic. We use the traditional nomenclature, calling
(Al) the s-channel process,

As a function of t and a, v is given by

v(t, a) = (v, '+ 4at)'~',

where

(A7)

a+d-c+b
the u-channel process, and

a+ c-b+d

(A2)
v~= —4p4~ ~

v, '= [t —(m, +—m, )'][t —(m, —m, )'](t —4mb') .2 1

the t-channel process. The Mandelstam invariant
quantities s, t, and u also follow conventional
usage. We define the invariant

v—:s —u~

and introduce the Kibme boundary function

(A4)

g(v, t) = 4sp, 'p,"sin'8,

= 4tp, 'p", sin'e„ (A5)

where p, and p,' are the initial and final center-of-
mass momenta and 8, the center-of-mass scatter-
ing angle for the s-channel reaction; analogous de-
signations hold for t-subscripted variables. Setting

Q =0 yields the boundary loci for the respective
reactions in the v-t plane.

For elastic and semielastic processes, the s-
and u-channels are kinematically equivalent, and
the invariant amplitudes are symmetric or anti-
symmetric in the variable v:

A(s, t, u) =+A(u, t, s)

A(v, t) = + A(-v, t) .

We are concerned with symmetric amplitudes;
antisymmetric amplitudes may be symmetrized by
dividing by v.

As a function of v and t, an invariant amplitude
presumably has only dynamical singularities. How-
ever, if one fixes a variable which is a nonanalytic

In general, fixing a introduces branch-point singu-
larities in the t plane of the amplitude, but for
symmetric amplitudes v appears only in even
powers, and the discontinuities across the kine-
matical cuts vanish. One may then write disper-
sion relations in t which contain only dynamical
contributions.

By fixing the value of a one obtains an interior
dispersion relation, which has the form

ReA(t) =As(t)+ P
1 ™, dt'' r . t'-t

(Aa)

For a~0, the first integral on the right-hand side
is performed entirely within the s-channel physical
region; a=0 corresponds to integration along the
boundary, which includes contributions from back-
ward scattering (-~ & t& t,) and forward scattering
(t, & t &0). t, is the value of t at the s-channel
threshold. The second integral begins at the
threshold of the t-channel unitary cut, t=t„ in-
cludes an unphysical-region contribution in which
appear most of the lower-mass t-channel reso-
nances, and finishes with a contribution from the
physical t-channel reaction. It is this integral
which is called the discrepancy function, and
which is extrapolated from the s-channel physical
region in order to determine ReA(t) below thresh-
old. A~ is a Born term.

For elastic scattering
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where

a+ s(t, a)
a —s(t, a) '

2s(t, a) = Z —t+ v(t, a),

g = 2yyg 2+ 2yyg
2

(A9)

a+ (mb' —m, ')
lab [a2 ay+ (~ 2 I 2)2]1/2 ' (A10)

Further details can be found in Moir et a/. , Ref.
2, and in Hite et a/. , Ref. 19.

The laboratory angle for elastic scattering is fixed
within the s-channel physical region:
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