
PHYSICAL REVIEW 0 VOLUME 14, NUM BE R 1 1 JULY 1976

J = 0 XX~n.7r amplitutie in the unphysical region f & 4p, e

G. E. Bohannon
Theoretical Division, Los Alarnos Scientific Laboratory, University of California, Los Alamos, ¹Nl Mexico 87545

{Received 8 September 1975; revised manuscript received 8 March 1976)

The magnitude of the J = 0 XX—tea amplitude is evaluated in the pseudophysical region above the m7r

threshold. The relevance of this quantity to the dispersion theory of nucleon-nucleon scattering is discussed
and the 425-MeV l = 5,6,7 XN phase parameters calculated from the dispersion theory are given.

I. INTRODUCTION

The formalism for evaluating the two-pion-ex-
change part of the nucleon-nucleon interaction has
been known since the early 1960's, when Amati,
Leader, and Vitale' published the details of a
dispersion-theoretic approach based on the as-
sumption of Mandelstam analytieity. With this
approach one expresses the NN a.mplitude as an
integration over the two-pion branch cut in the
variable t.' From unitarity in the XN- NN eha.nnel
one writes tIle absorptive parts enters'Qg into tile
dispersion integrals as products of NN- mm am-
plitudes evaluated in the kinematical region above
the mm threshold.

Until recently calculations based on this formal-
ism have relied on physical models for the NN- mm

amplitudes. However, the availability of accurate
nN phase shifts and a knowledge of the low-1 mm

phase shif ts has made it possible to evalua te the first
few NN- mvi partial-wave amplitudes using certain
assumptions about their analytic str Uetures. These
NN- mm ampl. itudes then allow one to calculate the
intermediate-range NN interaction in a way which
is fully relativistic, is consistent with exossing
and analytieity, and includes correct mm and mN

substructure s.
The NN phase parameters can be calculated with

this dispersion theory and one expects that for l
values larger than some energy-dependent mini-
mum value the parameters will be dominated by
the one- and two-pion exchanges. It may be ad-
vantageous to incorporate the intermediate-l
phase parameters calculated in this way into
phase-shift analyses, a procedure analogous to
the usual pra. ctice in such analyses of approximet-
ing the high-/ partial-wave amplitudes by one-
pion exchange. This procedure might be especially
useful at higher energies, where the number of
parameters which differ significantly from their
one-pion-exchange values becomes large.

The effect of the two-pion-exchange interaction
on the inter med iate- 1 phase parameter s at 425
MeV can be seen in Table I. The J =0NN-mm
amplitude used in this calculation is evaluated in

this paper (solid curve in Fig. 1, to be discussed
below), while the J = 1, 2 values are from Ref. 3.
The error limits correspond to an uncertainty in
the square of the J =0 amplitude, which is 50 j&

larger than the error bars in Fig. 1. The NX cal-
culation requires adding the J =0, 1, 2 contributions
to the fourth-order amplitudes (the box diagrams,
proportional to g ) with the J = 0, 1, 2 partial
waves removed. This complication arises be-
cause the fourth-order terms do not have a con-
vergent NÃ- NN-channel partial-wave expansion
in the kinematical region of interest. Further de-
tails have been given previously. ' One sees that
the corrections to the one-pion-exchange values
are particularly large for the triplet odd 0 = 1+ 1
eases where the correction is 80% for l=7.

Calculations with this formalism have already
been used to provide the intermediate-range part
of an otherwise phenomenological potential. The
derivation of a potential from the dispersion-theo-
retic (on-shell) amplitude must include assump-
tions about the nonloeality of the interaction. ' '

These applica. tions of the NN dispersion for mal-
ism require that the input is reliable and that the
uncertainties are understood. Presently, the least
reliable input is the magnitude of the 0 =0 NN- n'm

amplitude f,'. This amplitude also plays a part
in reactions other than nucleon-nucleon scattering,
an example of which is the AN interaction where
two-pion exchange gives the longest-range force.'
In this work we show how the accurate low-energy
TtN phase shifts now available make a. sufficiently
accurate determination of

~ f, ( possible.

II. PROCEDURE FOR EVALUATING I f~~ I

The backward non-spin-flip mN amplitude F~+~ is
written in terms of the more familiar amplitudesA" and a" as""

Z"(t) = —~"(i, cose=-1)1
m

+ B ' (k, cos6)=-1)

where I; is the negative of the e.m. gN momentum
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TABLE I. NN nuclear bar phase parameters in degrees at 425 MeV lab energy. The one-
pion-exchange values are in parentheses.

Singlet J=l —1 J=l+1 &(J=l + 1)

5 —2.64 +0.07 1.04 +0.06 —1.09 + 0.07
(-2.11) (0.820) (-1.82)

0.784 +0.022 —1.61 +0.01 3.17 +0.03
(0.484) (-1.29) (3.25)

7 -1.05 +0.01 0.297 +0.007 -0.600 +0.008
{-0.991) (0.250) (-0.700)

1.10 + 0.08
(0.372)

-0.601 +0.025
{—0.626)

0.234 ~ 0.009
(0.130)

-0.765 +0.000
(—0.793)

1.50 ~0.00
(1.51)

-0.341 +0.000
(—0.344)

transfer squared and the square of the NX- mn

c.m. energy, u and E are the pion and nucleon
energies in the mN c.m. frame, k is the mN c.m.
momentum, and m is the nucleon mass. We use
units such that the charged-pion mass is unity. "
For cos 8=-1 we may write k' =-4t and

The NÃ- mm-channel partial-wave expansion was
given by Frazer and Fulco." Since backward mN

scattering implies also backward NN- mm, the
first two terms of the expansion for F~' are

R [D(t)&"(t)]=&(t)——

where

g(+)(t) ~(+)(t) p( +)(t)

and the nucleon-pole (Born) contribution is

p(+)(t) g2

(6)

g = 4 ——,, —= I4.2S .1 g
ni '

4m

The unitarity condition on f, applied at 4& t &16,
where only the mm intermediate state contributes,
gives the phase relation"

fo (t) ~ ~fo (t)~ el 6 (ot) (3)

where 5~ is the I=J =0 wm phase shift. Actually
Eq. (3) is correct for all values of t such that the
I=4 =0 nm state scatters elastically. This appears
to be true experimentally for t ~50.'4 The sign
is known to be positive from extrapolations of A '
toward t = 4 by fjxed-P dispersion relations
[A' is purely s wave at t=4]. The positive sign
is also indicated by the current-algebra prediction
for A.~'~ at the Adler point. '

We define the function D(t) by'~' "

D(t}= exp — o d$'-t "
6O(t')

(4)t'(t' —t —ie)

The singularity structure of the product D(t)r ' (t)
consists of the mN physical cut at t&0, the nucleon
pole at t =4 —1jm', and the v(( pseudophysical cut
at t&4. There is no contribution from f, to the
discontinuity along the t &4 branch cut for values
of t such that Eq. (3) is valid.

The unknown distant singularities can be isolated
into a. "discrepancy function" h(t} by writing'9

Note that E~' contains both the s- and u-channel
poles. We will take 1.,&-L, so that the discrepancy
b, (t) is an analytic function for

~
t

~

& f.,
Estimates of the isobar contributions and the

4

5

FIG. 1. The spectral function p 0. The lour-energy
&Oo was from Ref. 18 for curves T and T (CDC) and from
Ref. 32 for MS (CDC). The optimal expansion was used
for T (CDC) and MS (CDC). See the text for the meaning
of the error bars.
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small size of the 4 ~4 mm phase shifts indicate that
the J ~ 4 NR - nm partial-wave amplitudes in the
pseudophysical region are almost totally dominated
by the nucleon poles, at least for values of t of

interest here (t& 45}. This point is discussed in
the Appendix. For t & 4, E ' (t) can, therefore,
be written in ter~s of the 4 =0, 2 partial-wave
amplitude s:

Re[D(t}E ' (t)]=, [If,'(t) I
—cos5', f,'(t)] — [cos5',Ref', (t) —sin5gmf, '(t)],5v(t —4) ID(t) I

fm[D(t)E" (t)] — [cos5'lmf '(t) s'n5'R f '(t)]+ ' f' (t)

where f,=f, -f,s. The appearance of a J'= 0
term in Eq. (7) is caused by the subtraction of the
nucleon-pole terms from E ' . The nucleon-pole
contributions to f, and f, ' are

2(t) g
(t 4)(4m' - t)

x [(3t)2 + 1)ar ctank ' —3h],

f —2

[(t —4)(4m' —t)]'('
The NÃ- m'm-channel partial-wave expansion of

E['~ converges within an ellipse whose size is
limited by the s- and I-channel (wN) threshold
branch points. For 4&t& 4m2 one finds singular-
ities in the cosine of the scattering angle

S-Q
[(t —4m') (t —4) ]

'"
at cos 8, = + x„where

t(t + 4m)
[(4m —t)(t —4)] (

The smallest convergence ellipse occurs at t =4m
with a semimajor axis of 1.35, so that for cos6},
=-1, as in Eq. (2), convergence is expected
throughout the pseudophysical region.

In the nN physical region, t&0, F['~ can be
evaluated from its partial-wave expansion:

g (-1)'[(1+1)fl () )+ tf', "(~)],
1=0

f(+) L(f(((2) ~2f(s(a))

f,",' = .„[)}(;)exp(2i5(r)) -1],

where the superscript T denotes the mN isospin
2 or

III. RESULTS

The low-t phase shift 5 used in this work is the
solution recently given by Tryon' based on
twice-subtracted dispersion relations for the mm

amplitudes. At low dipion energy the solution is
well represented by a simple function of one pa-
rameter which is determined by fitting the K„
decay results for O,'. The resulting scattering
length is a0=0.26+0.08@. '. Above t =20 we have
used the Berkeley' solution obtained by an energy-
dependent fit to data primarily on mN- mmA. The
7=2 f(tZ- (((( amplitude f, ' was evaluated in Ref. 3

using a partial-wave dispersion relation involving
the I=O d-wave mm phase shift.

To perform the dispersion integrals we have
used three sets of mN phase shifts:

(a) Almehed and Lovelace" -165&t& -21,
(b) Carter, Bugg, and Carter'-' -19& t& -4.4,
(c) Nielsen and Oades" 0& t & -2 .

To evaluate the left-hand side of Eq. (5) and hence
~(t), where accuracy is especially important, we
have used only the CBC phase shifts"'" for the
final results.

The discrepancies were calculated at the 10
points of the CBC analysis using J., =-165 and
I.2 =45, then extrapolated to t &4 via a I egendre
expansion in t. The discrepancies and a quadratic
fit are shown in Fig. 2.

By equating the right-hand sides of Eq. (5) and
Eq. (6) we can write

I f+ (t) I
= a(t) [L(t) + B(t)+f (t)],

where a(t}=m(4m'- t)/16sID(t)I, B(t) is from
the f+s and f, ' contributions in Eq. (6), and f (t)
denotes the integrals in Eq. (5). The quantities
6, B, and I are displayed in Fig. 3. One sees that
the largest part of

I f+ I comes from the extra-
polated discrepancy.

At the (((( threshold we obtained f,'(4) = 113)(
and A"(s, t =4) =4((fo (4)/(m' —p') =32' '. This
value is consistent with the current-algebra value at
the Adler point'7 and with the value and derivatives at
t= 0. For example, usingthe value (25.9)( ') and the
slope (1.16)). ') of A(+)(s =u, t) at t =0 from Ref.
3, one finds A(')(s, t =4) =31'( '. The same value
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FIG. 2. The discrepancies and fit which give curve
T of Fig. 1.

is found from Ref. 25. We note, however, that
using the value and derivatives at t =0 to extra-
polate to the mm threshold is of questionable ac-
curacy since one is extrapolating to the limit of
the domain of convergence. The procedure used
here does not suffer this fault.

The results for t &4 are given by the solid curve
in Fig. 1. The quantity shown there is p, defined
as

This quantity is the J=0 spectral function required
in the NN dispersion theory. Note that po(4) =0,
and that the peculiar shape near threshold is
caused by a rapid change in the nucleon pole
terms, which vanish at threshold.

The results of the extrapolation may be expected
to depend on the function used to represent A(t).
The conformal mapping of Cutkosky, Deo, and
Ciulli" (CDC) is designed to maximize the con-
vergence of a polynomial expansion by introducing
the locations of the branch cuts explicitly into the
expansion variable. The result of the mapping is
to take the entire cut plane into an ellipse whose
size is determined by the locations of the branch
points. The results of performing the extrapola-
tion of t).(t) via a quadratic expansion in the CDC
variable are shown in Fig. 1." These results
differ from those of the expansion in t by less
than 10% for all t& 24.

Ciulli et al."have emphasized the need for in-
formation other than analyticity to stabilize ex-
trapolations against experimental errors. Stabil-
ization is achieved here by restricting the order
of the polynomial approximation to h(t). A quad-
ratic approximation gives a good fit to the experi-
mental discrepancy values without being highly
sensitive to the data noise.

IV. ESTIMATION OF ERROR LIMITS

Although no error matrices are available for the
CBC phase-shift analysis, we have obtained infor-
mation on the correlations in the phase shifts by
private communication. " We have approximated
the correlated errors by decreasing the P33 S3$,
P„, S„, P„, and Pyy phase shifts by 1.5, 15, 15,
15, 10, and 6 percent, respectively. The results
for p, are changed by about +10% except at the
smallest values of t, where the change is smaller.
We note that the correlations are important since
a 1.5% change in just the P33 phase shift gives twice
these error limits.

As an indication of the stability of the extrapola-
tion to changes in the distribution of discrepancies
used in the fit, we have defined a second measure
of error as follows. Define each of 10 subsets of
discrepancies by removing one of the 10 values
from the complete set. Perform the extrapolation
with each subset to obtain a total of 10 values of
p, (t) for every t. Then define the quantity

k=&

where p,'k' is obtained from the kth discrepancy
subset and p, is the mean. We found that p, differs
from the result using all 10 discrepancies by less
than 1% at all values of t in Fig. 1. The quantity
e(t) is shown as error bars in Fig. 1. The ratio
e(t)/po(t) increases with t and reaches 20% at t= 20.

We have also performed the analysis using the
later Nielsen-Oades" nN phase shifts rather than
the CBC phase shifts. The Nielsen-Oades phase
shifts differ from the CBC phase shifts in that the
former were constrained by fixed-t dispersion re-
lations. The results for p, are almost unchanged.

The fact that the right-hand cut in the procedure
used here involves the J= 2 NN 7171 amplitude in an
unphysical region does not introduce a large un-
certainty. The lack of structure in the low-energy
I=O, J=2 7t77 partial wave causes f,' to vary slowly
so that it can be accurately evaluated by the proce-
dure used in Ref. 3. The J=2 amplitude contri-
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butes only a small part of the right-hand side of
Eq. (6); however, it does cancel much of the J=O
contribution to Eq. (7). Nevertheless, we found
that a 10/o reduction in f,'(t) for all t&4 causes
only an 8o/o reduction in po(20).

The largest source of uncertainty is the phase
shift 6,', especially its va, lue at low zz energy.
One can find experimental evidence that the scat-
tering length may be negative" or as large as"
0.6p, ', but most recent work is consistent with
Weinberg's prediction" of a, =0.2p, '. To judge
the sensitivity of our results to 5„', we have per-
formed the analysis with the phase shift obtained
from the current-algebra, model of Morgan and
Shaw" rather than Tryon's" values. The low-en-
ergy behavior of the s-wave amplitudes can be
compared by writing Ref ', = a, + b,q'+ ~ ~; Morgan
and Shaw have a, =0 21+, Ap 0 25'. ', whereas
Tryon has a, = 0.26', ', 5, = 0.14', '. The results
for p, using the Morgan-Shaw 5,'and the CDC con-
formal mapping are shown in Fig. 1. The results
without the CDC mapping differ by less than 10%
for t&25.

V. DISCUSSION

Dispersion relations for the backward mN ampli-
tudes have had extensive use in the yast. """"
Much of this work has been directed toward deter-
mining the nm pha, se shifts, especially 5'„via Eq.
(3). The attempts to determine 6, have had only
limited success, primarily because they required
an extrapolation to the gn branch cut and because
the backward amplitude in the n.N physical region
is only slightly sensitive to the shape of 6'o(t). On
the other hand, small changes in the near-thres-
hold mN amplitude can produce unacceptably large
changes in 5o~"

Since it appears that 5,'may be more reliably
determined by other means we have used it to
make an "interior to interior" extrapolation possi-
ble, avoiding the extrapolation to a branch cut.
This technique has been used by Elvekjaer" andby
Nielsen and Oades" in conjunction with partial-
wave dispersion relations. However, in their
case the discontinuity on the left-hand cut was
known only to t = —26, and was determined by
another extrapolation from the mN physical region.
In the procedure used here the nN amplitude re-
quired on the left-hand cut is always in the physi-
cal region, and the left-hand cut integral can be
evaluated to large values of —t.

Twice- subtracted dispersion relations have re-
cently been used to obtain f,. ' The result of
Epstein and McKellar' differs from ours primarily
in the region around t = 10, where their p, is some-
what larger than the value found here.

We have found that pp could be determined below
t = 20 to within about + 20% if the m7T phase shi't 5',

were known without uncertainty. Variations in the
low energy 5', near the current-algebra predictions
are expected to leave p, within or near these lim-
its. These limits could probably be improved when
accurate Coulomb-corrected zN phase shifts very
near threshold become available (the lowest energy
in the CBC analysis is E, =88.5 MeV).
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APPENDIX

X'(x, t) = 1 1dx'o„(x', t) —, +
x —x x +x

0

where x is related to the Mandelstam variables by
x=-,'(s —u) and x, = —,'(2m+t). These relations have
been written in unsubtracted form although the re-
lation for A.~'~ may in fact require one subtraction
for t &4."" If a Mandelstam representation is
valid, then these equations may be extended to the
region t &4, although the number of subtractions
required may change. Subtractions would modify
Eq. (11) and Eq. (12) given below, but Eq. (13)
would be unchanged if no more than two subtrac-
tions are required for A~'~ and one subtraction for
~(.~ 41

Using Eq. (10) with cos8, = —1, we find the fol-
lowing expression for F ') (t):

y' ' (t) = — dx' h(x', t)(x (x', t)
1

mmP q

mg——-v (x' t)

where

1
h'(x', t) + 1 '

q=(t/4-1)' ', t) = (m' —t/4)' ',

lz(x', t) = x'/2p q .

We noted in Sec. II that the point cos6, = —1 is
within the domain of convergence of the NN-re-
channel partial-wave expansion above the ~~

threshold, provided the nucleon poles are removed.
Thus, we were able to truncate the expansion to
write Eq. (6) and Eq. (7). We wish to estimate the
accuracy of this approximation.

We begin with the fixed-t dispersion relations:
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The following expressions for f ', and j,' are ob-
tained by using the projection formulas given by
Frazer and Fulco":

TABLE II. Estimates of the J)4 contributions to F~+i

and po.

Re(e ' OF"))

f ', (t) =, dx' o„arctanh
4m2

+mes(h arctanh ' —1)

5
i0
20

5
4.5
4.4

4.0 x i0
O.oii
0.050

0.00i2
—0.0020
—0.0042

f, '(t}=-, , d*' v„—II )+ 8 2P 3 A
P

8

x (3h'+1) arctanh ' —3h

(12a)

(12b)

computed from Eq. (6) is also given.
Including only the first two partial waves in Eq.

(6) affects the definition and extrapolation of the
disc repanc y through the sec ond integral of Eq.
(5). The contribution of H(t) to this integral is

t '
I
—D(t')I sin5', (t')H(t')

) t'(t' —t)
The integration limits and the arguments of h and

o» remain as in Eq. (11).
We define H(t} to be the difference between the

amplitude of Eq. (11) and the sum of the first two
partial waves as given by Eq. (2) and Eq. (12).
The large-x' contributions to FI are suppressed as
one can see by writing

H(t) = — dx'3C(x', t},
1

The best4' orthogonal polynomial expansion in t
over the region where the experimental discrep-
ancies exist, a& t& b (we have a = —19, 5 = —4),
is the Legendre one:

1'(t) = Q c„P„(z(t)),
n=p

c„= iD(t')[ sin5,'(t')H(t')
—(2n + 1)

4

and expanding X in powers of h '. We find

1 8, mqX(x', t) = ——h ' o„+—hos + ~ ~ . (13)n~Pq35 "P
z(t) = 2t —a —b

2Qgz(t'))
b —a t'

c„s(x', t) = vG„s(t) 5(s' —m~'),

with

(14)

s' =x'+rn' 1 ——,
' ] .

We have used the residues G» derived by Ep-
stein and McKellar, ' which in our notation are
I'„/4v = 36.0+1.6t, Gz/4v = —12.2+0.lt.

The third column of Table II contains the nu-
merical value of H(t) computed from Eqs. (11),
(2), (12), and (14). If H were included in Eq. (6) it
would appear multiplied by just cos5,'. For com-

p
parison, therefore, the value of Re(e '"DE~'})

The actual suppression depends on the behavior of
o„e(x', t).

To obtain an estimate of the numerical size of
H(t) we have included the lowest-mass isobar, the
A(1236), in the narrow-width approximation. In

this approximation the 0„8 have the form

The error in pp caused by illegally continuing this
series to t)4 as a part of the quadratic approxi-
mation to r}.(t) is given approxima. tely by the ratio

a(t)[ Y(t) —c, —c,z(t) —c,P,(z(t))]
If', (t)I

The fourth column of Table II contains this quanti-
ty with only the n(1236) included in H(t} An actu-.
al fit to Y(t), a& t& b, confirms these estimates.
The I fP,

i used in this ratio and the numbers in
the second column of Table II correspond to curve
T of Fig. 1.

The P»(14't0) and D»(1520) isobar terms have
also been computed; their effect is a small frac-
tion of that of the n(1236). The numerical values
in Table II suggest that the error incurred by ne-
glecting all but the first two partial waves of E (' ~

is at most a few percent.
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