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A general expression for the spin terms in the light-cone expansion of current commutators is given. The

problem of current conservation is discussed. This approach is applied to deep-inelastic leptoproduction.

INTRODUCTION

The study of the expansions of products of local
operators has been developed both in a heuristic'
and rigorous' way beginning with the fundamental
work of Wilson. ' This problem has attracted the
attention of physicists in connection with the scal-
ing phenomenon in leptoproduction.

In this case one is interested in the light-cone
expansion of the commutator of two physical cur-
rents. For nonpolarized leptoproduction, general
expansions have been given in the literature. ' The
experimental results favor the quark light-cone
models. " They, and their relations' with the
quark-parton models, have been widely discussed.

In this paper we shall study the structure and
properties of the spin terms in the expansion of the
commutator of two currents in the neighborhood of
the light cone. Qur most important results are the

following.
(i) We have found the most general light-cone ex-

pansion of the commutator of two currents that con-
tributes to the spin-dependent terms in leptopro-
duction. The local operators that contribute to this
expansion turn out to be of two kinds: 0"i"'n',
fully symmetric, and 0'"""i'""n', antisymmetric
in two indices and symmetric in the remaining.

(ii) We have proved that in the standard situation
in which only the most singular terms in the ex-
pansion are considered one cannot impose current
conservation. The adequate procedure is to use a
weaker restriction that we call current conserva-
tion on the light cone (CCLC). This restriction has
to be imposed even for nonconserved currents.

(iii) The general expansion ha. s been explicitly
worked out in order to get the scaling functions in
leptoproduction. The order of scale for the non-
conserved structure functions is depressed. Qur
treatment is not equivalent, nor can itbe formulated
in general in a manifestly conserved form. This
question will be discussed at length elsewhere. '

Previously published works on this topic con-
sider a particular case of the general situation
we discuss with b, —1 = b, ' = 2, as suggested by the
quark model. Wray' and, independently, Ward"

in their study of v production use a quark model
and predict dominant scaling for nonconserved
terms, in disagreement with our results. Hey and
Mandula" have studied e production starting from
an explicitly conserved light-cone expansion in
terms of two bilocals. This work has been ex-
tended by Heimann. " Qur approach can be used to
give a simpler and more general proof of Hei-
mann's results asserting that the expansion can be
formulated in terms of a single bilocal in an ex-
plicitly conserved form.

The paper has been divided into two sections and
one appendix. In the first section we discuss the
general structure of the expansion and the con-
straints dictated by current conservation on the
light cone (CCLC). The a.ctual meaning of CCLC
will be considered. In Sec. II the scale functions
for polarized leptoproduction are computed. The
causal functions used in this paper and some for-
mulas of interest are given in the Appendix.

I. THE GENERAL CURRENT-CURRENT AND DIVERGENCE-
CURRENT COMMUTATOR EXPANSIONS

As a result of the works on the light-cone ex-
pansion' ~ ' of the operator products in terms of
local operators, we know

A(x)B(0) = Q C„(x)O"(0),

where the C„(x) are c-number functions, singular
at x'=0. The order of the singularity is given by
the scale dimension and the spin of the local oper-
ators in the expansion.

We choose for the expansion a local-operator
basis [0"(0)jtransforming with the Lorentz ir-
reducible representations [D(j,j'}j, i.e. traceless
and with symmetries associated with Young pat-
terns with at most two rows. " These operators
have a well-defined scale dimension for all their
components, "and the traceless property will keep
the expansion singularities when the Lorentz con-
tractions are performed. Note that only two kinds
of such irreducible local operators have non-van-
ishing expectation values (e.v.}

&p, s IO"(0) I p, s)
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and therefore contribute to inclusive leptoproduc-
tion,

(i) the full symmetric ones, transforming with
the D(&n, 2n) representations, and

(ii) the operator antisymmetric in two indices
and symmetric in the remaining indices, trans-
forming with the D(~n, 2n+ 1}63D(2n+ 1, ~n) rep-

resentations.
Using similar arguments, we can see easily that

only full symmetric operators contribute to the
spin-independent terms in leptoproduction. Taking
into account these considerations, the most sin-
gular terms in the current-commutator light-cone
expansion (CCE) can be written as follows:

[Jt(x), J„(0)]=P [E(x2, 6)a~ x~~ ' x~ +E(x', n —1)c„g „x~ ' ' 'x„+E(x', 4 —2)d„g„~g„„x~ x~
mint

+E(x, 6 —1)b„'(x~g„„+x„g~~)x~ x~ +E(x, h —1)l c „~ qx~x~ ''x'~ ]0'"&'"~n' (0)

+ g (E(x 1& —1)2g,gl [pge3vxl
' ' 'xx +E(x n — } gn[gl rpxv]gvx +(l

min&'

+ E(x', 6')2h„x(, e,) „„x~x~ x„+E(x', n')2k'„[x„g„L,x,)+(p, v)]x„,' ' 'x~

+E(x' n')1„'[x„e„„,x"+(p, —v)]x, x, j0'""'~"'~'(0),
where

n = d,. + 1 —2 r, r = d„—n, n' = d,. —~ r', r' = d„' —(n+ 2) .

The parameter r associated to an operator with scale dimension d and transforming with the D(j,j') rep-
resentation is defined as

(2)

For a symmetric operator, this number coincides with the "twist" defined by Gross and Treiman, " and it
is a generalization in the general case ( jw j ). As we shall see, operators with the same r give contribu-
tions of the same scaling order to the Bjorken limit of the leptoproduction structure functions. Henceforth
we shall refer to the number defined in (2) as "twist".

The E(x', 6) casual functions are defined in the Appendix.
The coefficients b„, g„, k„, and l„vanish according to the usual hypothesis of normal currents under time

reversal. Therefore we shall omit the upper indices of b'„, g'„, k'„, and /„ without ambiguity.
Each set of values for r, r' and a„,b„, . . . leads to a particular light-cone model (for instance, the

Fritzsch-Gell-Mann' model corresponds to r = r = 2, a„=c„+„b= d„=g„=1„=0).
Similarly to (2), we can construct the expansion for the divergence-current commutator:

[Dt(x) J (0)]= g [E(x', Z)g„x„x, "x, +E(x', Z 1)c„g„„x, "x„]0""~n~(0)
minx

where

+ Q [E(x', n')2g„g„„x„x„, x„+E(x',a')h„e„,x'x, ~ x„]0'""'&'"""(0),
min&'

n= 2(Ei+d~+1 —r}, n'= a(5+d, r'),

with 5 the scale dimension of the current divergence

Comparing (2) with the derivative of (1),

[S J„(x),&„(0)]= g (E(x,4)x~~, x„[(5+n —26)a„+2(c„+b„)]
min&

+ E(x', n —1)g„~ x~ x~ [nc„+2d„+(6+n —2n)b„])0~~'""&' (p)

+ g (E(x', n')2g„&, x,p~ x~ [(6+n —2n, ')k„+ 2g„]
minT'

(4)+ E(x', n')e„„~x x~ x+[(n+ 4 —2n')l„—(n+ 2)h ])0 ""~&'""~'(0) .
We can see that if 6 &d&+ 1 (and, therefore, Z &n, and Z' & n') the coefficients in expansion (4) must van-
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ish. Then, the following relations arise:

(5+n —24)a„+2(c„+b„) = 0, nc„+(n+ 6 —26)b„+ 2d„= 0,

(n+ 6 —2h')b„+ 2g„= 0, (n+ 4 —2d ')I„—(n+ 2)b„= 0. (5)

They are the formulation in coordinate space of the concept of current conservation on the light cone
(CCLC).

We shall assume henceforth that the inequality 5&d&+ 1 is satisfied, as it would be, for instance, if the
current conservation in the Lagrangian were broken by a mass term. "

II. COMPUTATION OF THE SCALE FUNCTIONS

In this section we shall find expressions for the scaling limit of the spin-dependent structure functions
in leptoproduction:

+(p', s'„+p'„s') —'+q q„(q s) ', +(q,p„+q p )~(q s)+(q„s„+q„s )—', (6)

where Y, , i =1—9, are dimensionless functions of q' and v=p q, and g', „=g,„—q„q„/q', a', =a —q (a q)/q'.
The scale functions G,.(&v), i = 1-9, are the limit of the functions Y, , i = 1—9, in the Bjorken region:

lim v & Y,.(v, q') - G,.(&o), i = 1-,9
Bj

where &v is the "scaling variable", &v = 2v/(- q'), and the numbers c&, , i = 1-9, are the scale order.
To compute the e.v. of the CCE (2}, we shall use

(p, s ~O'"'" «'(0) ~p, s) = s'"p ' p "'+ terms with one or more g ' &

2

(p, s~0'««"""'»'(0) ~p, s)= —'(p' '-p' ')p" p'» g'"s"p' ~ p"'-~p'&+& ~ ~ p'»
n+2

2M'
gA&kg pP ts]p«ll&, pl{ &pit&+& pxp &px&+z, , plL»

3(n+ 2) i

+ Z
[g'"&p'"&s"p'~ —( p —o)]+ tern;s with two or more g & &

~. r~ .) ~ X ~ X.

6(n+ 2);,
(z,'=p, o, X;) . (7)

The structure of the right-hand side of (7) is a consequence of the irreducibility of 0'"' and Ot ~'"'.
Inserting the e.v. of these local operators in the CCE (2) and making the Lorentz contractions, we ob-

tain the following expression for the e.v. of that current commutator:

(j,s ~[Jt(x), J(0)]~p, s)= g E(x', h)a„x,x„(s x)(p x)" '+E(x', a —1)c„g„„(sx)(p x)" '

+E(x', L —2)d„—(s,p„+s„p„}(px)+ p,p„(s x) (p x)" '1 n-2
"n n

1 n —1+E(x', a —1)b„—(x,s„+x„s„)(px)+ (x,p„+x„p,)(s x) (p x)" '"n n

+ E(x', A —1)e„ —(p x)e„„»s"x'+ (s x)e,„»p'x' (p x)" '"n n

+E(x', s' —1)g„[2p,p„(s x} —(p„s„+p„s,)(p x)](p x)" '
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+Z(x'a')h„[(p x)», „„,s'x' —(s x)»,„„,p'x'](p x)"

+Z(x', ~')a„[(x„p,+x,p„)(s x)-(x„s,+x„s„)(p x)](p x)"

+ Z(x', b, ') l„[x„»,q,„p~s'x ' —(p, -v)](p x)"

+ (Z(x', S' —1)g„[x„s,+s, x„-2(x s)g„„](p x)" '

+Z(x', n')nh„[ x'»—,„„,s'x'](p x)" '

+Z( x', s')nk„[( xs„+,xs)x' —2(s x)x„x„](p x)" ']

+
" Z(x', z'-l)g„[(s p„+s„p )x'-(x„p, +x,p„)(s x)](p x)" '

8+2

+nonleading terms.

From this e.v. @re select the leading coefficients of all independent tensorial terms. They have been col-
lected in Table I. Therefore, after expanding the current comInutator and computing its e.v. ore get

(p, s ( [J„(x),Z, (0)] (p, s) =(s„p,+s,p„)j,(p x)Z(x, X,) +x„x„(s x)j (p ~ x)Z(x', L) +g„,(s x)j3(p ~ x)Z(x', X,)

+p„p,(s x)j,(p x)Z(x', Z, )+(x„s„+x„s„)j,(p x)Z(x', ~, )

+ (x„p, +x,p„)(s.x)j,( p x)Z(x', X,) +»„„»s'x'j,(p x)Z(x', ~,)

+»„,„,p'x'(s x)j,(p x)Z(x', x,)+»„„„„s"p'j,(p. x)Z(x', ~,). (9)

Each j,(x ~ p), i =1-9, corresponds to the addition of the most singular contributions to each term in Table
I. Therefore, one or two kinds of coefficients contribute to each function depending on the values taken by
6 and 6'. The parameters A.;, i =1-9, denote the order of the leading singularity in each term. For in-
stance, x, =max (6-2, n, ' —1), A, =max (b„h'), etc

In order to find the Bjorken limit of the structure functions we have to Fourier-transform (9).

Term
index

TA3LE I. Light-cone dominant contributions to the current-commutator expectation value.
U.t).ons Con. tr ibutions

from symmetric 0 from mixed-symmetry 0
Tensorial terms Singularity Coefficient Singularity Coefficient

E(x~, Zd -1) [-g„(P x)"]

x~x„(s x) [a„(P x)"
-2n M

k„o)«x)"
Pl + 2

g~~ (s'x) E (x2 6 -1) [c (p.x)"
-2M

E(x2 4'-1) g (p~x)"

p~pp (s x) (p xp 3 E(x2 6'-1) [2g (p'x)" ]
n

E(x2 4-1) —0) xP
n

E(x2 4-1) 5 (P'x)" 2 E(x2 A') [k „(p'x)"]

k
~PI X. k s
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From the first term we obtain

(s„p.~ .), ) f "'*&*a( ', x)f() *)=(s„p.~ 0„).ff(()A &*e""""z(*',z, )

=(2 ) 2"' '"((~,).~ *.) „)ff (()&(z(&', 2-& ),

Bf(,)' *)=f1( '"*((().'

Using
('+M'(- k'+i&a')"=[- (q'+2&p q+ q'M') +i s(q p+q'M')]" =(2v) — 4 —(d '+ +i& 1+

2v V

limE(k, 2- X, ) =(2v) ( E($ - (d ', 2- X,),
where E is defined in the Appendix.

If we define

t( ')=2' ' *'ff(()&(l((-~ ', & —&), (10)

the contribution from the first term in (9) to the scale function associated to s„p„+s„p„is

(s„p, +s,p„)v & 'p, .
Proceeding in a similar way with the remaining terms and collecting the results, we obtain

lim dxe"'*(p, s ([Z„(x),Z, (0)] )p, s) =A, +A, + ~ ~ ~ +A, ,
Bj

A. , =(s„P„+s„P„)v ~ '())„

A2 —= -i(s&P, +s„P&)[(Q—3)(1)z -y())2']v +i(s„q, +s„q„)(I)~v "&

+i(q„p, +q p )(q s)[(X —4)p" —y())'"]v'& '+ig (q s)y" v "2 '

-ip„p,(q s)[(x, ~—4)[(x, —3)(I", -)(()',"]-)t[(x, —3)(1),
' —y()',"]}v ' —iq„q„(q. s)(1'2"v"

A, =—ig„„(q s)v & '()),',
A, =-iP„P,(q s)v"

A5 = (p)) s„+p„s)))[—i(X —2)|) +ilia ]v ~ +(qv s +q„s„)[i())]v

A. =2p„p.(q s)[~(.- )3k 8-xb."l "v' ' —(q„p. +q.p„)(q s)gv"6 '+(p„s„+p„s„)v"' '0,',
Av=isvv&))s p [(~7 2)'4 Xp7]v ' +i&v))))s q ~pyv

'

X9-2,
&9 = & pp) ~ ~ P & (I'9 ~

with

X =~ ' and 0' =(~/~X)4(X).

Looking to the powers of v in each term of (11) and selecting the leading ones, we get the contributions
to the scale functions G, (~), i =1-9, shown in Table II. In that table we distinguish between the functions
coming from the symmetric operators and the ones generated by the mixed-symmetry operators.

As long as the values for 6 and 6' are not specified, both kinds of functions have to be separately con-
sider ed.

The functions 67 Ga G9 in Table II are not the true scale functio~ ~ of Y,„F„V,. In order to get these we
have to subtract from G„G„G, the contributions to the explicitly conserved terms in 8'„,. This mechanism
is indicated in TaMe III.
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TABLE II. Do~~~nnt contrhtions to the sca1e fuuetions 6», &=1.-6 an~ Gy, &8, &9«

Tens orial
term

Scale
function

Power
of ~

Symmetric-0 contributions (above)
Mixed-symmetry-0 contributions (Below)

p v
E'pgpp~g8

cpp p~ g p (g 8) Q(Gp)

p 6
4 Cpyp~p S

mt v (e'+)

pqp, (v &)

6-4
6'-3

6'-4
6-4
6'-8

6'-4
6-5

(9')HAPP + SPY) (9'~) G8(~)

~P

~P

6-5
~P

6-5
6'-4
4-4
6'-3

As we can see in Tables II and IH, the connection between the leading singularities in the CCE and the
scaling orders of each 7, is obvious.

In general, the values of 4 and 6' are independent; hence the contributions of both kinds of operators
will depend on the actual relation between 6 and 6'. The most reasonable assumption z =T' means that
6 =6'+ I, and both kinds of operators contribute simultaneously to all scale functions except G4, where the
contributions from mixed-symmetry operators are trace-like and therefore nonleading.

Looking at Table I, the following relations can be obtained:

fc =fl-f +(x P)f -=0

2J, ('~)f.=-0

f, +(x P)f, =—0

and the formulas (5) become

(x- p)f,'+(6 —2n)f, +2[f, +f, +(x p)f, ]=0

f, + (7 -2n)f, + (x P)(f, +2f,) =0

(5-2n. ')f, -f, —2f, =0

fs-f7+2f. =o.

Fourier-transforming (12) and (13) we obtain

f +&f 708
2f i+&f4=

f5+&f6 =-0
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and

(6 —2n}f, —((f,}' +2(f, +f, +if,') =0

f +(7 —2')f +i(f'+2f ) =0

(5 —2A') f, -i $ f2
—2f, =0

f, —iEf, +2f, =0.
(15)

(14) and (15) can be translated to relations between the (C);(&u), i =1-9, and therefore to relations between
the scale functions G, ((4)}, i =1-9. The use of (15) that has been obtained from the CCLC relations (5) will
cancel out the contributions in Tables II and III to the function G„G„G„G,.

In this situation some unknown contributions to those functions arise. These come from less-singular
terms, not specified in (1). The scaling orders of the nonconserved structure functions will be connected
with Z and Z in (3) and therefore ruled by the scale dimension 5 of the conservation-breaking term in the
Lagr angian.

For example, the symmetrical leading contribution to G3

((d —3)„-34(l~ dl 3" 'f=('(f, -f )E(4 — ', 4 —3)d(

va»shes by (14). This conclusion is not a surprise because a full symmetric operator cannot give any
contribution to Eg pzf7 s'.

Furthermore, the remaining expression for G, coming from the mixed-symmetry operators results in

'((4' —2)3, —3()') -3,~ 3', =2' ' 'f (4(f, -f IE(4 — ', 3 —'4) (4+2' '4ff E(( — ', 3 —'3 )d(, '

which vanishes after the application of the CCLC
relations (15). Therefore, using CCLC, the scal-
ing orders for the nonconserved structure func-
tions get depressed in the following way:

the following expressions according to the values
of the X parameter:

«2)n
E(x', n) = — 2xie(-«2) 8(x'), n = 0, 1, 2, ...

' s) G2((d) 3 2 G2((d) )M

V "Y, v Yg
M3 7, ' —C,((d), ' —G2((d),

where n = 4 ——,
' (5+ df+ 1 —min[ r, r']).

The Bjorken limit of the structure functions
Y„Y„Y„Y,depends on whether current diver-
gence is zero:

If the current is conserved [D(x) —= 0], all con-
tributions to G3 G7 G8 Gg will cancel out and
these functions vanish. On the other hand, if the
current divergence does not vanish [D(x) 80], the
nonconserved scale functions G„G„G„G,are
unknown even for a given light-cone model, since
they do not depend directly on the most-singular
terms in the CCE.

E(x', n)= —27fi&(x')5'" "(x'), n=1, 2, ...

E(x', A)=-2i F(A) sinwA. e(«2}8(«2)(«2) x, A Can .
The Fourier transform of E(«2, 1) is

d4
E (}'2')=— e'"'"E(x' X)(2v)2

=f2"2-»E(A, ' 2 y) .
The function E(u, A.) is defined in a similar way,

Tens orial
term

Scale Power
function of v

TABLE III. Dominant contributions to the scale func-
tions G„GS,G9.

APPENDIX (9 S) GY(a) 4 -5 47+ —[G4 -(G5+ G6)/z]
1

The causal function E(x', X) is defined as

E(x', X) = F(X}[( x'+ i ex'} ' (-x-' —iex')-'-], —,.
This function is analytic on the whole X plane, "
and has a cut on the x' plane along R . It takes

(~ P.+04 )(0 s) G8(~)

Sv + gvSp

~t ~
b, -5
6' -4

4' -3

-(G5+ G6)/2X'
GB -(G5+ G6) /2y
G, -(G, + G,)/2g
G, -G,/2g
G~ -G6/2g
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E(u, X) = I'(X)[(-u+ ie) —(-u —ic) ]..
and its expressions according to the X values are

E(u, n)= -2mi5 " ' (u), n=1, 2, ...
&n

E(u, -n) = -2mi —e(u), n = 0, 1,2, ...

E(u, h)= —2iI'(A)sinwXu ~e(u), XAan .

Both functions E and E are easy to differenciate;
for example, we have

„E(u,X) =E(u, z+n) .
BQ

We shall also make use of the following relation:

uE(u, X)= -(X —1)E(u, X —1) .
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