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The explicit connection is made between the partial-eave-analyzed forms of the isospin-decomposed three-
pion amplitudes generated by permutation-symmetry methods and by Cartesian-tensor methods. In the
minimal K-matrix model, the partial-wave-analyzed amplitudes generated by the former method lead to fewer
coupled amplitudes per J,I channel than those generated by the latter method. This is due to the fact that
kernels of the permutation-symmetry amplitude integral equations contain only one subsystem isospin while
the kernels of the Cartesian-tensor amplitude integral equations contain all possible subsystem isospins.
Ho~ever, the Cartesian-tensor method has the virtues of easy determination of the number of independent
three-pion scattering amplitudes prior to partial-wave analysis and gives a clearer insight into the structure of
three-pion-to-three-pion scattering.

Recently, there have appeared two isospin de-
compositions of the three-pion-to-three-pion scat-
tering amplitude which were applied to the minimal
K-matrix model' for three-to-three scattering. In
the first method, ' by constructing states which
transform according to the irreducible representa-
tions of the three-particle permutation group, one
obtains the scattering amplitudes [X]t„with the
O~I ~ 3 systems Iequiring one, nine, four, and
one such amplitudes, respectively. The set of
coupled integral equations satisfied by the [y.]'„„is
given by Eq. (6.7) of Ref. 2(b).'

In the second method, ' by employing a Cartesian-
tensor analysis of the three-pion-to-three-pion
amplitude, one obtains seemingly simpler results.
For the I =0, 3 systems, again only one amplitude
( V„V„r sepetci vle)yis required. For thef =1
system, one begins again with nine amplitudes T,.~
withi, j =1,2, 3. However, it is shown that these
satisfy the conditions

T,= T,,e(j)

[X]„=—~v 3(E, + 2E, —G, —2G,),
[x]'„-=;(E, G,), ——
[x];,-=--;(E,+G,),
[x];,= !Ws(E,+ 2E,-+ G, + 2G,),

(3)

reducing the system down to the two amplitudes
E, and E, which satisfy Eg. (5.13) of Ref. 4.'

It is of interest to obtain the explicit connection
between the results of these two approaches both
to understand the numbers of amplitudes needed
in describing the I = 1,2 systems and to determine
whether either approach possesses specific ad-
vantages over the other in the performing of nu-
merical calculations. To accomplish this, we will
employ for the most part the notation of Ref. 4. As
to the connection between Refs. 2 and 4, we define
the operators [X]~„by

[x];,=-3v, ,

[x]', , „-=Q S,,a,„,

T,, = o(1)T„,
where e( j) and o(l) represent the permutations on
the initial- or final-state kinematic variables
(123)-(jki) and (123)-(132), respectively. Thus,
the I = 1 amplitudes may be reduced down to a set
of two, T» and T„, which satisfy the coupled in-
tegral equations of Eq. (5.11) of Ref. 4. Similarly,
for I = 2, one begins with the six amplitudes I,.
and i",. withe =1,2, 3. Again these are shown to
satisfy

[x]',,=-3v, ,

where in the I = 1 case

3

—,'W3 —,'W3

(4)

G, = o(1)E, ,

wherei, j =1,2, 3, and where m=0, 1,2. These
operators satisfy
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o(1)[x]'„„=(-1)"[x]'...
Also we recall that

t„(2) = (-1)"t.(3)o(1),

(6) using' Eqs. (5.8), (5.11), and (5.13) of Ref. 4 and
Eqs. (3)-(7}of the present paper, we obtain

[y]'„„=Q G'„„'St„(i)—vi Q St„(3)'g»[y]» „, (11)

St„(i)=(e(1)+ (-1)"o(1))t„(i), (10}

where t„(i) is the two-body t matrix for two-body
isospin v which satisfies

g(pi~p2p,
' It„(i) Ip,p,p, )„

=(»)'«p[(n) -p;(n))„&p2p3It„Ip, p, &„

(8)

in the notation of Ref. 2(a). Then, defining the
operators

[X]'„„-=(e(1)+( 1)"o(1))[X]'„„

where G„„' and 'JJ„~ are defined in Table V and Eq.
(5.6} of Ref. 2(b). If the matrix elements of Eq.
(11) are taken with respect to the partial-wave
basis

I e,e,e,dMpX), Eq. (6.7} of Ref. 2(b) is re
covered and the connection is completed.

As explained in Ref. 7, Eq. (6.7} of Ref. 2(b} is
not in convenient form for numerical calculations.
However, upon iteration and a change of variables,
the resulting equation, (2.7) of Ref 7, is of a more
tractable form. We wish to apply this same pro-
cedure to the two independent I = 1 amplitudes of
Eq. (5.11) of Ref. 4. We rewrite these as

2 2

T,, = gati, , — Q Q [K",. (2)t„(2) K",. (3)t„(3)]T,,
j=1 v=O

where

(12)

1 (0 0X
K'(2) = ', K'(2) = ' ~, K'(2) =

(0 0~ ( —.
'

0~ (-,' oj
K'(3) = ', K'(3) = K'(3)—002-121

Then, in the notation of Refs. 2 and 7, defining the matrix elements

T,,"""'(e,', e,', e,', e„e„e,; p', p) -=(e',e,'e,'JMp'x IT,, Ie,e,e,JMp, x)

(13)

(14)

'(e'„e,', e,', e„e„e,; p, ', g) (efe,'e~V=—Mp, 'x Iiti, , Ie,e,e,SMACK) (15)

we make the change of variables suggested in Ref. 7,

JNXNI( r r r. J Nulli ~ rT /el e2 I/3 ele2 e3 Pt /Jt) y l /el e2 I/3 ej e2 e3 Pl Pt)

+ 2 Yi (~i, o)R t(5tf i'i e»~ p p}
E=0

(16)

which reduces the dependence of the amplitudes from the three final-state kinematical variables Xl,', e'„e,'
to the two variables Dll', e', . With this substitution, Eq. (12) becomes

If JNMI(5)fl el e e e pI p )

QzhfilN (3}t1el Ie e e p p)

'M'
i+v, events M23

Pl 23 v O

00 64.

&& p g de,"Y", ($;0)[d„, (D")+Xd,,„(D"+m)]Y",,'(z", 0}[(—1)'r'K„(2)+K"J(3
l 0

xIt " 1(3it' e".e e e ~
p,
"

p, ) (17)
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TABLE I. The number of coupled par tial-wave-analyz-
ed amplltudess assr s required to describe three-to-three
scattering for the various 4" channels of the I =1 three-
pion system in the minimal E-matrix model. The v=0, 1,
2 input consists of to, t20, t&, t20, and t'he @=0,1 input con-
sists of too, t&o, t~&.

TABLE II. The number of coupled partial-wave-analyz-
ed amplitudes, XJ7r, required to describe three-to-three
scattering for the various J~ channels of the I =2 three-
pion system in the minimal E-matrix model. The ~=1,2
input consists of t&~, t~& and the &= 1 input consists of

'j y

&=0, 1,2 input &=0 1 input &=1,2 input &= 1 input

XJ' 7}

of Ref. 7
XJ' 7f

of Hef, 4
XJ"7f

of Ref. 7
XJ' F

of Ref. 7
XJ'll

of Ref. 4

in analogy with Eq. (2.7) of Ref. 7 and where Q;,
is the inhomogeneous term. Equation (2.7} of Ref.
7 and Eq. (17) above may be used to generate sets
of coupled integral equations for the partial-wave-
analyzed scattering amplitudes for the various J'
channels of theI =1 system. The results' are
given in Table I for the two-body input goo, ta, ~»~o
and for Io, f„t', . These show that the formalism of
Refs. 2 and 7 leads to fewer coupled amplitudes
per channel than does the formalism of Ref. 4 and
Eq. (17}. Essentially this is due to the fact that
for a given value of i in Eq. (12) the kernel con
talns all subsystem lsosplns, while fox' a given v
in Eq. (11), the kernel contains only one subsystem
isospin.

A similar analysis may be carried out for the
I = 2 system of Eq. (5.13) of Ref. 4. When the re-
sults a,re used to generate a set of coupled integxal
equations for each of the 4' channel. s, again it is
found thai the formalism of Refs. 2 and 7 leads to
fewer coupled amplitudes pex channel than does
the formalism of Ref. 4. The numbers of coupled
equations per channel obtained for the input t,', P
and for t', are given in Table II.

As to other thx'ee-pion scattering models, such

as the nonminimal K-matrix model of Eqs. (5.18)
and (5.19) of Ref. 4, a partial-wave analysis may
be performed in an analogous way. ' Since the
subsystem isospin structure for each of the two
methods remains the sa,me for these more general
equations, the obtaining of fewex' coupled ampli-
tudes per 4', I channel in the permutation-sym-
metry formalism is expected to continue to hold.

Thus, we conclude that the permutation-group
methods and the Cartesian tensor methods for
generating three-pion amplitudes are equivalent
as expected. Further, while the latter method
gives a much better insight into the structure of
three-pion-to-three-pion scattering and demon-
strates clearly which three-pion isospin decom-
posed amplitudes may be considered to be inde-
pendent or dependent [i.e. , Eqs. (1),(2)], the
former method, with its fewer partial-wave-
analyzed amplitudes per channel in the minima. l
K-matrix model, is better suited for numerical
calculations.
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