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An analysis of an extensive sample of the world’s data has been performed to test the hypothesis of radial
scaling. We have studied the inclusive reactions p + p— (7= or K* or p or p)+ anything to determine the
behavior of the invariant cross section as a function of p;, xz = E*/E*_,,, the radial scaling variable, and s.
The data cover a range in p, from 0.25 to ~ 6.0 GeV/c and a range in V/ s from 3.0 to 63 GeV. For small
xg and all available p, the single-particle inclusive cross sections for the reactions studied scale to a good
approximation for all v/ s, even down to the kinematic threshold. For large x;, the single-particle inclusive
cross sections for increasing v/ s show a rapid approach to the scaling limit from above. In these cases the
scaling limit is always approached by v/ s = 10 GeV. Thus, data for all particles to a good approximation
exhibit radial scaling at all available p, and xz over the CERN ISR energy range. A comparison of radial
scaling with Feynman scaling is given. It is shown that in the Feynman case the cross sections for small x,
(x; = p*/P*max) approach their scaling limit from below, and that the approach to the scaling limit is slower
than is exhibited for the case of small xz. The systematic differences among the inclusive cross sections of
various particles are discussed in the range of V/s where radial scaling has been shown to be valid. In
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particular, the p, and x; distributions of E do/dp® are examined.

I. INTRODUCTION

In a separate paper we presented data on inclu-
sive 7° production from pp collisions at the Fermi
National Accelerator Laboratory.! Here we pre-
sent an analysis and interpretation of these 7°
data. In addition, we examine other single-par-
ticle inclusive cross sections in order to search
for systematics in their behavior.

To study the single-particle inclusive experi-
ments, a set of variables should be chosen such
that the single-particle inclusive cross section
displays the simplest behavior with respect to
energy, p., the center-of-momentum (c.m.) frame
angle, etc. It is natural to choose a parameteriza-
tion of the inclusive cross section which is mean-
ingful in the exclusive limit.> We therefore define
the scaling variable

E*
xR "<E§;> s (1)

where E* =the energy of the detected particle in
the center-of-momentum frame, and E}, =the
maximum energy kinematically available to the
detected particle in the c.m. frame. The range
of %z is 0<xp <1 for all p,, and the case xz=1
corresponds to the exclusive limit. Since this
variable is independent of the center-of-momentum
angle and depends on only the radial distance from
the kinematic boundary, we have called it the
“radial” scaling variable.

Using this variable xg, the proton-proton single-
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particle inclusive cross section can be expressed
as a function of three variables, s, p;, and g,

E g‘gg =f(S, s, X5) , (2)

where s is the square of the total c.m. energy. In
this work we study whether the invariant cross
section at sufficiently high energy scales, that is,
becomes independent of s. It is shown that this
scaling is reached at a lower s than obtained with
the use of the Feynman variable x;.

In an analysis of a single-7° inclusive experi-
ment in p-p collisions,? it has been shown that for
sufficiently high V's (V's2 10 GeV) there is radial
scaling

E %eﬂm, *2) . 3)

This scaling is observed for 0.3 GeV/c <p, <3.0
GeV/c, 10 GeV <vV's <27 GeV, and for center-of-
mass angle 20° < 6* <150°, It is therefore inter-
esting to test this new form of scaling over as wide
a kinematic range as possible for other particles
produced in p-p collisions. We shall discuss the
reactions

p+p=(m*'° or K* or p or p) +anything .

In Sec. II, the variable x; is discussed and it is
compared with the Feynman scaling variable x).
Section III is a discussion of the method of data
analysis. A comparison of radial scaling with
Feynman scaling is given in Sec. IV. Section V
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is a presentation of the various systematic differ-
ences among single-particle inclusive cross sec-

tions for various particles in p-p collisions in the
radial scaling region. A summary is given in Sec.
VI.

II. THE xz VARIABLE

In an analysis of single-7° inclusive production,®
it has been shown that the s dependence and the
laboratory angular dependence of the invariant
cross section could be succinctly described by
writing the invariant cross section in terms of
the transverse momentum p, and the variable xp.
This variable may be written in Lorentz-invariant
form as

E*
:—E*—

max

_1-MP/s + M %/s
T 1-ME/s + M 2/s’

XR

4)

where My =the invariant mass of the unspecified
particle(s) (undetected), My =the minimum pos-
sible My value, M, =the rest mass of the detected
particle, and s =the square of the total energy in
the center-of-momentum frame. The variable xp
has been used by several authors and was probably
first used by Kinoshita and Noda* in 1971, although
apparently it had been discussed by Feynman® in
1969.

The maximum energy (E¥, ) kinematically avail-
able to the detected particle c¢ in the inclusive re-
action

p+p~c+anything

is determined by s, the square of the total energy
in the c.m. frame, by the mass M, of the detected
particle ¢, and by My, the minimum mass of the
undetected particle system consistent with quan-
tum number conservation (charge, strangeness,
baryon number, etc.). For a single-particle in-
clusive reaction this minimum value of M, cor-
responds to the exclusive limit. A compilation of
the minimum value of My and the exclusive limit
reactions is given in Table I. We can express
E¥, as

-My" +M,>?
Epu= g = - (5)

Since xz is a ratio of total energies, the value of
xp at the particle ¢ production threshold is 1, and
for fixed, finite E*, x; =0 only at infinite s.

The radial scaling variable xz is distinguished
from the Feynman® variable x, =p}*/p* = 2p*/V's
in that the detected particle’s total energy is scaled
by its maximum value, rather than its longitudinal
momentum by the maximum momentum. The use

TABLE I. For a given inclusive reaction, the corre-
sponding exclusive reaction and the minimum mass My
are tabulated. The mass My is determined by the mass
of the undetected particle system in the exclusive limit
reaction.

Inclusive reaction Exclusive reaction My

p+p—n* +anything p+p—p +n+rt 1.88 GeV/c?
p+p —~m-+anything p+p—p+p+mt+n~  2.02 GeV/c?
p+p—7+ anything p+p—p+p+m0 1.88 GeV/c?
p+p—K*+anything p+p—Al+p+K+ 2.05 GeV/c?

p+p—~K +anything p+p—p+p +K*+K~ 2.37 GeV/c?
p+p—~p +anything p +p—p+p 0.94 GeV/c?
p+p—p+anything p +p—p+p+p+p 2.81 GeV/c?

of only the longitudinal momentum component
means that the variable x; is not related to the
location of the kinematic boundary at finite p,.
One might, therefore, expect the invariant cross
section to have an s dependence for fixed p,, owing
entirely to kinematic effects. In particular, one
would expect E do/dp® for fixed p, and x,~0 to
rise with increasing v's as the point in the x-x,
plane at which the measurement is being made
moves further from the kinematic boundary.
Therefore, in the region of the center-of-mass
angle 6*=~m/2, x,is clearly not the best variable
for studying scaling and the systematics of single-
particle inclusive production. Other frequently
used variables such as rapidity,

_ E* +pf
y*_%ln<E*_ IT ’ (6)
and x,,
2v
ne g

also are not related to the location of the kinematic
boundary, and suffer the same defects. On the
other hand, the expression of the invariant cross
section in terms of the variables x; and p, allows
the s dependence of the cvoss section to be studied
at a fixed distance from the kinematic boundary.

It is instructive to contrast radial scaling with
Feynman scaling by examining the methods by
which single-particle inclusive measurements are
made. In both cases, consider the invariant cross
section at a fixed p, and compare, for example,
x;=0.3 to x5 =0.3. Figure 1 shows the curves as
a function of s along which these measurements
are made in both cases. This plot is made in the
plane of x, =2p,/Vs and x,=2p¥/Vs. In the limit
of s -« we see that radial scaling and Feynman
scaling are identical hypotheses:

do
E EF =f(py, xg) =f (v, %1) . (8)
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FIG. 1. The plot shows the lines in the center-of-mo-
mentum frame along which measurements are made to
study scaling in the case of fixed Feynman (F') variable
x, and fixed radial (R) variable xj.

However, the finite-s behavior is quite different
in the two cases. In the case of Feynman scaling
the point at which the measurement is made moves
away from the kinematic boundary. A large s-de-
pendent increase in the cross section due to in-
creasing phase space is thereby introduced. On
the other hand, measurements at fixed x; require
that the fractional distance to the kinematic bound-
ary remain constant. In this way, it appears that
the s dependence of the dynamics may be more di-
rectly probed.

Another property of the variable xz which dis-
tinguishes it from the Feynman variable x) is its
totally different s-threshold behavior. The s
threshold for a given value of p, is defined as the
minimum value of s which can have the specified
value of x; or x,. For the x;z variable, this thresh-
old is given by

Sp=2T +My? ~M,>

+2([T2 + T(L - M, ?)]* 2, (9)
where
= BlME +2M°2 .
xR

Hence for the limit x; =0, the s threshold sy is «,
for a fixed value of p,. The limit x5 =1 (the ex-
clusive limit) corresponds to a finite s, for finite
p,. Comparing the s-threshold values at these
two extreme values of Xz =0 and xz =1 with the
corresponding s thresholds for the same extremes
for x,, there are very great differences. The s
threshold for the Feynman variable x; is deter-
mined by the kinematic boundary, so letting

b be the maximum possible momentum of the
particle in the c.m. frame, then,

Py Vso

* = o~
pmax (l_x"2)172 p)

(10)

Hence, in the limit x;=0 and p, fixed,
Vsy=2p, . (11)

The limit x,=1 corresponds to Vs = for fixed p,.
Thus for a given x; or xz and fixed p, the thresh-
old energy in the two cases is quite different.

We wish to compare the s dependence of the in-
variant cross section for fixed xz, p, with the in-
variant cross section for the same numerical value
of x, at the same value of p,. In this way the two
cross sections will approach the same asymptotic
limit. We are interested in this approach to the
asymptotic limit. There is clearly some point
at which the thresholds occur at the same energy
Vsy. This happens for (using high-energy approxi-
mations)

26 ___ 2D,
% A=) 2

i.e., ¥x=xp=x,=1/V2. Hence for xg =x,<1/V2, the
threshold for the radial variable x; lies at a higher
Vs than the threshold for the Feynman variable
%y, whereas the opposite is true for x; =x,>1/V2.
Finally, it should be emphasized that E do/dp?
is always finite at the s threshold for fixed x; and
by, but is zero (excluding p-p elastic scattering)
at the s threshold for fixed x;, and p,. This means
that the cross section for fixed x,, p, must rise
over some range in Vs, owing to purely kinematic
effects. This s dependence seems to be a major
cause for the observed fixed x), p, behavior of
inclusive cross sections.

III. THE DATA ANALYSIS
A. The object of the data analysis

The object of the data analysis is to convert the
data from each experiment into a table of invariant
cross sections as a function of Vs for given values
of p, and xz or P, and x,. We divided the
range of X into 10 bins of 0.1 units, ranging from
0.0 to 1.0, and the p, range from 0.125 to 10.125
GeV/c was divided into 40 bins of 0.25 GeV/c.

The variable Vs was not binned, and therefore
each value of Vs of a given experiment provided
a unique entry into the compilation.

Since a given datum generally did not fall at
exactly the middle of the p,, xz, or x, bin, a
small adjustment was performed to move it to the
center of the bin. This procedure is described in
more detail later. Only statistical errors were
used to denote the experimental uncertainty of each
data point. The experiment-to-experiment sys-
tematic errors were estimated from the consis-
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TABLE II. Listed are the references used in this data compilation. The values of Vs and
the particle type for each reference are tabulated.

Reference Vs (GeV) Particle
J. T. Reed et al., Phys. Rev. 2.83 K*
168, 1495 (1968) 2.98
W. J. Hogan et al., Phys. Rev. 2.88 K*
166, 1472 (1968) 2.99
3.03
A. C. Melissinos et al., Phys. Rev. 2.98 nt,r~
128, 2373 (1962)
E. R. Gellert, thesis, Report No. 3.78 T
LBL-749, 1972 (unpublished)
V. Blobel et al., DESY Report No. 4.93 T,
73/76, 1973 (unpublished). 6.84
C. W. Akerlof ef al., Phys. Rev. 5.02 mta , K¥ K~ p,p
D3, 645 (1971) .
D. Dekkers ef al., Phys. Rev. 6.09 mta", KY, K~ pp
137, B962 (1965) 6.72
A. N. Diddens ef al., Nuovo Cimento 6.12 Tt ", K*, K~ pp
31, 961 (1964) 6.84
J. V. Allaby et al., Report No. CERN 6.15 ", K¥, K~ p,p
70-12, 1970 (unpublished)
W. H. Sims ef al., Nucl. Phys. B41, 7.43 L
317 (1972)
D. C. Carey et al., Phys. Rev. Lett. 10.2 70
33, 327 (1974); preceding paper, 11.1
Phys. Rev. D 14, 1196 (1976). 12.3
(The values of Vs from this refer- 13.4
ence were combined in this com- 14.6
pilation to diminish the size of the 15.7
data sample.) 16.9
18.2
19.5
20.7
21.8
23.1
24.6
25.7
27.0
J. W. Cronin et al., Phys. Rev. 194 o, Kt K~ p,p
D11, 3105 (1975) 23.8
27.4
P. Capiluppi et al., Nucl. Phys. 23.3 mt~, K*, K~ p,p
B79, 189 (1974) 30.6
44.6
53.0
62.7
B. Alper et al., Nucl. Phys. B87, 23.4 ", K*, K~ ,p,p
19 (1975) 30.6
44.6
52.8
63.0
M. G. Albrow et al., Nucl. Phys. 31.0 T, K*p
B73, 40 (1974) 45.0
53.2
62.6
M. G. Albrow et al., Nucl. Phys. 23.6 ™, K~.p
B56, 333 (1973) 30.8
45.0
53.2

62.8
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TABLE II (Continued)

Reference Js GeV Particle
M. G. Albrow et al., Nucl. Phys. 31.0 ?P
B54, 6 (1973)
M. Banner et al., Phys. Lett. 41B, 23.2 T, 77, p,p
547 (1972) 30.4
44.4
52.7
F. W. Biisser et al., Phys. Lett. 23.5 0
46B, 471 (1973), and F. W. 30.6
Biisser ef al., Phys. Lett. 55B, 44.8
232 (1975) 52.7
62.4
K. Eggert et al., paper submit- 23.6 70
ted to the Palermo Interna- 30.8
tional Conference on HEP, 45.1
Palermo, Italy, 1975 (unpub- 53.2
lished) 62.9

tency of the data set to be =+15%, but in many
cases they could not be reliably determined, and
were therefore not included.

B. Criteria for choice of data

The requirement for including data in the com-
pilation was the existence of a published table of
cross sections for the production process p+p—c¢
+anything, c¢=7*'° K* p, or . In only a few
instances were fits to the data used to generate
values of Edo/dp®. These exceptions were made
when there were no other data in the same kine-
matic range. A list of the data used is given in
Table II.

C. The finite-binning corrections

Each set of data was binned in 0.25-GeV/c units
of p, and in 0.1 units of xz or x;, and it was found
that the variation of Edo/dp® even for these small
bins was sizable. Therefore, it was necessary
to adjust the data to the center of each bin, both in
P, and in x5 or x,;. The value of the invariant
cross section for a given experiment entered into
the compilation for a fixed p, and x; was computed
by an expression of the form

do do . . o
E BF (p(i).ix%,s): <E 'd_;)zi (P.L;xR’ s)>g(,bl,,bj'.)
Xf(Xg, X&) 5 (13)

where pl, x} are the central values of the p, and
xg bins; (E(do/dp®)(p,,%r,s)) is the cross section
averaged over the p,, xz bins weighted by its sta-
tistical error. The functions f(Xg,x%) and g(p,,p?)
are the finite-binning corrections in x; and p,, re-
spectively. They shift the data average from the

statistical mean values Xz and p, to the centers of
the xz and p, bins (to x%,p$). The functions f and
g depend on the particle type, and g(p,,p?) was
also allowed to depend on x;. The explicit func-
tional forms of f(Xg,x%) and g(p,,pl) were deter-
mined by performing a rough fit to the binned, un-
corrected data. Since these corrections are typi-
cally $30%, a rough determination of these func-
tional forms was adequate to describe the data
over one bin width.

The form adapted for the f(Xg, x}) correcting
function is given by

0 \n
£ )= (14)

where the exponent # is a function of the detected
particle type.

The function g(p,,p?) used is given by

_ (ﬁlz +m?)*

G )

&(hy,p?)
where the power ¢ and the parameter m* showed
a slight dependence on x; but was roughly indepen-
dent of particle species.

Although the explicit determination of the vari-
ous parameters n,m?, ¢ was approximate, the re-
sulting error in these corrections was small. It
is estimated that the error in the parameter # is
+1, the error in ¢ is +1, and the error in m? is
+0.1 GeV?, giving rise to an error in the xz-cor-
recting function of

& +5%,

f

and in the p, -correcting function of

A
ggﬁiﬁ%.
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FIG. 2. The n* invariant cross section Edg/dp? for constant x5 or x, and for various constant values ofp, versus
the center-of-momentum energy Vs. The dotted line is to guide the eye through points of constant x, andp,. The
smooth line is the average value of Edo/dp® for constant xz and p, for Vs 210 GeV, and extends from the V's threshold
[calculated using Eq. (9), taking into account the finite bin widths in x; and p,] to Vs =70 GeV. The cases where there
was only one high-p, data point were not plotted. (a) xgz or x;,=0.05+0.05, (b) x5 or x,=0.25+0.05, (c) Xz or x;,=0.45

+0.05, (d) xz or x;=0.65+0.05, (e) xz or x;=0.85+0.05.

D. The rebinning in x,

The final stage of the data analysis was to com-
pute the invariant cross section for fixed Vs, p,,
with x, replacing x;. This was performed on the
compiled data for fixed xp,p,, by calculating for
each table entry the corresponding value of x,
and using a small correction to shift the x, binned
data to the middle of the x, bin. This small cor-
rection (30%) was performed by using the x; de-
pendence of Edo/dp® to shift to the appropriate xp
value corresponding to the middle of the x, bin.

IV. COMPARISON OF RADIAL SCALING WITH
FEYNMAN SCALING

The invariant cross sections for 7*°, K*, p,
and p are presented in Figs. 2 through 8 for con-
stant p, , xz and constant p,, x, versus Vs. These
graphs cover roughly 25% of the data compilation.
The qualitative features of this comparison be-
tween the radial scaling hypothesis and the Feyn-
man scaling hypothesis for these single-particle
inclusive cross sections are given below.

(1) In the low-x region (x < 0.2) radial scaling
is good to within the estimated +15%, experiment-
to-experiment systematic errors, from the s
threshold to the highest energy available at the
CERN ISR. On the other hand, above the corre-
sponding x, energy threshold, there is a very
large energy dependence of the cross sections.

In this low-x, region, the approach to the Feyn-
man scaling limit is from below, and in the case
of large p, (~3.0 GeV/c) the Feynman scaling
limit is not obtained even in the CERN ISR energy
range.”® If one restricts the comparison of these
two types of scaling to the Vs region above the
radial variable s threshold, one observes less
difference. In the same range of Vs, the s de-
pendence of Edo/dp® for fixed x, is slightly great-
er than that for fixed x5, and the cross section ap-
pears to rise to its asympotic limit at large v's.
Therefore, in the low-x (xz or x,) region, the
primary breakdown in Feynman scaling is below
the radial variable s threshold.

(2) For x5>0.20 there is a rapid approach to a
radial scaling after Vs passes above the xp thresh-
old. Furthermore, for Vs 210 GeV radial scaling
appears to be achieved for all p,.° The deviation
from radial scaling at low Vs is greater for larg-
er values of x;z. In all cases the radial scaling
limit is approached from above for increasing
Vs.

For x,>0.2, the approach to the Feynman scal-
ing limit is also from above. This is in contrast
to the situation at low x,, where the approach to
the scaling limit is from below. Since for a given
point on the Peyrou plot x,< xz, large x, implies
x,= xp, and therefore in this limit x; and x, scal-
ing are the same. Because of this transition from
an approach to scaling from below at small x, to
an approach from above at larger x,, there are
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values of x, and p, where Feynman scaling is
good at very low Vs (~5.0 GeV). For example,
Feynman scaling for 7*,x,=0.25 and p, =0.75
GeV/c is good to within experimental systematic
errors from Vs =5 GeV up to Vs =53 GeV. It ap-
pears that a kinematic threshold effect is super-
imposed on a dynamically induced decreasing
cross section. Thus the s dependences of the
cross sections, for fixed x,,p, and for fixed xp,
p., as they fall to their scaling limit, are differ-
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ent. In the former case, kinematic boundary ef-
fects distort the behavior.

A discussion of the various inclusive cross sec-
tions will now be given. Referring to Figs. 2
through 8 we see the following:

(a) n* (Figs. 2 and 3). For xz=0.05, radial scal-
ing is good down to the radial scaling threshold,
as is evident from Figs. 2(a) and 3(a). Feynman
scaling for x,=0.05 is evidently violated even for
small p,, and the invariant cross section for fixed
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FIG. 3. The 7~ invariant cross section Edo/dp? for constant x g or x; and constant values of p, versus Vs. (@) Xg Or
%;=0.05+£0.05, (b) xp or x;;=0.25%0.05, (c) xg or x;=0.45+0.05, (d) x5 or x;=0.65%0.05.
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%y and p, is rising with increasing vs. For xp

good for Vs 210 GeV, whereas Feynman scaling

may be violated by a factor of 10 from Vs ~27 to
53 Gev.

(b) #° (Fig. 4). For xz=0.05+0.05, there is
good evidence for radial scaling down to the radial
scaling threshold. Feynman scaling for x, in the
same range is again violated and the invariant
cross section rises from below for increasing vs .
For x;=0.25+0.05 radial scaling is good down to
Vs =10 GeV for all p,. For x,=0.25+0.05 Feyn-

=20.20 the radial scaling limit is always approached
from above for increasing vs, and by roughly Vs
210 GeV the scaling limit has been attained for all
py. The approach to the Feynman scaling limit
for x,>0.2 shows a turnover. For small p, (1
GeV/c) the approach to the scaling limit is from
above with increasing Vs, but for larger p, (21.25
GeV/c) the approach to the scaling limit is from
below. In all cases radial scaling appears to be
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man scaling over the same Vs region is violated what less s dependence than the corresponding
by approximately a factor of 2 for p, =1.25 GeV/c K- data. A comparison of the two scaling hypoth-
and by a factor of 4 for p, =2.25 GeV/c. Feynman eses in the same range of Vs for K* shows a sys-
scaling appears to hold for p, <0.75 GeV/c. For tematic s dependence for fixed p,, x, (especially
x5 >0.35 radial scaling is good to within experi- for K-), which is absent in the data for fixed xj.
mental errors for Vs >10 GeV, whereas for Xy (d) p (Fig. 7). The data at x5 =0.05+0.05 ex-
20.35 Feynman scaling is obeyed for only low p,. hibit good radial scaling down to the radial scal-
(c) K* (Figs. 5 and 6). The K* data show the ing s threshold, but for large p, ~3.75 GeV/c the
same qualitative features as the 7*° data. How- Feynman scaling hypothesis for x,=0.05 is vio-
ever, there is a difference between K* and K~. lated by almost an order of magnitude over the

The K* data for fixed p,, x, appear to have some- ISR energy range, and appears to be approaching
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the scaling limit from below. For small p,
(<0.75 GeV/c) Feynman scaling is approached .
from above. In general, the violations of Feynman
scaling are less severe for protons than for any
other particle. Atlow p,, high xz (0.65) the
radial scaling limit is approached from above,
and as for the other particles, this approach to
radial scaling is more pronounced for large rather
than small xg.

(e) p (Fig. 8). Radial scaling for small x;<0.2
appears to be satisfied for antiprotons down to
the radial scaling s thresiold. For larger xp
there are indications that the radial scaling limit
is approached from above, although the data are
incomplete. Feynman scaling is badly violated for
antiprotons even at very high energies. For ex-

ample, atp, =1.25 GeV/c, x,=0.05, the antipro-
ton invariant cross section rises by roughly a fac-
tor of 2 for the Vs range from 30 to 60 GeV.

In conclusion, for single-particle inclusive re-
actions use of the radial scaling variable x leads
to an earlier scaling of the invariant cross sec-
tions than use of the x, variable. Unlike the Feyn-
man scaling limit, tke vadial scaling limit is al-
ways approached from above for increasing s and
is veached by ¥s =10 GeV. This is consistent
with the s dependence of the total proton-proton
cross section at low Vs (~5 to 10 GeV). The Feyn-
man scaling limit is approached either from below,
from above, or is exact depending on the domin-
ance of phase-space effects, dynamic effects, or
the fortuitous cancellation of these two effects. At
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small x, (~0.05 to 0.20) there are large violations
of Feynman scaling owing to large changes in the
phase-space suppression, which for large p,
(especially for p and K~ data) remain even at ISR
energies.

V. INCLUSIVE CROSS SECTIONS IN THE RADIAL
SCALING REGION

Since all single-particle inclusive cross sections
for fixed x, and p, appear to scale for energies
Vs 210 GeV, there are sufficient data to examine

the systematic differences between particle species -

in this radial scaling region.

To illustrate the kinematic range in the radial
scaling region (Vs =10 GeV) covered by the com-
pilation, normalized Peyrou plots for each par-
ticle type are presented in Fig. 9. In these plots,
x,=2pr/Vs is plotted against x,=2p,/Vs for a
given x  value of a given particle. It is seen that
only in the case of 7° mesons [Fig. 9(c)] is a wide
range in x,,x, for a given x, covered.! For the
other particles, most of the data for large x are
concentrated either in the forward direction or
near 90°.

It is of particular interest to compare the de-
pendence of E do/dp® on p, for constant x and on
x for constant p,. We make this comparison for
eachdetected particle in the single-particle inclusive
reactions: p+p—(7*'° or K* or p or ) + anything.

(a) The p, dependence of E do/dp® for constant
X p is displayed in Fig. 10 for each of the single-
particle inclusive reactions listed above. These
graphs were generated by projecting on the p,
axis all of the data in the particle compilation for
a given constant value of x,. A separate point is
plotted for each Vs value in the table above 10

GeV. Referring to these figures, it is noticed that
the invariant cross section for p, = 1.5 GeV/c for
all particles becomes steeper for increasing p,

as x, increases. Furthermore, the slope of
Edo/dp® versus p, at low p, decreases for in-
creasing x,. This p, dependence of E do/dp*® can
be parameterized by the following universal form,
applicable to all particles and at all xp:

do A

E———17—~2—. 16
E“JEE X R = constant v(1+pl m)q ( )

A minimum-¥? fit was performed on the data to
determine the values of the parameters A
(mb/GeV?), m? (GeV?/c?), and g for each particle
in each slice in x;. These parameters are pre-
sented in Table III. It is evident that for low xp
and small p, the largest invariant cross section
is for 7*. Then 77, 7°, K*, K~, p, and p respec-
tively follow in order of decreasing magnitude.°
At'large X g, the proton inclusive cross section

“dominates because of leading-particle effects.

The fit parameters m? and ¢ for mesons display
an interesting similarity. The evident general
trend of the parameter m? is to grow from ap-
proximately 0.3 GeV?/c? at x,~ 0.05 to roughly
1.5 GeV®/c? at x,~0.55. This growth in m? with
increasing x is an expression of the flattening at
low p, of Edo/dp® with increasing x,. The fit
parameter g shows the general trend of growing
for increasing x, from approximately 3 at small
x = 0.05to roughly 6 at x, >~ 0.55. The m?and g pa-

‘rameters from the fits to the p and p invariant cross

section show this same behavior with increasing

xgr. However, m?for protons and antiprotons grows
from~1.0(GeV/c)?atxp~0.05to~2.0(GeV/c)?at
x5 =~0.55 and is therefore generally larger than
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the value of m® for mesons. The parameter g for
protons and antiprotons is also different from
mesons: ¢ increases from roughly 4 at x5 ~0.05
to 8 at x5 ~0.55 and is therefore systematically
larger than the corresponding values for mesons.
A check was made to ensure that this general
behavior of the parameters m? and ¢ is not a con-
sequence of relative normalization errors among
various experiments. A fit to only the 7° data of
Carey et al.! showed the same general behavior.
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To verify that the trend is not due to an increasing
p, range with increasing x,, additional fits were
made with cuts in the p, range to constrain it be-
tween 0.5 =p, =2.25 GeV/c for 7 and for p, =2.25
GeV/cfor 7°. The calculated parametersA, m? and
q for this test were found to be consistent with the
values from the unconstrained fits.

It is interesting to note that in the limit as x
-0 (or equivalently, p, fixed as Vs - =) the ex-
trapolated form of the invariant cross section for
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_FIG. 8. The antiproton invariant cross section Edo/dp3 for constant Xp or x and constant values of p L versus Vs.
(@) x5 or x;=0.05+0.05, (b) xg or x;,;=0.25+0.05, (c) x5 or x;;=0.45+0.05, (d) x or x;=0.65%0.05.
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p+p—p+X (g)

FIG. 9. The normalized Peyrou plots showing the kinematic region covered for each particle species in the data com-
pilation. The forward-backward symmetry of p-p collisions was used to map —|x ;| to +|x,|. The quarter circles are
lines of various constant values x5. (a) Normalized Peyrou plot for 7%, (b) for 7=, (c) for n°, (d) for K*, (e) for K,

) for p, (g) forp.

mesons is consistent with

. do\ , A

i )= o
This observed p, dependence seems to exclude the
constituent- interchange model,!! which predicts a
1/p,® behavior, and is closer to the 1/p,* depen-
dence postulated by Berman, Bjorken, and Kogut.'?
However, protons and antiprotons appear to be
more consistent with the form

. do A
Jim (E 2?’) ~ e p2/T07 (18)

giving a p, dependence of =1/p,® at large p,.

(b) The x, dependence of E do/dp® for constant
p, various particles in the radial scaling region of
Vs 210 GeV is shown in Fig. 11. It is seen that
the cross sections for all particles with the ex-
ception of protons at low p, fall as x5~ 1 for all
p.. To parameterize this x, dependence (for all
particles except protons), we performed a min-
imum-y?Z fit of the invariant cross section to the
theoretically motivated form*!*

do
e ~B(l-xg)" (19)
dp fixed Py B

vhere B and n are free parameters. Reasonable
fits were obtained in all cases. The resulting
values of B (mb/GeV?) and #» are tabulated in Table

IV. The particles listed, in rough order of in-
creasing n, are p,K*,n*, 7", 7°,K~,p. To check that
these fits were independent of the x interval, a
cut in ¥, was made for 7° data constraining 0.15
=x,=0.35, and a minimum-y?® fit was again per-
formed. Within errors, the fit parameters were
the same.

The power of #» for a fixed p,, in the preceding
parameterization of E do/dp® lpu reflects, per-
haps, the quantum-number conservation require-
ments (charge, baryon number, strangeness,
etc.) in the production of particle c¢.!* These re-
quirements may be calculated from the exclusive
limit of the invariant cross section, since the un-
detected particles in the inclusive experiment must
contain the same quantum numbers as the ex-
clusive limit.? It appears that the more a given
single-particle inclusive reaction is forbidden
(i.e., more quantum numbers to balance in the
production of particle ¢), the larger is the value
of the exponent 7.

VI. SUMMARY

We have parameterized the single-particle in-
clusive production cross sections in terms of s,
p., and the radial scaling variable x,

di
E =T (5:0.,%5)

where xp=E*/E},. .
We have found that above Vs ~ 10 GeV, all of
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cross section.
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TABLE III. The fit parameters A (mb/GeV?, m? (GeV?%/c?), and q defined in Eq. (16) in the text for various inclu-
sive reactions in the radial scaling region:Vs 2 10 GeV are tabulated. These parameters describe the p, dependence
of the single-particle inclusive cross sections for constant xg.

%g * ™ w0 K* K- b b
005 A 51.460+£2.90 45.22042.10 19.210+0.060  4.820+ 1,630 2.180%0.43  2.95:0.220 0.960 0,080
m?  0.298+0.02  0.348+0.02  0.358+0.001  0.285+£0.070 0.538:0.09  1.00+0.095 1.680 0.200
q 3.390+£0.07 3.450+£0.06 3.230+0.005 2.717+0.140 3.210+0.16  4.25+0.190 4.840+0.300
0.15 A 25.150+£2.24 14.170+£0.50  5.330+0.030  2.139+0.320 1.080+0.09  3.62+0.130 0.547+ 0.030
m?  0.523+0.04 0.610+0.03  0.908+0.001  0.836+0.110 0.757+0.07 1,13%0.040 1.150+ 0.070
q 4.010+0.09 4.080+£0.07 4.357+0.004  4.020+0.180 3.890+0.12  4.85+0.070 4.490+0.110
0.25 A  10.660+1.15 7.910+0.29  2.070+0.006  0.791+0.150 0.535+0.07 5.84+0.300 0.165+ 0.006
m? 0.873+£0.09  0.726+0.05 1.332+0.001  1.620+0.360 0.990+0.18  1.88+0.120 2,550 0.040
q 5.060+0.17  4.650+0.15  4.953+0.002  5.610+0.460 4.780+0.31  7.06+0.200 7.180 0.060
[0.35 A 5.970+0.53  2.740+0.09  0.993+0.005 0.536+0.080 0.135+0.02  8.45+0.430 0.038+0.002
‘ m? 1.198+0.07 1.320£0.06  1.569+0.002  2.070+0.260 2.280+0.36  1.91+0.070 4.290 0.060
q 5.840+0.10  5.740+0.09  5.231+0.004  6.350+0.260 6.750+0.37  7.59+0.110 9.040+0.070
045 A 3.100+0.36  1.790+0.11  0.770+0.020  0.365+0.033 0.070+0.01  9.18+0.550 0.015+ 0.004
m?  1.330+0.09 1.109+0.07 1.410+0.040 1.895+0.120 2.250+0.33  1.91+0.070 2.500% 1.270
q 6.070+0.12  5.640+0.10  5.200+0.020  6.340+0.130 6.890+0.32  7.81+0.110 7,080+ 1.510
0.55 A 1.427+0.14  2.490+0.38  0.420:0.040  0.319+0.070 13.05+ 0,400
m?  1.460+0.11  0.590+0.05 1.730+0.120  1.630+ 0.280 2.02+0.010
q 6.390+0.19  5.220+0.07 5.860+0.170 6,390+ 0.310 8,48+ 0,040
0.65 A 0.821+0.05 0.210+0.020  0.134+0,011 12.11+0.160
m?  1.520+0.07 2.110+£0.030  2.025+0.160 2.28+0.010
q 6.680+0.14 6.529+0.040  7.070+ 0.290 9,24+ 0,030
0.75 A 0.210+0.03 0.279+0.100  0.052+0.012 10.47+ 0.170
m?  3.010+0.94 1.600+0.500  3.390+ 1.250 2,55+ 0.014
q 10.700+ 2.39 6.200+0.700  10.900+ 2.900 10.13+ 0,040
0.85 A 0.370+0.37 10.20+ 0.600
m?  0.330+0.21 1.24+0.030
q 3.740+0.44 6.47+0.130
095 A 18.30+ 0.600
m? 2.59+ 0.030
q 13.10+ 0.100

the cross-section data are consistent with radial
scaling for all p,:

d
EEZ)% =f(p1.sxn) .

Below Vs =10 GeV and for ¥, = 0.2, there is a
rapid approach to the scaling limit from above.
For x,<0.20, there is good radial scaling down
to the threshold.
Feynman scaling is achieved at a larger value

of Vs, where the suppression due to the presence

of the kinematic boundary is sufficiently small.
In the cases of large p,, (or even small p, for p
and K™), this s dependence is still present even in

the ISR energy range.

Parameterizing the single-particle inclusive
cross sections in terms of p,, x5, and Vs, we
find in the radial scaling region Vs =10 GeV that
the shape of the p, dependence of E do/dp® for all
particles for constant x; as a function of x

shows the same general behavior.

From the min-

imum-y? fits to the invariant cross section to the

form
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FIG. 11. The x dependence of the invariant cross section Eda/ dp3 for various constant values of p, in the radial
scaling region: Vs 210 GeV. The solid lines are the function B(lL —xp)", where B and z are determined from the mini-
mum-x? fit to Edo/dp3|¢ P> and are given in Table IV. (a) 7* invariant cross section, (b) 7~ invariant cross section,
(c) 7% invariant cross section, (d) K* invariant cross section, (e) K~ invariant cross section, (f) p invariant cross sec-
tion (the dotted line us to guide the eye, since no fit of the form B(1 —x5)" was performed), (g) § invariant cross sec-
tion.
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E do B A
Ep_? X R fixed (1+p1. ; m )q ’
we find that

(1) the parameter m?® grows with increasing x,
for all particles and is generally larger for pro-
tons and antiprotons than for mesons,

(2) the parameter ¢ grows with increasing x,
for all particles,

(3) the parameter A, which reflects the overall
magnitude of the invariant cross section, decreases
for increasing x, for 7*, 7", 7°, K*, K", p (for pro-
tons, A increases with increasing x),

(4) in the limit of x5~ 0, the invariant cross
section for meson production is consistent with

. do 1
(=)
and for protons and antiprotons (although the

errors in the p cross section are large) with the
form

. do 1
R <Edp§> AR

The shape as a function of x; of the single-par-
ticle inclusive cross section for constant p, shows
a very strong dependence on the species of the

detected particle. In particular, the more for-
bidden the production of the detected particle

is, the steeper the slope of Edo/dp® |, . . versus
X Parameterizing the invariant cross section for
fixed p, in the form

-— n
Ed-pa_ Py fixed B(l—xR) ’
we find that the parameter » for the various par-
ticles is given by the following increasing order:
p,K*,7*,7°,7",K~,p. Only protons at low p, show
an increasing E do/dp® versus increasing ¥, for
p, fixed.

In conclusion, the most important result of this
investigation is that all data for hadron production
in proton-proton collisions exhibit radial scaling
at all p, for Vs = 10 GeV.

Expressing single-particle inclusive cross sec-
tions in terms of p, and x, allows a simple and
systematic behavior to be revealed for particle
production.
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