Comment on gauge theories without anomalies*

Jay Banks

Department of Physics, Cornell University, Ithaca, New York 14853

Howard Georgi^t Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138 (Received 17 February 1976)

We obtain an expression for the anomaly of a general representation of $SU(N)$.

Unified gauge theories of the weak, electromagnetic, and strong interactions' describe elementary-particle interactions in terms of a gauge field theory based on a simple gauge group. If the unified field theory is to be renormalizable, it must be free of triangle anomalies.² This is a serious constraint on the theory when the fermion representation in the gauge theory is complex.³ It seems possible that nature has indeed chosen such a complex representation, since only the lefthanded quark fields participate in conventional weak interactions.

In this note we discuss the anomalies of representations of $SU(N)$. We will obtain some explicit formulas which are useful in constructing representations which are complex but free of anomalies.' Such representations are essential ingredients in a class of unified gauge theories of the weak, electromagnetic, and strong interactions. '

Take t_a , for $a=1$ to N^2-1 , to be the generators of the fundamental N -dimensional representation of $SU(N)$,⁴ normalized by the commutation relations

$$
[t_a, t_b] = i f_{abc} t_c \tag{1}
$$

The object of interest in the study of anomalies is the trace of the symmetrized product of three generators:

$$
d_{abc} = \operatorname{Tr}(\{t_a, t_b\} t_c) \tag{2}
$$

If T_a are the generators of an arbitrary matrix representation R , normalized according to

$$
[T_a, T_b] = i f_{abc} T_c , \qquad (3)
$$

we define the anomaly of the representation R , $A(R)$, by

$$
A(R)d_{abc} = \operatorname{Tr}(\{T_a, T_b\}T_c) \,.
$$
 (4)

We can make it obvious that the trace of the symmetrized product of T 's has the form shown in Eq. (4). In general, we can write

$$
Tr({T_a, T_b}T_c) = A_{abc}(R) .
$$
 (5)

If R is decomposable into a direct sum of representations R_1 and R_2 , $R = R_1 \oplus R_2$, the following

is obvious:

$$
A_{abc}(R_1 \oplus R_2) = A_{abc}(R_1) + A_{abc}(R_2).
$$
 (6)

If R is a tensor product of representations, $R = R_1$ $\otimes R_2$, it is clear that

$$
A_{abc}(R_1 \otimes R_2) = D(R_1)A_{abc}(R_2) + D(R_2)A_{abc}(R_1) ,
$$
 (7)

where $D(R)$ is the dimension of R. But we can form a general representation by decomposing appropriate tensor products of the fundamental representation [satisfying Eq. (2)]. So it is clear from Eqs. (6) and (7) that $A_{abc}(R) = A(R)d_{abc}$.

Thus Eq. (4) is satisfied, and furthermore $A(R)$ is an integer. The anomaly question reduces to the characterization of the integers $A(R)$ for each irreducible representation R of $SU(N)$.

We label the irreducible representations of $SU(N)$ in a slightly unconventional way by $N-1$ positive integers q_i for $i = 1$ to $N - 1$. The nonnegative integer $q_i - 1$ is the number of columns with i boxes in the Young tableau associated with the given irreducible representation. For example, the fundamental N -dimensional representation, whose Young tableau is a single box, corresponds to $q_1 = 2$, $q_i = 1$ for $i \neq 1$. In terms of the q_i 's, the dimension $D(q)$ is a homogeneous poly $nomial⁴$:

$$
D(q) = \prod_{j=1}^{N-1} \left[\frac{1}{j!} \prod_{k=j}^{N-1} \left(\sum_{i=k-j+1}^{k} q_i \right) \right].
$$
 (8)

Our main result can now be stated simply. For an irreducible representation of $SU(N)$ the ratio of the anomaly to the dimension is the following cubic polynomial in q :

$$
\frac{A(q)}{D(q)} = \sum_{i,j,k=1}^{N-1} a_{ijk} q_i q_j q_k, \qquad (9)
$$

where a_{ijk} is completely symmetric in i, j, and k, and for $i \le j \le k$

$$
a_{ijk} = \frac{2(N-3)!}{(N+2)!} i(N-2j)(N-k) . \tag{10}
$$

One can check Eqs. (9) and (10) by using Eqs.

14 1159

(6) and (7) and the Clebsch-Gordan series for $SU(N)$ to derive recursion relations for the anomalies.

From the basic formula, Eqs. (9) and (10), we can obtain some useful results for special cases. For SU(3)

$$
\frac{A(q)}{D(q)} = \frac{1}{60} (q_1 - q_2)(q_1 + 2q_2)(2q_1 + q_2).
$$
 (11)

For SU(4)

$$
\frac{A(q)}{D(q)} = \frac{1}{60} (q_1 - q_3)(q_1 + q_3)(q_1 + 2q_2 + q_3).
$$
 (12)

For $SU(5)$ and higher N, the result does not factor in this way into factors linear in q . For any N , for $q_1 = m + 1$ and $q_i = 1$ for $i \neq 1$,

$$
\frac{A}{D} = \frac{m(N+m)(N+2m)}{N(N+1)(N+2)}.
$$
\n(13)

This representation is the completely symmetric product of m fundamental N -dimensional representations. Multiplying by the dimension, we find

$$
A = \frac{(N+m) \, 1(N+2m)}{(N+2) \, 1(m-1) \, 1} \,. \tag{14}
$$

The completely antisymmetric combination of p fundamentals gives the representation with q_{ρ} = 2 $(p \le N - 1)$ and $q_i = 1$ for $i \ne p$. For this representation

$$
\frac{A}{D} = \frac{p(N-p)(N-2p)}{N(N-1)(N-2)}
$$
\n(15)

*Work supported in part by National Science Foundation under Grant No. MPS75-20427.

and

$$
A = \frac{(N-3)!(N-2p)}{(N-p-1)!(p-1)!}.
$$
\n(16)

This last class of representations is particularly useful for building unified theories. If the N -dimensional representation of an $SU(N)$ unified gauge group transforms under the color SU(3) subgroup as a triplet plus $N-3$ singlets, then the antisymmetric representations contain only color SU(3) triplets, their complex conjugates and singlets, just right to describe a world of quarks and leptons. With the aid of the anomaly formula Eq. (16), it is trivial to check whether a given unified theory with only antisymmetric fermion representations is anomaly-free. If the fermion fields are all written as left-handed fields, the representations must be such that the sum of all the $A(R)$ is zero. For example, in the SU(5) theory, there are two left-handed 10's and two $\overline{5}$'s and $A(10) = -A(\overline{5})$ $= 1$ [10 is $p = 2$ and $\frac{5}{9}$ is $p = 4$ in Eq. (16)], so that the theory is anomaly-free.

Our results do not resolve one amusing question about the anomalies of representations of $SU(N)$: Are there irreducible representations which are complex but anomaly-free'? There are none for $SU(3)$ or $SU(4)$. Equations (11) and (12) imply that for $N = 3$ or 4, the anomaly vanishes if and only if $q_i = q_{N-i}$ for all i, in which case the representation is real. We know of no complex, irreducible, and anomaly-free representations for any N , but have no proof that none exist.

⁴For a review of representations of $SU(N)$ see A. Pais, Rev. Mod. Phys. 38, 215 (1966).

⁾Junior Fellow, Harvard University Society of Fellows. ¹H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).

 ${}^{2}D$. Gross and R. Jackiw, Phys. Rev. D 6, 477 (1972).

³H. Georgi and S. L. Glashow, Phys. Rev. D 6, 429 (1972).