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An analysis of an extensive sample of the world's data has been performed to test the hypothesis of radial

scaling. We have studied the inclusive reactions p+ p~{m+' or K+ or p or p)+ anything to determine the
behavior of the invariant cross section as a function of p„x„=E~/E~, „, the radial scaling variable, and s.
The data cover a range in p, from 0.25 to -6.0 GeV/c and a range in Q s from 3.0 to 63 GeV. For small

x„and all available p~ the single-particle inclusive cross sections for the reactions studied scale to a good
approximation for all g s, even down to the kinematic threshold. For large xR, the single-particle inclusive

cross sections for increasing Q s show a rapid approach to the scaling limit from above. In these cases the

scaling limit is always approached by Q s = 10 GeV. Thus, data for all particles to a good approximation
exhibit radial scaling at all available p, and x„over the CERN ISR energy range, A comparison of radial

scaling with Feynman scaling is given. It is shown that in the Feynman case the cross sections for small xi
{x& ——p~~~ /p~, „) approach their scaling limit from below, and that the approach to the scaling limit is slower

than is exhibited for the case of small x„. The systematic differences among the inclusive cross sections of
various particles are discussed in the range of gs where radial scaling has been shown to be valid. In
particular, the p, and x„distributions of E der/dp' are examined.

I. INTRODUCTION

In a separate paper we presented data on inclu-
sive n' production from PP collisions at the Fermi
National Accelerator Laboratory. ' Here we pre-
sent an analysis and interpretation of these w'

data. In addition, we examine other single-par-
ticle inclusive cross sections in order to search
for systematics in their behavior.

To study the single-particle inclusive experi-
ments, a set of variables should be chosen such
that the single-particle inclusive cross section
displays the simplest behavior with respect to
energy, P~, the center-of-momentum (c.m. ) frame
angle, etc. It is natural to choose a parameteriza-
tion of the inclusive cross section which is mean-
ingful in the exclusive limit. ' %e therefore define
the scaling variable

where 8*=the energy of the detected particle in
the center-of-momentum frame, and E* =the
maximum energy kinematically available to the
detected particle in the c.m. frame. The range
of x„ is 0&x„~j. for all P&, and the case x& = j.
corresponds to the exclusive limit. Since this
variable is independent of the center-of-momentum
angle and depends on only the radial distance from
the kinematic boundary, we have called it the
"radial" scaling variable.

Using this variable x„, the proton-proton single-

particle inclusive cross section can be expressed
as a function of three variables, s, P~, and x~,

do'
, =f(&, Pi, &s),

dp

where s is the square of the total c.m. energy. In
this work we study whether the invariant cross
section at sufficiently high energy scales, that is,
becomes independent of s. It is shown that this
scaling is reached at a lower s than obtained with
the use of the Feynman variable x~~.

In an analysis of a single-~ inclusive experi-
ment in P-P collisions, ' it has been shown that for
sufficiently high Ws (Ws& 10 GeV) there is radial
scaling

This scaling is observed for 0.3 GeV/c «P~ «3.0
GeV/c, && GeV «P~ «27 GeV, and for center-of-
mass angle 20' & 8* &150'. It is therefore inter-
esting to test this new form of scaling over as wide
a kinematic range as possible for other particles
produced in P-P collisions. %e shall discuss the
reactions

P+P-(m'' or K' or P or P)+anything .
In Sec. II, the variable x„ is discussed and it is

compared with the Feynman scaling variable x~~.

Section III is a discussion of the method of data
analysis. A comparison of radial scaling with
Feynman scaling is given in Sec. IV. Section V
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is a presentation of the various systematic differ-
ences among single-particle inclusive cross sec-
tions for various particles in P-P collisions in the
radial scaling region. A summary is given in Sec.
VI.

TABLE I. For a given inclusive reaction, the corre-
sponding exclusive reaction and the minimum mass Mz
are tabulated. The mass Mz is determined by the mass
of the undetected particle system in the exclusive limit
reaction.

II. THE xg UARIABLE

In an analysis of single-m' inclusive production, '
it has been shown that the s dependence and the
laboratory angular dependence of the invariant
cross section could be succinctly described by
writing the invariant cross section in terms of
the transverse momentum Pj and the variable x„.
This variable may be written in Lorentz-invariant
form as

Inclusive reaction

p +p x+ + anything

p +p & +anything
p +p x + anything

p +p X++anything

p +p E +anything
p+p p+ anything

p +p p + anything

Exclusive reaction

p +p p+n+n'+
p+p~p+p+'F++ x
p+p p+p+&
p +p —A'+p+X'
p +p p +p+K++X
p +p-p+p
p +p p+p+p+p

1.88 GeV/c 2

1.88 GeV/c~
2.05 GeV/c2
2.37 GeV/c2
0.94 GeV/c 2

2.81 GeV/c2

8
max

1-Mz'/s + M, '/s
I -Mx'/s +M, '/s ' (4)

where M~=the invariant mass of the unspecified
particle(s) (undetected), Mx =the minimum pos-
sible 1II& value, M, =the rest mass of the detected
particle, and s =the square of the total energy in
the center-of-momentum frame. The variable x„
has been used by several authors and was probably
first used by Kinoshita and Noda' in 1971, although
apparently it had been discussed by Feynman' in
1969.

The maximum energy (E*,„) kinematically avail-
able to the detected particle c in the inclusive re-
action

of only the longitudinal momentum component
means that the variable x(~ is not related to the
location of the kinematic boundary at finite P~.
One might, therefore, expect the invariant cross
section to have an s dependence for fixed P&, owing
entirely to kinematic effects. In particular, one
would expect E «/dP' for fixed P~ and x~~= 0 to
rise with increasing Ws as the point in the x~~-x~

plane at which the measurement is being made
moves further from the kinematic boundary.
Therefore, in the region of the center-of-mass
angle e*= w/2, x~~ is clearly not the best variable
for studying scaling and the systematics of single-
particle inclusive production. Other frequently
used variables such as rapidity,

P +P c + anything

is determined by s, the square of the total energy
in the c.m. frame, by the mass M, of the detected
particle c, and by M&, the minimum mass of the
undetected particle system consistent with quan-
tum number conservation (charge, strangeness,
baryon number, etc. ). For a single-particle in-
clusive reaction this minimum value of M, cor-
responds to the exclusive limit. A compilation of
the minimum value of j/t~ and the exclusive limit
reactions is given in Table I. We can express
E* as

Mx'+Mc'
2Ws

Since x„ is a ratio of total energies, the value of
x& at the particle e production threshold is 1, and
for fixed, finite E~, x& =0 only at infinite 8.

The radial scaling variable x& is distinguished
from the Feynman' variable x~, =P,*, /P*,„=—2p,*, /v s
in that the detected particle's total energy is scaled
by its maximum value, rather than its longitudinal
momentum by the maximum momentum. The use

and xgq

2PJ
xJ

also are not related to the location of the kinematic
boundary, and suffer the same defects. On the
other hand, the expression of the invariant cross
section in terms of the variables x~ and P& allows
the s dePendence of the cross section to be studied
at a fixed distance from the kinematic boundary

It is instructive to contrast radial scaling with
Feynman scaling by examining the methods by
which single-particle inclusive measurements are
made. In both cases, consider the invariant cross
section at a fixed P& and compare, for example,
x~~ =0.3 to x~ =0.3. Figure 1 shows the curves as
a function of s along which these measurements
are made in both cases. This plot is made in the
plane of x~ =2P~/vs and xq=2P~*, /v s. In the limit
of s -~ we see that radial scaling and Feynman
scaling are identical hypotheses:

Ed 3
=f(Pi xs)=f(Pi, xi') -~

dp
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I.O

p~ gs~
Pmax (1 x 2)112

Hence, in the limit x~~ =0 and P~ fixed,

s~ =2p

(10)

0 I.O

FIG. 1. The plot shows the lines in the center-of-mo-
mentum frame along which measurements are made to
study scaling in the case of fixed Feynman (F ) variable

x~~ and fixed radial (R) variable x&.

The limit x~~ =1 corresponds to v s = ~ for fixed p~.
Thus for a given xI~ or x~ and fixed P~ the thresh-
old energy in the two cases is quite different.

We wish to compare the s dependence of the in-
variant cross section for fixed x~, P~ with the in-
variant cross section for the same numerical value
of x]~ at the same value of P~. In this way the two
cross sections will approach the same asymptotic
limit. We are interested in this approach to the
asymptotic limit. There is clearly some point
at which the thresholds occur at the same energy
Isr. This happens for (using high-energy approxi-
mations)

However, the finite-s behavior is quite different
in the two cases. In the case of Feynman scaling
the point at which the measurement is made moves
away from the kinematic boundary. A large s-de-
pendent increase in the cross section due to in-
creasing phase space is thereby introduced. On
the other hand, measurements at fixed x„require
that the fractional distance to the kinematic bound-
ary remain constant. In this way, it appears that
the s dependence of the dynamics may be more di-
rectly probed.

Another property of the variable x„which dis-
tinguishes it from the Feynman variable x~~ is its
totally different s -threshold behavior. The s
threshold for a given value of pj is defined as the
minimum value of s which can have the specified
value of x& or x~~. For the x~ variable, this thresh-
old is given by

s, =2Z +Qx2-m, 2

+2 [7'2+ T(Xi~'-~.2)]",
where

p~'+Mc'
2xg

Hence for the limit x~=0, the s threshold sz is ~,
for a fixed value of P~. The limit x„=1 (the ex-
clusive limit) corresponds to a finite sr for finite
p&. Comparing the s-threshold values at these
two extreme values of x& =0 and x„=1with the
corresponding s thresholds for the same extremes
for x~~, there are very great differences. The s
threshold for the Feynman variable x~~ is deter-
mined by the kinematic boundary, so letting
P* be the maximum possible momentum of the
particle in the c.m. frame, then,

2' 2pl
(1 x 2)l /2 & (12)

III. THE DATA ANALYSIS

A. The object of the data analysis

The object of the data analysis is to convert the
data from each experiment into a table of invariant
cross sections as a function of Ws for given values
of pj and x& or p~ and x]]. We divided the
range of x& into 10 bins of 0.1 units, ranging from
0.0 to 1.0, and the P~ range from 0.125 to 10.125
GeV/c was divided into 40 bins of 0.25 GeV/c.
The variable v s was not binned, and therefore
each value of A of a given experiment provided
a unique entry into the compilation.

Since a given datum generally did not fall at
exactly the middle of the P~, x&, or x~~ bin, a
small adjustment was performed to move it to the
center of the bin. This procedure is described in
more detail later. Only statistical errors were
used to denote the experimental uncertainty of each
data point. The experiment-to-experiment sys-
tematic errors were estimated from the consis-

i.e., x=xs =x~|=1/v 2. Hence for x„=x~~&1/W2, the
threshold for the radial variable x& lies at a higher
Ws than the threshold for the Feynman variable
x~~, whereas the opposite is true for x„=x~~&1/v 2.

Finally, it should be emphasized that Edu/dP'
is always finite at the s threshold for fixed x& and

P~, but is zero (excluding P-P elastic scattering)
at the s threshold for fixed x~~ and p&. This means
that the cross section for fixed xi'& Pi must rise
over some range in Ws, owing to purely kinematic
effects. This s dependence seems to be a major
cause for the observed fixed x]~, P& behavior of
inclusive cross sections.
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TABLE II. Listed are the references used in this data compilation. The values of Ds and
the particle type for each reference are tabulated.

Reference v's {GeV) Particle

J. T. Reed et a/. , Phys. Bev.
168, 1495 (1968)

W. J. Hogan et aE. , Phys. Rev.
166, 1472 (1968)

A. C. Melissinos et al. , Phys. Rev.
128, 2373 (1962)

E. R. Gellert, thesis, Report No.
LBL-749, 1972 (unpublished)

V. Blobel et aL. , DESY Report No.
73j76, 1973 (unpxblished).

C. %. Akerlof et a/. , Phys. Rev.
D 3, 645 (1971)

D. Dekkers et a&., Phys. Rev.
137, 8962 (1965)

A. N. Diddens et aE., Nuovo Cimento
31, 961 (1964)

J. V. Allaby et al. , Report No. CERN
70-12, 1970 (unpublished)

W. H. Sums et al. , Nucl. Phys. aCX,
317 (1972)

D. C. Carey et a&., Phys. Rev. Lett.
33, 327 (1974); preceding paper,
Phys. Bev. D 14, 1196 {1976).
(The values of Ws from this refer-
ence were combined in this com-
pilation to diminish the size of the
data sample. )

J. %. Cronin et al. , Phys. Bev.
D 11, 3105 (1975)

P. Capiluppi et a~. , Nucl. Phys.
879, 189 (1974)

B. Alper et al. , Nucl. Phys. B87,
19 (1975)

M. G, Albrow et al. , Nucl. Phys.
B73, 40 (1974)

M. G. Albrow et aE. , NucI. Phys.
B56, 333 (1973)

2.83
2.98
2.88
2.99
3.03
2.98

3.78

4.93
6.84
5.02

6.09
6.72
6.12
6.84
6.15

7.43

10.2
11.1
12.3
13.4
14.6
15.7
16.9
18.2
19.5
20.7
21.8
23.1
24.6
25.7
27.0

19.4
23.8
27.4
23,3
30.6
44.6
53.0
62.7
23.4
30.6
44.6
52.8
63.0
31.0
45.0
53.2
62.6
23.6
30.8
45.0
53.2
62.8

~+,x,E+,X,p,p

m+,x,K+, K,p,p

x+,x, X+,K,p,p

m+, m, E+,K,p,p

~+,n-, K', K-,p,p

x+, , X+,E,p,p

w+, m, X+, fC,p ji

x+, E+,p

vr, X",p
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Heference

TA]3LE II (Continued)

vs GeV Particle

M. G. Albrow et al. , Nucl. Phys.
B54, 6 (1973)

M. Banner et al. , Phys. Lett. 41B,
547 (1972)

F. W. Busser et aE. , Phys. Lett.
46B, 471 (1973), and F. W.
Busser et aL. , Phys. Lett. 55B,
232 (1975)

K. Eggert et al. , paper submit-
ted to the Pal.ermo Interna-
tional Conference on HEP,
Palermo, Italy, 1975 (unpub-
lished)

31.0

23.2
30.4
44 4
52.7
23.5
30.6
44.8
52.7
62.4
23.6
30.8
45.1
53.2
62.9

7l 9P 9P

tency of the data set to be =+ 15/&, but in many
cases they could not be reliably determined, and
were therefore not included.

B.Criteria for choice of data

The requirement for including data in the com-
pilation was the existence of a published table of
cross sections for the production process P+P- c
+anything, c=n'', K', P, or P. In only a few
instances were fits to the data used to generate
values of Edo/dp'. These exceptions were made
when there were no other data in the same kine-
matic range. A list of the data used is given in
Table II.

(1-xs}"
f(xn xu)= (,,+ —xg)

(14)

statistical mean values x& and P, to the centers of
the xn and P~ bins (to xsP, PP~). The functions f and

g depend on the particle type, and g(P, P~) was
also allowed to depend on x&. The explicit func-
tional forms of f(x„,xR} andg(P, P'} were deter-
mined by performing a rough fit to the binned, un-
corrected data. Since these corrections are typi-
cally 630%, a rough determination of these func-
tional forms was adequate to describe the data
over one bin width.

The form adapted for the f(x„,xPn) correcting
function is given by

where the exponent n is a function of the detected
particle type.

The function g(P~, PP~) used is given by

C. The finite-binning corrections

Each set of data was binned in 0.25-6eV/c units
of p~ and in 0.1 units of x~ or x~~, and it was found
that the variation of Eda'/dP' even for these small
bins was sizable. Therefore, it was necessary
to adjust the data to the center of each bin, both in

Pg Rlld 111 xs 01' xI . Tile VRllle of tile 1IIvRI'1Rnt

cross section for a given experiment entered into
the compilation for a fixed P~ and x„was computed
by an expression of the form

(P, '+ m')'
g(PJ- IPJ.

(P p2 2)Q

where the power q and the parameter rn' showed
a slight dependence on x~ but was roughly indepen-
dent of particle species.

Although the explicit determination of the vari-
ous parameters n, m', q was approximate, the re-
sulting error in these corrections was small. It
is estimated that the error in the parameter n is
+1, the error in q is + 1, and the error in nz' is
k 0.1 GeV', giving rise to an error in the x&-cor-
recting function of

xf(x„,x„'), (13)

o o d.'V P, p
3 (PJ Pl xIIP s) E

d 3 (Pl 01 xB) s) g(PJIPJ). .

where P~, x~ are the central values of the P„and
xs bins; (E(do/dP')(P~, x„,s)) is the cross section
averaged over the P~, x~ bins weighted by its sta-
tistical error The func. tions f (xR, xylo) and g(P~, P~)
a.re the finite-binning corrections in x~ and p~, re-
spectively. They shift the data average from the

and in the P~-correcting function of

hg—=+6/p.
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FIG. 2. The v+ invariant cross section Edo/dP3 for constant xs or x~~ and for various constant values ofP& versus
the center-of-momentum energy Ws. The dotted line is to guide the eye through points of constant x

~~
and p&. The

smooth line is the average value of Edo/dp~ for constant xs and p~ for v s ~ 10 GeV, and extends from the v s threshold
[calculated using Eq. (9), taking into account the finite bin widths in xz and p&) to v s = 70 GeV. The cases where there
was only one high-p~ data point were not plotted. (a) x& or x~~=0.05+0.05, (b) x& or x~~=0.25+0.05, (c) xz or +~~=0.45
+0.05, (d) xz or x~~ =0.65+0.05, (e) x+ or x(I —-0.85+0.05.

D. The rebinning in g&

The final stage of the data analysis was to com-
pute the invariant cross section for fixed vs, P~,
with x~, replacing x„. This was performed on the
compiled data for fixed x&, P~, by calculating for
each table entry the corresponding value of x~~

and using a small correction to shift the x,~
binned

data to the middle of the x~~ bin. This small cor-
rection (&30%) was performed by using the x„de-
pendence of Ed@/dp' to shift to the appropriate x„
value corresponding to the middle of the x~~ bin.

IV. COMPARISON OF RADIAL SCALING WITH

FEYNMAN SCALING

The invariant cross sections for m'o, g', P,
and P are presented in Figs. 2 through 8 for con-
stant p~, xz and constant p~, x,

~

versus vs. These
graphs cover roughly 25% of the data compilation.
The qualitative features of this comparison be-
tween the radial scaling hypothesis and the Feyn-
man scaling hypothesis for these single-particle
inclusive cross sections are given below.

(1) In the low-x region (x ~ 0.2) radial scaling
is good to within the estimated a 15%, experiment-
to-experiment systematic errors, from the s
threshold to the highest energy available at the
CERN ISR. On the other hand, above the corre-
sponding x~~ energy threshold, there is a very
large energy dependence of the cross sections.

In this low-x„region, the approach to the Feyn-
man scaling limit is from below, and in the case
of large p, (-3.0 GeV/c) the Feynman scaling
limit is not obtained even in the CERN ISR energy
range." If one restricts the comparison of these
two types of scaling to the vs region above the
radial variable s threshold, one observes less
difference. In the same range of Ws, the s de-
pendence of Edcr/dP' for fixed x„ is slightly great-
er than that for fixed x„, and the cross section ap-
pears to rise to its asympotic limit at large Ws.
Therefore, in the low-x (x„or x,~) region, the
primary breakdown in Feynman scaling is below
the radial variable s threshold.

(2) For xz &0.20 there is a rapid approach to a
radial scaling after Ws passes above the x„ thresh-
old. Furthermore, for Vs F10 GeV radial scaling
appears to be achieved for all P~.' The deviation
from radial scaling at low Ws is greater for larg-
er values of x„. In all cases the radial scaling
limit is approached from above for increasing
Ws.

For x~~&0.2, the approach to the Feynman scal-
ing limit is also from above. This is in contrast
to the situation at low x„, where the approach to
the scaling limit is from below. Since for a given
point on the Peyrou plot x,~~x&, large x~, implies
x~~=x„, and therefore in this limit x& and xI, scal-
ing are the same. Because of this transition from
an approach to scaling from below at small x,~

to
an approach from above at larger x,t, there are
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values of xII and p J where Feynman scaling is
good at very low vs (-5.0 GeV). For example,
Feynman scaling for w', x,

~

=0.25 and P~ = 0.75
GeV/c is good to within experimental systematic
errors from vs =5 GeV up to Ms=53 GeV. It ap-
pears that a kinematic threshold effect is super-
imposed on a dynamically induced decreasing
cross section. Thus the s dependences of the
cross sections, for fixed xII, p, and for fixed x&,
P, as they fall to their scaling limit, are differ-

ent. In the former ease, kinematic boundary ef-
fects distort the behavior.

A discussion of the various inclusive cross sec-
tions will now be given. Referring to Figs. 2
through 8 we see the following:

(a) m' (Figs. 2 and 3). For xz =0.05, radial scal-
ing is good down to the radial scaling threshold,
as is evident from Figs. 2(a) and 3(a). Feynman
scaling for xII=0.05 is evidently violated even for
small pJ, and the invariant cross section for fixed
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xll and p~ is rising with increasing Ws. For x„
«0.20 the radial scaling limit is always approached
from above for increasing vs, and by roughly Ws

~10 GeV the sealing limit has been attained for all
P~. The approach to the Feynman scaling limit
for x„&0.2 shows a turnover. For small P~ (&1
GGV/c) the approach to the scaling limit is from
above with increasing vs, but for larger p~ (a 1.25
GeV jc) the approach to the scaling limit is from
below. In all cases radial scaling appears to be

good for vs a10 GeV, whereas Feynman scaling
may be violated by a factor of 10 from Vs -2'7 to
53 GeV.

(b) vc (Fig. 4). For x„=0.05+0.05, there is
good evidence for radial scaling down to the radial
scaling threshold. Feynman sealing for g tt in the
same range is again violated and the invariant
cross section rises from below for increasing Ws.
For x„=0.25+ 0.05 radial scaling is good down to
Vs =10 GeV for all p, . For x„=0.25+0.05 Feyn-
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man scaling over the same Vs region is violated
by approximately a factor of 2 for p~ =1.25 GeV/c
and by a factor of 4 for p =2.25 GeV/c. Feynman
scaling appears to hold for p~ SO.V5 GeV/c. For
g„~0.35 radial scaling is good to within experi-
mental errors for vs &10 GeV, whereas for x~~

~O.35 Feynman scaling is obeyed for only low p».
(c) X' (Figs. 5 and 6). The K' data, show the

same qualitative features as the m'~ data. How-
ever, there is a difference between K' and E .
The E' data for fixed pJ, x„appear to have some-

what less s dependence than the corresponding
data. A comparison of the two scaling hypoth-

eses in the same range of vs for K' shows a sys-
tematic s dependence for fixed P~, x,

~
(especially

for K ), which is absent in the data for fixed x„.
(d) p (Fig 7). The .data at «0.05*0 05 ex-.

hibit good radial scaling down to the radial scal-
ing s threshold, but for large P~ = 3.75 GeV/c the
Feynman scaling hypothesis for @~~=0.05 is vio-
lated by almost an order of magnitude over the
XSR energy range, and appears to be approaching
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the scaling limit from below. For small pJ
(~0.75 GeV/c) Feynman scaling is approached
from above. In general, the violations of Feynman
scaling are less severe for protons than for any
other particle. At low p~, high xz (s0.65) the
radial scaling limit is approached from above,
and as for the other particles, this approach to
radial scaling is more pronounced for large rather
than small x~.

(e) P (Fig. 8). Radial scaling for small xsS0.2
appears to be satisfied for antiprotons down to
the radial scaling s thres';old. For larger x~
there are indications that the radial scaling limit
is approached from above, although the data are
incomplete. Feynman scaling is badly violated for
antiprotons even at very high energies. For ex-

ample, at p~ =1.25 GeV/c, xe=0.05, the antipro-
ton invariant cross section rises by roughly a fac-
tor of 2 for the Vs range from SO to 60 GeV.

In conclusion, for single-particle inclusive re-
actions use of the radial scaling variable g~ leads
to an earlier scaling of the invariant cross sec-
tions than use of the x,I

variable. Unlike the Feyn-
man scaling limit, the radial scaling limit is al-
toays approached from above for increasing s and
is reached by Ws—=10 GeV This is .consistent
with the s dependence of the total proton-proton
cross section at low vs (-5 to 10 GeV). The Feyn-
man scaling limit is approached either from below,
from above, or is exact depending on the domin-
ance of phase-space effects, dynamic effects, or
the fortuitous cancellation of these two effects. At
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small x~~ (-0.05 to 0.20) there are large violations
of Feynman scaling owing to large changes in the
phase-space suppression, which for large p~
(especially for p and K data) remain even at ISR
energies.

V. INCLUSIVE CROSS SECTIONS IN THE RADIAL

SCALING REGION

Since all single-particle inclusive cross sections
for fixed x~ and P, appear to scale for energies
Ms ~ 10 GeV, there are sufficient data to examine
the systematic differences between particle species
in this radial scaling region.

To illustrate the kinematic range in the radial
scaling region (Ms ~ 10 GeV) covered by the com-
pilation, normalized Peyrou plots for each par-
ticle type are presented in Fig. 9. In these plots,
x„=2p,*, /Ws is plotted against x, = 2p, /v s for a
given x~ value of a given particle. It is seen that
only in the case of v' mesons [Fig. 9(c)] is a wide
range in x~, x, for a given x~ covered. ' For the
other particles, most of the data for large x~ are
concentrated either in the forward direction or
near 90'.

It is of particular interest to compare the de-
pendence of Ed@/dp' on p, for constant xs and on

x~ for constant p, . We make this comparison for
each detected particle in the single-particle inclusive
reactions: P+ P-(v ' or K or P or P) + anything.

(a) The P, dependence of Edo/dP' for constant
x~ is displayed in Fig. 10 for each of the single-
particle inclusive reactions listed above. These
graphs were generated by projecting on the p,
axis all of the data in the particle compilation for
a given constant value of x~. A separate point is
plotted for each v s value in the table above 10

GeV. Referring to these figures, it is noticed that
the invariant cross section for P, 2 1.5 GeV/c for
all particles becomes steeper for increasing P,
as x~ increases. Furthermore, the slope of
Edcr/dP' versus P, at low P, decreases for in-
creasing xs. This p, dependence of Edo/dp' can
be parameterized by the following universal form,
applicable to all particles and at all x~:

dv A

dP „„,, (1+P,'/m')' '

A minimum-X' fit was performed on the data to
determine the values of the parameters A
(mb/GeV'), m' (GeV'/c'), and q for each particle
in each slice in x~. These parameters a,re pre-
yented in Table III. It is evident that for low x~
and small p, the largest invariant cross section
is for w. '. Then v, v', K', K, p, and P respec-
tivpey follow in order of decreasing magnitude. "
Pt large x„, the proton inclusive cross section

' dominates because of leading-particle effects.
The fit parameters m' and q for mesons display

an interesting similarity. The evident general
trend of the parameter m is to grow from ap-
proximately 0.3 GeV'/c' at x„- 0.05 to roughly
1.5 GeV'/c' at xs —-0.55. This growth in m' with
increasing x„ is an expression of the flattening at
low p, of Edo/dP' with increasing xs. The fit
parameter q shows the general trend of growing
for increasing x„ from approximately 3 at small
x~ = 0.05 to roughly 6 atx„= 0.55. Them' andqpa-
rameters from the fits to the p and p invariant cross
section show this same behavior with increasing
x„. However, m' for protons and antiprotons grows
from -1.0 (GeV/c)' at x„=0.05 to - 2.0 (GeV/c)2 at
x~ =0.55 and is therefore generally larger than
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the value of m' for mesons. The parameter q for
protons and antiprotons is also different from
mesons: q increases from roughly 4 at x„=0.05
to 8 at x~=0.55 and is therefore systematically
larger than the corresponding values for mesons.

A check was made to ensure that this general
behavior of the parameters m' and q is not a con-
sequence of relative normalization errors among
various experiments. A fit to only the n data of
Carey et al. ' showed the same general behavior.

To verify that the trend is not due to an increasing
p, range with increasing x„, additional fits were
made with cuts in the p, range to constrain it be-
tween 0.5 «p, «2.25 GeV/c for w' and for p, «2.25
GeV/cfor v'. The caiculatedparametersA, m2, and

q for this test were found to be consistent with the
values from the unconstrained fits.

It is interesting to note that in the limit as x„
-0 (or equivalently, p, fixed as v s -~) the ex-
trapolated form of the invariant cross section for
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FIG. 9. The normalized Peyrou plots showing the kinematic region covered for each particle species in the data com-
pilation. The forward-backward symmetry ofpp collisions was used to map -I x

~~I
to +I x [~I ~ The quarter circles are

lines of various constant values xz. (a) Normalized Peyrou plot for ~+, (b) for ~, (c) for 7I, (d) for &+, (e) for E,
(f) for p, (g) forp.

mesons is consistent with

lim E

lim E
do' A.

dp' (1+p, '/1. 0)
(18)

giving a P, dependence of = 1/P, ' at large P, .
(b) The x„dependence of Edo/dP' for constant

P, various particles in the radial scaling region of
v s 2 10 GeV is shown in Fig. 11. It is seen that
the cross sections for all particles with the ex-
ception of protons at low p, fall as x~-1 for all
p, . To parameterize this xs dependence (for all
particles except protons), we performed a min-
imum-g' fit of the invariant cross section to the
theoretically motivated form'"

E, =B(1—x„)",
do'

fixed Pg

(19)

@here B and n are free parameters. Reasonable
fits were obtained in all cases. The resulting
values of B (mb/GeV') and n are tabulated in Table

This observed P~ dependence seems to exclude the
constituent- interchange model, "which predicts a
1/P, ' behavior, and is closer to the 1/P, ' depen-
dence postulated by Herman, Bjorken, and Kogut. "
However, protons and antiprotons appear to be
more consistent with the form

IV. The particles listed, in rough order of in-
creasing n, are P, K', m', n, w, K,P. To check that
these fits were independent of the x„ interval, a
cut in x~ was made for m' data constraining 0.15
~x„~0.35, and a minimum-y' fit was again per-
formed. Within errors, the fit parameters were
the same.

The power of n for a fixed P„ in the preceding
parameterization of E do/dp'

~
~„reflects, per-

haps, the quantum-number conservation require-
ments (charge, baryon number, strangeness,
etc. ) in the production of particle c." These re-
quirements may be calculated from the exclusive
limit of the invariant cross section, since the un-
detected particles in the inclus''ve experiment must
contain the same quantum numbers as the ex-
clusive limit. ' It appears that the more a given
single-particle inclusive reaction is forbidden
(i.e. , more quantum numbers to balance in the
production of particle c), the larger is the value
of the exponent n.

VI. SUMMARY

We have parameterized the single-particle in-
clusive production cross sections in terms of s,
P„and the radial scaling variable x~,

E, =f (s, P„xs),
do'

where xs = E~/E*~.
We have found that above v s = 10 GeV, all of
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TABLE III. The fit parameters A (mb/GeV2), rent (GeVtlct), and q defined in Eq. (M) in the text for various inclu-
sive reactions in the radial scaling region'~s & 10 GeV are tabulated. These parameters describe the p~ dependence
of the single-particle inclusive cross sections for constant xz.

0.05 A
m2

51.460+ 2.90
0.29S + 0.02
3.390+ 0.07

45.220+ 2.10 19.210 + 0.060 4.820+ 1.630
0.848 + 0.02 0.368 + 0.001 0.286+ O.0VO

3.450+ 0.06 3.230 + 0.005 2.717+ 0.140

2.180+ 0.43
0.538 + 0.09
3.210+ 0.16

2.96+ 0.220 0.960+ 0.080
1.00+ 0.096 1.680+ 0.200
4.25+ 0.190 4.840+ 0.300

0.15 A
m2

q

25.150+2.24 14.170+0.60
0.523+ 0.04 0.610+0.03
4.0 10+0.09 4.080+ 0.07

5.830 + 0.030 2.189+0.320
0.908 + 0.001 0.836+ 0.110
4.357 + 0.004 4.020+ 0.180

1.080 + 0.09
0.757+ 0.07
3.890+ 0.12

3.62+ 0.130 0.54 V+ 0.030
1.13+0.040 1.150+ O.OVG

4.85+ O.0VG 4.490+ 0.110

0.25 A
m2

10.660 + 1.15
0.878+ 0.09
O'.060+ 0.17

7.910+0.29
0.726+ 0.05
4.650+ 0.15

2.070 + 0.006 0.791+0.150
1.332+ 0.001 1.620+ 0.860
4.953+ 0.002 5.610+ 0.460

0.535+ G.GV

0.990+ 0.18
4.780 + 0.31

5.84+ 0.300 0.165~ 0.006
1.88 + 0.120 2.550+ 0.040
7.06+ 0.200 7.180+ 0.060

j
0.35 A

m2
5.970*0.53
1.198+ 0.07
5.840+ 0.10

2.740+ 0.09
1.320 + 0.06
5.740~ 0.09

0.993+ 0.005 0.536+ 0.080 0.135+0.02
1.669+ 0.002 2.070+ 0.260 2.280 + 0.36
5.231+0.004 6.850+ 0.260 6.750+ 0.37

8.45+ 0.430 0.038+ 0.002
1.91+0.070 4.290+ 0.060
7.59*0.110 9.040+ 0.070

0.45 A
m2

3.100+0.36
1.830+ 0.09
6.070 + 0.12

1.790 + 0.11
1.109+0.07
5.640 + 0.10

0.770 + 0.020
1.410+0.040
5.200 + 0.020

0.866+ 0.033 0.070 + 0.01
1.895+ 0.120 2.250 + 0.33
6.840+ 0.130 6.890+ 0.32

9.18+ 0.560 0.015+ 0.004
1.91+0.070 2.500+ 1.270
7.81+0.110 7.080+ 1.510

0.65 A
m2

1.427+ 0.14
1.460+ 0.11
6.390+ 0.19

2.490+0.88 0,420+0.040 0.319+0.070
0.690 + 0.05 1.730+ 0.120 1.630+ 0.280
5.220 + 0.07 5.860+ 0.170 6.890+ G.310

13.05+ 0.400
2.02+ 0.010
8.48 + 0.040

0.65 A
m2

q

0.821+0.05
1.520+ 0.07
6.680+ 0.14

0.210+ 0.020 0.134+ 0.011
2.110+ 0.030 2.025+ 0.160
6.529+ 0.040 7.070+ 0.290

12.11+0.160
2.2S+ 0.010
9.24+ 0.030

0.75 A
m'

0.210+0.08
3.0 10+ 0.94

10.700+ 2.89

0.279+ 0.100 0.062+ 0.012
1.600 + 0.500 3.390+ 1.250
6.200 + 0,700 10.900+ 2.900

10.4V+ 0.170
2.55+ 0.014

10.13+0.040

0.85 A
m2

0.370+ 0.37
0.330+ 0.21
3.740 + 0.44

10.20+ 0.600
1.24+ 0.030
6.47+ 0.130

0.95 A
m2

18.80+ 0.600
2.59+ 0.030

13.10+ 0.100

the cross-section data are consistent with radial
scaling for all p, :

Below v s = 10 GeV and for x„&0.2, there is a
rapid approach to the scaling limit from above.
For x~~ 0.20, there is good radial scaling down
to the threshold.

Feynman scaling is achieved at a larger value
of Ms, where the suppression due to the presence

of the kinematic boundary is sufficiently small.
In the cases of large p„(or even small p, for p
and% ), thissdependenceis still present even in
the ISR energy range.

Parameterizing the single-particle inclusive
cross sections in terms of p„xz, and v s, we
find in the radial scaling region v s & 10 GeV that
the shape of the P, dependence of E dc/dP' for all
particles for constant x„as a function of x~
shows the same general behavior. From the min-
imum-y' fits to the invariant cross section to the
form
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A
(1+p, '/m')'

40'

x-o dP P,' 'lim E

and for protons and antiprotons (although the
errors in the P cross section a.re large) with the
form

lim E

do'

dp3
' &Rfixed

we find that
(1) the parameter m' grows with increasing x„

for all particles and is generally larger for pro-
tons and antiprotons than for mesons,

(2) the parameter q grows with increasing xs
for all particles,

(3) the parameter A, which reflects the overall
magnitude of the invariant cross section, decreases
for increasing xs for w', w, n, K', K,P (for pro-
tons, A increases with increasing x„),

(4) in the limit of xz-0, the invariant cross
section for meson production is consistent with

detected particle. In particular, the more for-
bidden the production of the detected particle
is, the steeper the slope of Edo/dp' ~~, ~„versus
xR. Parameterizing the invariant cross section for
fixed p, in the form

da'
= B(l —x„)",

&g fixed

we find that the parameter n for the various par-
ticles is given by the following increasing order:
p, K', m', ~', m, K,p. Only protons at low p, show
an increasing F.da/dp' versus increasing x„ for
pj fixed.

In conclusion, the most important result of this
investigation is that all data for hadron production
in proton-proton collisions exhibit radial scaling
at all p for vs&106eV.

Expressing single-particle inclusive cross sec-
tions in terms of p„and xR allows a simple and
systematic behavior to be revealed for particle
production.
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