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We study the large-Q' behavior of the electromagnetic form factor of the pion, which is viewed as a quark-

antiquark bound state in a (nongauge) quantum field theory. When the pion's Bethe-Salpeter wave function is

expanded in O(4) partial waves, it is found that the information needed about the partial-wave amplitudes is

their scaling behavior at large momentum and the locations of their poles in the complex J plane. This
information is determined by using the operator-product expansion, conformal invariance at short distances,

and a regularity property that holds at least in the ladder model. The resulting behavior of the form factor is

roughly F(Q') -(Q') ', with corrections due to anomalous dimensions.

I. INTRODUCTION

The dependence of electromagnetic form factors
on the squared four-momentum transfer Q' as
Q'- ~ has been the subject of much theoretical
study. It is well known that for a spin-0 particle,
described say in a p'-type theory, in lowest-order
perturbation theory, the form factor E(Q') -(Q') '
as Q2 ~. It was pointed out by a number of au-
thors, ' that if the particle were regarded as com-
posite (for example, if the spin-0 particle in ques-
tion were the bound state of two spin-0 particles),
at least within the framework of a ladder approxi-
mation to the Bethe-Salpeter equation, then E(Q')
-(Q') ' as Q'-~. It was recognized by Ciafaloni
and Menotti2 that the precise behavior depended on
the spin of the constituents making up the bound
states and possibly on how singular the interaction
between constituents was.

More recently, attempts have been made to study
the asymptotic behavior of form factors in a more
model-independent manner using the notion of con-
fo mal invariance as a guide. " These investi-
gations have given a variety of answers.

In the present paper we study the problem of the
electromagnetic form factor of a pseudoscalar
particle of mass M (called a pion) composed of
two spin- —,

' constituents (quarks). The principal
contribution to the form factor comes from what
is called the disconnected graph [see Fig. 2(a)],
where the pion disintegrates virtually into its
spin--,' constituents, one of which absorbs the large
momentum transfer from the electromagnetic cur-
rent and then re-forms with the unstruck quark to
reconstitute the final pion. The fundamental in-
gredients needed for the evaluation then are the
pion wave function, the propagator for the quarks,

and their electromagnetic vertex.
To analyze these components of the computation

we introduce an O(4) expansion of the pion wave
function in Sec. II and discuss the extension of the
"partial-wave amplitudes" to complex angular
momenta. We utilize this expansion to carry out
part of the loop integration implied by Fig. 2(a)
(Sec. III). The remaining computation then leans
heavily on an analysis of the operator-product ex-
pansion for two fermion fields and the restrictions
imposed on this expansion by conformal invariance
(Sec. IV). It is necessary to assume that the be-
havior of the wave function when one quark is far
off the mass shell and the other quark has fixed q2

is the same as that obtained from conformal in-
variance, although conformal invariance is strictly
applicable only when q2 is much larger than any
mass squared. The final evaluation of the form
factor is given in Sec. V and a summary of our
results together with a comparison with those of
others is given in Sec. VI. In an appendix the in-
tricacies associated with the quark propagator and
electromagnetic vertex modifications are treated
in some detail. We refer occasionally to results
obtained from a ladder-model calculation which
will be published elsewhere. '

II. THE PION WAVE FUNCTION

Definition and symmetries

We begin with the definition and symmetry prop-
erties of the Bethe-Salpeter wave function of the
pion bound state.

Our notation is as follows: The metric tensor is
g& „=diag(-1, 1, 1, 1); y matrices obey (y„,y,) = 2g &„
=y"g»P; y, =y y y y; states are covariantly
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(2. 1)

This wave function can be continued off the pion
mass shell, P' =-1lI', by defining

Xng(q +P )q )

1
Q zP ye' '"+

G,(P')
x(0 l

T(y'"'(0) q~B'(~) y'(y)} l o),

(2.2)

where p(x) is any convenient pion interpolating
field [normalized so that(0~ P(x) ~P') =e' ''] and
G&(P') is the corresponding pion propagator.

One can also define an off-shell wave function
appropriate for a final-state pion by (see Fig. 1)

X s(q, q" +P")

1
oxeye """"

G4(P )
x(O I T(y(y) Pi (~) ~qual (O)) I O) .

When P'=-M', P &0 this is
(2 3)

&..&&(s",s" ~&'") = fe "'*(&'"leal &(*)ys'(DP&lo) .

(2.4)

The wave functions X and y are related by PT

FIG. 1. The Bethe-Salpeter wave functions g and g .

normalized to (P ~
P') =(2v)' 2E5(P' —P).

We consider the pion to be a bound state of mass
M of a spin--,' quark of type A and a spin- —,

' anti-
quark of type B .[The SU(3) and color symmetry
properties of the quark are suppressed. ] The
Bethe-Salpeter wave function of the pion is then
(see Fig. 1)

&«(q&'+ '&q') = Ju "'(0~l re@&(o)&&&&'&&(x)~ l
P ). '

invariance:

XB„(q"+P",q') = —T«, X~, s& (q', q'+P") T 'g& 8,
(2 5)

where T =iy'y' is the usual time-reversal matrix
with Ty& T ' =y&~. The factor -1 here is the pion
parity.

O(4) expansion

G,'(q",P') =y y, ( 2)'q "-'(q "-~ -~
q J 1) (2.6)

x(P„~ ~ P„
(-1)'

P'[I'y, U,'(P q) gy, U,',(P-. q)],

G;(q', P') =y„y,(-2)"'q "'(q"' q "~q )
x(P„~ P„)

(-1)',
P'My, U', (P q) I"y, U'-(P q)].

Here ( ) indicates that the tensor inside is to be
made traceless and symmetric. The function
Uz(cos8) is the Chebyshev polynomial of the second
kind)

sin [(Z+ 1)8]
Uz (cos8) =

smI9

and U~ =dU~/d cos8. We have defined P = (P"P„)' ',
P" =P'/P, and similarly for q, q".

These O(4) basis functions and the traceless
symmetric operation ( }are discussed more fully
in Ref. 7. There it is also shown that these func-
tions G~ are a complete set of functions for the
expansion of a wave function of a pseudoscalar
particle evaluated at Euclidean momenta. Thus
we can write

The wave function X(q'+P", q') is an analytic
function of the complex 4-vectors q" and P' (in
a certain region of q",P"). We will be largely
concerned with X evaluated at Euclidean points,
where q', q', q', P', P', P' are real and q', and P'
are imaginary. At such points y transforms simply
under the roation group in four dimensions, O(4),
which rotates, for example, the vectors (q ', q, q',
iq'). We will make use of the expansion of X in

representation functions of O(4). The basis func-
tions that we choose are

Gz (q ",P") =i y, (-2) q (q "& ~ ~ ~ q "&)(Pq ~ ~ P q }
=iy, (-1) P U (P q),

Gz(q", P') =i [y„,y ]y,(-2) q
~

x(q" ~ ~ ~ q" q}(P„,~ —~ P„P )

=i[P, q]y, 2Z
P'U,'(P ~ q),

(-1)'
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X(q" +p', q") =Q QX~(q', P')G~(q", P") .
J-'-0 i=&

(2.7)

sin(J+1)8
G'=i, (-P)~U (cos8)y„U (cos8) =

sm8

together with the orthogonality relation

(Actually the sum for i =2 and 3 should begin at
J'=1; we ensure this by taking X', = X,'=0.)

We also expand X (q'+P", q") using the relation
(2.5):

X (q, q +P ) = -g g X' (q', P') T 'G' (q",P")rT.

The complex J plane

The O(4) expansion of the Bethe-Salpeter wave
function that we have used has, of course, been
defined for integer values of the "angular momen-
tum" J. Furthermore, we have assumed that the
angle 8 defined by cos8 =q P is real. The expan-
sion converges inside an ellipse in the complex
cos8 plane which has foci at ~1. This result is
strictly analogous to the more familiar O(3) ex-
pansion .of a scattering amplitude in terms of Le-
gendre polynomials. As in that case, the size of
the ellipse is dictated by the location of the nearest
singularity in the cos8 plane. For our application
to form factors we shall require the behavior of the
wave function X(P+q, q) in a regime where P q
-~, and as a result the O(4) expansion as it stands
is not very useful. Furthermore, as a purely
mathematical technique, to evaluate the form fac-
tor we shall find it very useful to make a Som-
merfeld-Watson transformation and then will re-
quire the "partial-wave amplitudes" X~ (q') for
complex J values. We turn, therefore, to an ap-
propriate definition of the Xz(q') for complex J.

We begin by studying what we have called XJ~,

which is defined by

(-1)'
P'X,'=-g!= „., «, I.'»(~.X}]U,(P q).,—

where we have used the fact that

(2.9)

(2.8)

[The factors P~ in the definition of the basis func-
tions have been chosen so that the partial-wave
amplitudes Xz'(q', P') will not have a branch point
at P' =0, which would introduce complications into
the analytic continuation from Euclidean values
of P back to P =-M . The factors of i have been
chosen so that the XJ' will be real at P' = -M'. ' The
factors (-1)~ have been chosen so that when the

XJ are analytical ly continued into the complex J
plane as discussed below they will be well behaved
as I Im J I

-~. Finally, the overall normalizations
of the G~ are essentially arbitrary. ]

Later we shall give the definitions of the other
Xz'(q'), but for now we shall concentrate ongz(q'),
which we write simply as gJ, suppressing the q2

dependence. Writing —,
' Tr(-iy, X} as E(cos8), we

can see immediately that the defining integral

(-1)'
g~=, dQ E(cos8)U~ (cos8)2w' (2.10)

is not appropriate for extension into the complex
l plane (P, is a Legendre polynomial, and F is the
scattering amplitude).

Now we recall that we obtain a good analytic
continuation by using the fact that I' has a disper-
sion representation

"
dz A(z)

F(cos8) =
n' z —cos8

Substituting this into the definition of f, , we find
first for integer /

f) = & (&) Q((&) ~

1

where Q, (z) is a Legendre function of the second
kind. This so-called Froissart-Gribov def inition
of a partial-wave amplitude provides a definition
of f, for complex I provided Re l is sufficiently
large. We follow precisely the same procedure
for the O(4} expansion.

We must first write a dispersion relation that
expresses the dependence of the Bethe-Salpeter
wave function X(P+q, q) on the variable (P +q)'.
To derive the desired representation in the case
P'=-M', return to the definition of X as a time-
ordered product and remark that for q' spacelike
we may write it as

X(P +q, q) = d x e"'"(0
I (g(0), g(x)j8(-&0)I P)

does not provide a suitable continuation for com-
plex Z. Aside from the factor of (-1)~, which will
turn out to be useful, the real problem comes
from the U~(cos8), which leads to ag~ which grows
exponentially for large positive or negative im-
aginary J. This behavior would prevent a useful
Sommerfeld-Watson transformation. This be-
havior is quite analogous to the fact that the fami-
liar O(3) partial-wave amplitude f, defined by

+1
d(cos8)P, (cos8)F (cos8)

1
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since

T (0(0)7))(x)) =
((C (0),T((x)j8(-x, ) -T(r(x) (1 (0),

and the last term vanishes when the integration
over X is carried out. In a frame in which P ~ g =O

we may write

exp(iq ~ x) =exp[-iq2x2+i(q2 +q')'I'n ~ x],
where n is a unit vector in the direction of q. Note
that we have reverted to the Minkowski world. The
causal structure of the anticommutator, the fac-
tor of 8(-x2), and the fact that with q &0 (space-
like) there are no growing exponentials as q2
ranges from —~ to ~ make it trivial to establish
a dispersion in the variable q2 or (what is the same)
—q P.' This argument applies for P' = -1VI2, or,
by a slight extension, for any P'.

We should, of course, fuss with the Dirac in-
dices, but we may obviously imagine expressing
X as

y(P+q, q) =iy, F,((P+q)2, q2, P )

+i[I eq]y, F2+py2F2+gy, Fd (2.11)

and writing our dispersion relations for the F~. We
have then for Fy, which is the only one which enters
our definition of gz (dropping the index 1),

1 " Fr)(P eq', P')
F((P+q)', q', P')) = — dp' 2 2

7f d 2 p +(P+q) 2E

(2.12)

where the lower limit corresponds to the mass of
one of our "quarks. " Finally we return to the
Wick-rotated world and the -ie plays no role.

We now substitute this representation into our
definition of the partial-wave amplitude gJ and
obtain

r, ( )=os P(-1)','"I des' * err(esse) rr( cse)
L=O

0

=e Q(-1) *"$ des' (d ~ 1)es' (L ~ 1)e
L=O 0

=so g (-1) c'"f de[ os(d -L)e
L=0 0

—cos(J +L +2)8]
—422 Q ( y)IaI+ 1(5 5 )

L=0

Thus

I =42 (-1)~e '~+'&~ J&0
= -4v (-1) e~d+'&" J(-2

Now, of course, gJ was originally defined for posi-
tive integer J and we could have instantly used the
orthogonality relation for the U's to obtain the
above J~0 result. Our purpose in giving the tor-
tuous evaluation is that the formal relation

I~ ((a) = I~ -(2()d

suggests the corresponding one for the gJ's. This
so-called Lorentz symmetry for the partial-wave
amplitudes will, in fact, be established below.

From our Iz((d) for positive integer J we find for
gJ the result

1
a =-P'Xr= dp2e(r+1}&F(p2q2P2)J mPq 2

D

(2.15)

where, we recall, cohs=(d(p +P'+q')/2Pq Notic. e
that as p -~ with q' fixed,

e- 1+ 2 + ~ ~ ~

(-1)'
Zz= 4, dp Fr)(p )Id((4)),4m'Pq

where

U~ (cos8)
Iz (d) = dQ

cosh(d +cos8 '

(2.13)

(2.14)

Thus, if FD-a, (q2, P2) (p2)d~ as p2-~ with q' fixed,
then Eq. (2.15) provides a satisfactory definition
of gJ in the entire half-plane ReJ&J,. Notice that
this definition makes g~ well behaved as

~
Im J ~

-~.
Suppose that FD behaves like

a,(q, P ) (p ) ~+ ~ ~ ~ +a„,(q, P ) (p ) rd

cosh(a =(p +P +q')/2Pq.

To evaluate Iz ((4)) most simply we recall the gen-
erating function for the polynomials U~(cos8),
namely

(1+a2+2acos8) '=g(-1)iaiUi(cos8), a&1.
L=0

Writing a =e we note that

(cosh(g+cos8) '=2 Q(-1)~a~+'U (cos8)
L=O

so that Iz((d) becomes

+frd(q fp» )

where J,&J,& ~ ~ ~ &J„and fs falls off faster than
(p')2)(r as p-~. Then the analytically continued
partial-wave amplitude g~ (or y~) will be mero-
morphic in the half-plane Re J&J„, with poles at
J =J„(or.=1, . . . , N —1) and at J =J„—1, etc. Thus,
the locations and residues of poles of the partial-
wave amplitudesgz(q ) in the complex J plane pro-
vide a direct transcription of the powers J of p'
and the corresponding coefficients a that occur in
the asymptotic expansion of FD as p ~ with q
fixed.
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We turn now to a discussion of the symmetry
relation alluded to above, namely

gJ g J 2

for integer J. This is quite like the Mandelstam
symmetry in the O(3) case, which is, in fact, a

formal consequence of the Froissart-Gribov defi-
nition, namely

f, =f, „ l =half integer

since we have the relation

z cotzt P, (z) = q, (z) —q, ,(z),
and thus Q, =Q, y for half-integer l. There does
not appear to be a correspondingly simple argu-
ment, even of a formal nature, for our situation.
We are deeply indebted to Loyal Durand for show-
ing us some unpublished work in collaboration with
P. Fishbane and L. Simmons that treats Lorentz
symmetry in great detail for scattering amplitudes.
We are concerned with a somewhat simpler form
of the problem treated by these authors.

We begin by reconsidering the integral we called
Iz(~) [Eq. (2.14)], but now we allow J to take on
arbitrary complex values. We write it now as

I(J) 2 Uz(cos8)
d0 sin'8

4m cosh(g) + cos8
s in8 sin( J + 1)8

1
2 cosh u+ cos8

cos J8 —cos(J+2)8
cosh(g + cos9

e« e«&+» &

r d8 cosh (d + cosI9

I(J)
=m cosm'J e

4w

l x~-x ~"
+SlY17TJ P

0

where P means the principal-value instruction at
x =e ~. Note that for integer J the second term
vanishes and we recover our old answer for I~(&u)

Consider now the quantity a(J) defined by

1a(J) =
27r

sin(J + 1)8
dQ F(c os 8) sln8 (2.16)

which except for a factor of (-1)~ is justg~ if J is
integral [see Eq. (2.10)]. Here we want it for
arbitrary J with only the initial restriction ReJ
& -1. Evidently a(J) is an entire function of J
since the integration extends over a finite region,
and, barring pathological behavior of F, there
can be no singularities in the finite J plane. Next
we substitute the dispersion representation (2.12)
for F and use the above result for I(J) and find

Assume ReJ&-1 and write z =e'; the integral
becomes a contour integral over a unit circle
counterclockwise from -1-ie to -1+i&. We take
~
argz

~
&v. The contour may be distorted into one

running from -1-ig around the origin and back to
-1+i', appropriately avoiding the singularity at
g =-e . With a little care, one finds

a(J) = dp'e ' "l"Fo(p')+, dzx~ '(1-x2)PCOSWJ 2 -(J+1)M 2 SmrJ Fo(P')
(p2+P +q )/2Pq —(1+z2)/2z

'

We write this as

a (J) = coswJgz+ sinn Jg~, (2.17)

where P, q stand for the magnitudes of our Eucli-
dean four-vectors and where again the formal re-
lation between p' and cu used earlier obtains:

g
1 dp2e(2+1)rllF(p2)

mPq (p„,)a
(2.18)

where g~ is the extension of the partial-wave amp-
litude to complex J that we introduced earlier [Eq.
(2.15)] and g~ may be written in terms of F((P
+q)') [Eq. (2.12)] as

g~= — dxx '(1-x')F P'+q' —2Pq
0

where

F(K ) =F(K +2e) +F(K -te) .
This may be rewritten by a change of integration
variable as

g~+g ~ 2
= 0 (integer J) (2.19)

2 +p2+ 2

cosh~ =
2Pq

We now notice that the relation (2.17) can be ex-
tended by analytic continuation to the entire domain
of analyticity of g~ and g~. From the original defi-
nition, (2.16), of a(J) we observe the symmetry
relation a(J)+a(-J —2) =0. Thus Eq. (2.17) im-
plies

coswJ(gJ g J 2) —smwJ(g~-g ~ 2).
At integer values of J, sinwJ vanishes. Thus one
obtains the Lorentz symmetry relation
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2 J 2
x =P

XJ 2 P -PgJ g J+) ggJ P

(2.20)

4 J+1
XJ =-. P -&gJ+ J+2

where

(-1)'g~=, dQF; U~(cose) . (2.21)

Assuming a dispersion relation for each of the in-
variant amplitudes F, , we can evidently write the
appropriate extension of the gJ into the complex J
plane in terms of the weight functions in the dis-
persion relations, just as we did in detail for gJ.
Then Eq. (2.20) provides the definitions of lt~ for
complex J. Assuming that no integer-power fall-
off occurs in the F„ the functions gJ will all obey
the Lorentz symmetry equation

provided thatgJ has no poles at integer values of J.
According to the representation (2.18), g~ will

have a pole on integer value of J, say J=-N, if
the asymptotic expansion of F((q+P)', q', P') for
(q+P)~-~ contains a term' a(q, P ) [(q+P) ] ~

We are imagining a world of anomalous dimensions,
so we here assume that F does not contain any
terms that fall like integer powers of (q+P) O.n
this assumption the Lorentz symmetry condition
(2.19) holds.

We close this section with the appropriate ex-
tension to complex J of the remaining partial-
wave amplitudes it&' (i = 2, 3, 4) and their Lorentz
symmetry conditions. In terms of the decompo-
sition of )( in terms of F„.. . , F~ [Eq. (2.11)]we
find, using our basis functions GJ and recursion
relations among the Uz(cose), the following re-
lations for integer J (we repeat the definition of
it&' for completeness):

XJ=P g

(P'l J'(0) I» =(P'"+P")F(Q'), (3.1)

where Q" =P'" —P" I.t contains a disconnected
contribution [Fig. 2(a)] and a connected contribu-
tion [Fig. 2(b)], which contains all of the remaining
graphs. Each contribution is separately gauge in-
variant, as will be shown below.

The analysis in this paper is confined to the dis-
connected graph. As we will see, the dominant
contributions to the disconnected graph can be
thought of as arising from two regions in the loop
integration: (1) the short-distance region, in which

q, (q+P), and (q+P')' are all large, and (2) the
"wave-function pole" region in which only (q+P)'
is large. We give a careful analysis of the con-
tributions from these two regions in this paper.
We also developed power-counting methods, of
somewhat questionable validity, for calculating
these contributions for the disconnected graph.
These power-counting methods give results in
agreement with the results of this paper for the
disconnected graph. When we apply these same
power-counting methods to the connected graph,
Fig. 2(b), we find that the connected and discon-
nected graphs contribute the same leading powers
of Q' to the asymptotic expansion of F(Q'). Thus
we expect that careful examination of the discon-
nected graph alone is sufficient to determine the
correct behavior of F(Q'). However, the careful
determination of the behavior of the connected

III. THE LOOP INTEGRAL

The form factor F(Q') of the pion is defined in
terms of the matrix element of the electromagnetic
current by

gJ g J 2 (2.22)

for integer J. By combining Eqs. (2.20) and (2.22)
one derives the following relations for the XJ' at
integer J: (a)

P XJ+P X-J-2- 0
~

(J+2)P y -JP 2X q 2=0,

(J+I)P'lt3 JP '-'y', ,=0. -
(2.23)

These relations play an important role in our evalu-
ation of the pion form factor F(Q ): They ensure
that the asymptotic expansion of F(Q') for Q2-~
does not contain any terms that fall like integer
powers of Q'.

(b)

FIG. 2. Feynman diagrams for the pion form factor.
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graph remains an open problem.
In order to keep the initial discussion as simple

as possible, we make two replacements in the
disconnected graph. The full inverse quark propa-
gator is replaced by a free inverse propagator
{iq'+m) and the full electromagnetic vertex func-
tion of the quark is replaced by the bare vertex
y". The calculation using these approximations

illustrates most of the essential physics of the
problem and yields almost the correct answer.
In the Appendix we will show how to extend the
method of calculation to include the quark propa-
gator and vertex corrections.

Thus, the amplitude to be investigated in this
section ls

(P'
~
J'(0)

~ P) =-(2v) ' d'q Tr (e y" r(q" +P', q') [iq'+m] g (q', q" +P") (f. (3.2)

(There is, of course, another term in which the
current acts on the antiquark line. This term can
be treated in the same manner, and yields the
same asymptotic behavior, as the term we con-
sider. ) For it one can substitute -T 'yr T [see
Eq. (2.5)].

One can easily show that this expression is gauge
invariant by taking the transpose of the matrix in
curly brackets, then using the properties of T to
restore the matrix to its original form except for
the interchange of P and P'. Thus the expression
must be proportional to the symmetric combina-
tion P'"+P", which is also gauge invariant. The
same argument may be used if the full propagator
and vertex functions are included. (One uses PT
invariance to show that TS '(q)T '=[S '(q)]
Tr" (P+q, P'+q)T '=r" (P'+q, P+q)'. )

Multiplying Eg. (3.1) by P„and using the expres-
sion (3.2) for the current matrix element, one
finds

Wick rotation

We wish to evaluate F(Q') as Q'-~. We begin
by making a Wick rotation of" the d~q integration:

d q = dq dq' dq' dq'-i dq dq' dq'dq,

where q~ =iq' is real after rotation of the integra-
tion contour counterclockwise through an angle of
v/2. In order to rotate the qo integration contour
without meeting any cuts in the q' plane it is neces-
sary to simultaneously analytically continue the
amplitude to Euclidean values of the pion momenta
P" and P'". We can do this with impunity because
we have defined the wave functions y off shell.
After we have transformed the q" integration into
a more tractable form, but before we take the
Q'-~ limit, we will continue back to the pion mass
shell, P'=P"= -M'

Thus, after Wick rotation we have

x d qTr yq +p, q i +el

& X(q", q" +P")] (3.3)

q'dq dn, Tr(Iy(q(' P"+, q') [iq'+m] y(q", q" +P'")J, (3.4)

where dQ, is the surface area differential on a unit sphere in four dimensions.

0(4) expansion

We now substitute -T 'X T for y in the expression (3.4) for the form factor and insert the O(4) expansion
(2.7) for the two pion wave functions. Let q—= (q')'~, q "/q, with corresponding definitions for P, P', P",
and P~™.Then

2(2w)
' oo

F = —
2 q3dqPq Q Q P'y,'(q2, P )Cj~)(m/q, P P')P'~If) (q, P' ),

J;L=O j, l=&

where

c",, ( lq, P P') (m. T (PG', (q",P')=(q Iq)& '&,'(q", )'") )')

(3 5)

(3.6)
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The angular integral and trace for C~~~ can be calculated in closed form. One begins by noting that
Gz'(q", P'") has the form

G~(q", P") =G ~(q') ~' ' '"z(P„' ~ ~ ~ P„' ),
where G"' ' '"z is traceless and symmetric in p, , ~ ~ ~ pz. The factor fP„' ~ ~ P„' ) can be taken out of the

integral, and the remaining integration must yield a traceless symmetric tensor constructed only from
P". Thus C~~' must have the form

2LC" (m/q P P'}= D" (m/q)(P"' P"~)fP' . P' )J'L y L+1 JJ

or

CJ~z(m/q, P P') = D~~'~(m/q)Uz(P P'), (3 7)

where, as before,

sin[(L + 1)8]
Ui cos8 =

sine
(3.6)

is a Chebyshev polynomial of the second kind. " Now D'z'~(m/q) can be evaluated by considering the special
case P'" =P":

D~~'~(m/q) = C~~'~(m/q, 1).

One can easily show that

D ~'z(m/q) = Dzu~(m /q)

by taking the transpose of the matrix in curly brackets in Eq. (3.6) and using the properties of the matrix
T. Furthermore, since G~~ and Gz' are basis functions for representations of O(4) and P carries O(4) an-

gular momentum 1, it is easy to see that D~~'~ vanishes unless L =J+1. The nonvanishing integrals can be
carried out explicitly" and are given by

fr t3D J' gfy DJ'fy J'

J+3
J+1

J+2 2m
J+1 q

J+2 2m
J+1 q

0
(3.9)

2m J+3 2m

q J+1 q

J+2
J+1

Thus, finally, setting z =—p. p'/pp',

1 00

4M.
—G(-1,P', P")U,(z) — G(&, P', P")(PP')"U, , (z)

=0

where the first term has been written separately for later convenience and

(3.10)

w2 OC

G(~, P', P")= dq q' (X~(q', P')D&' &.,(m/q)X', „(q',P")+ P'X'„,(q', P'}D",,»„(m/q}X&„(q', P")).
0 j, l=l

(3.11)

The first term in the braces in G(J'} occurs natu-
rally only for J~ 0. It can be included in G(- 1)
because it vanishes at J= —1, as can be verified
by using the explicit form (3.9) of D'z'~ and the
"Lorentz symmetry" properties (2.23} of the wave
functions y.

The sum over J in Eq. (3.10) is convergent in the
Euclidean region, where z obeys —1&z &1. We
wish to analytically continue this sum so that P'
and P" are returned to their physical values,
which gives z =1+@'/2M'&1. The continuation in
z is accomplished by writing the sum over J as a
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Sommerfeld-Watson integral in the complex J
plane. We will then investigate the limit z -~.
Thus, we will need to know how U~(z) behaves for
complex J and large z. U~(z} = V/(z) —V ~ 2(z). (3.14)

with the cut defined as before, extending from —~
to 1. Then

Analytic continuation of UJ(s)

Note that the function U/(cos8) =sin[(J+1)8]/sin8
can be written as

[z + (z2 1)1/2]z&1 [z (z2 1)l/2]-i 2&l)

2(z' 1)1/2

As fzf-

V~(z) —(2z) 2.

Sommerfeld-Watson transformation

(3.15)

[z (z2 1)1/2]2&
j(z) 2( 2 1)1/2 (3.13)

(3.12)

The factor (z' —1)'/' can be defined with a cut
drawn from z = —1 to z = 1, and the factor [z+ (z'
—1)'/'] ' can be defined with a cut drawn along
the real axis from — to 1. One then notes that
the cut in U/(z) extends only from —~ to —1, as
the discontinuity vanishes for —1 &z &1.

We are interested in the limit z -~, for which
the two terms in Uz(z} have different asymptotic
forms. It is useful to separate these terms, defi-
ning

We are now prepared to analytically continue to
the physical values of P' and P", and to extract
the Q'- ~ limit. Begin by substituting expression
(3.14) for U~(z) into the expression (3.10) for F.
[For —1~z~ 1, Eq. (3.14) is valid when the right-
hand side is evaluated for z above or below the
cut. For reasons that will be seen later, we
choose to evaluate the function V2(z) below the
cut. ] The part of the expression for F which is
proportional to V J, will give us no trouble, and
may be left as a sum. The part proportional to
VJ y can be treated by converting the sum over J
into a contour integral in the complex J plane by
means of a Sommerfeld-Watson transformation:

F=, , —G(- 1, P'& P")Vo(z)
Q +4M

&20

G(g p2 p&2)(pp&)/+1V (z) ~ 'V&
& ) i2/(pp&)/+1V (z)-J-3

2 sinn
(3.16)

where initially the integration contour circles the
positive real axis from J=~ —iE around J=O a.nd

back to J=~+ie. The factor of (-1) (from the
residue of sini/J} has been inserted as e "~ so that
the integra. nd is well behaved a.s

f
1m'

f

-~. Note
that in this limit

e" V (cos8) e '
J+1 CC

singJ e-~i Zm Ji ~

The function G(J, p', P") is presumably analytic
in the right half J plane and falls off at least like
a power for large fZf. Thus the contour canbe
opened up so that it runs just to the left of the

imaginary J axis from J= —E —i~ to J= —&+i~.
Until this point we were prevented from con-

tinuing the expression to physical values of P" and
P'" by the fact that, for z&1, V2„(z) grows like
(2z)"' as ReJ-~. Now that the contour of inte-
gration has been distorted so that ReJ is fixed,
this problem no longer arises. To carry out the
continuation, it is convenient to first set P"=P'.
One then continues to P'=P' = —M' by reversing
the Wick rotation, which means that the phase of
P' decreases from 0 to —g. It follows that Imz &0
during the continuation, which is why we have de-
fined V/. , (z) by its value below the cut. The con-
tinuation is then straightforward, yielding

F=, , —G (- 1)Vo(1+ Q'/2M')
Q2+ 4M

(-1) (M') "G(J)V / 2(1+Q'/2M')+2 dJ . V/. ,(I+Q'/2M')2 Z (M2)Z&1G (J)
Re J=-8 sinn J (3.17)

where G(J) —= G(J', —M', —M'). Note that the inte-
grand still falls off exponentially as

fimps

f

-~.
It is straightforward to check that an exponential
falloff was maintained at all stages during the ana-
lytic continuation.

Displacement of the contour

The next step is to displace the integration con-
tour of Eq. (3.17) some distance to the left (to,
say, ReZ= —N ——,'}. We will argue in the next sec-
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tion that G(J') has poles in the left half J plane.
When the contour has been moved past such a "dy-
namical" pole at J=J, a contribution

v(M2)& ~ V2 „(1+Q'/2M')
F, (Q') = — HesG(J')

sinmJ Q'+ 4M'

(3.18)
from the:ntegral around the pole must be included

in E(Q'). This contribution falls off like (Q')2N as
Q'-~. Thus the rightmost poles in G(J) generate
the asymptotica. lly dominant pieces of F(Q').

There are also contributions to F(Q') arising
from the poles of sim J at J= —1, —2, ... . These
terms can be combined with the other terms of Eq.
(3.17), which also involve integer values of J, to
give a contribution

M 00

F,„,(Q')=Q, ~, (-1) (M') 'G(-J-2)V, , (1 +Q /2M')+ (-I)2(M2)~ 2G(J 2)V— ,(1+Q2/2M')
- 'J=o -1

However, the function G(J') has a reflection prop-
erty (M') 2 'G(- J —2) = —(M')~ 'G(J-2) for integer
values J=0, 1, 2, ... . This property is a consese-
quence of the Lorentz reflection properties, Eq.
(2.23), of the )(,'. (q2, P') that appear in G(J)." This
leads to a. cancellation of all the terms in F,. „,(Q')
except for the last sum for values of the index J
~fq —1. (These surviving terms will of course
disappear one by one if N is increased. ) Thus, the
fixed integer-power terms all cancel out; the as-
ymptotic form of E(Q') is determined entirely by
the "dynamical" poles, which in turn are deter-
mined by the behavior of the Bethe-Salpeter wave
function.

We could close the section at this point, but the
final answer can be expressed more neatly if we
first apply the Sommerfeld-Watson transformation
to the surviving terms in E„,(Q'):

(M') 'G(Z —2) V ~,(I+Q'/2M')
slngJ Q +4M

By a redefinition of the variable of integration,
this term can be combined with the other integral
over the contour at He J=-N- &, to yield a single
"background" integral:

B(iV) Q') = ~ 4, — dI . [(M2)2G(J)+(M2) ~ 4G(- J—4)] V2„(1+Q'/2M').+ 4M 2 Re J=-N-1/2 sing J

~BK; Q')
~
—, .V ~.,g.(I+ Q'/2M')I

(Q )-212/ 2fas Q2

where

MI= —, dJ, [(M') G(J)
Re J=-N-1/2

+(M') 'G(- J —4)] .

In con.elusion, we have found in this section that
the form factor can be written as a sum of pole
terms plus a background contribution:

F(Q') = F (Q')+B(&, Q'),
N-1 2&J~

(3.20)

where E (Q') [Eq. (3.18)] falls off like (Q2)2u a,nd

B(N, Q') [Eq. (3.19)] falls off at least as fast as
(Q') " '~'. The pole terms arise from the poles
(at positions Z=Z ) of an integral G(J, —M', —M')
[Eq. (3.11)]over the wave functions X~(q2, —M').

As q'- ~ the background integral falls off faster
than the pole terms E (Q'). To see this note that

f
V, (1+Q'/2M')

f

= V„„(1+Q'/2M'), so

It now remains to investigate the poles in J and the
large-q2 behavior of these wave functions.

IV. STRUCTURE OF THE%AVE FUNCTION

In the previous section it was shown that the as-
ymptotic behavior of the pion form factor is de-
termined by the leading poles in the function G(J'),
defined by the integral shown in Eq. (3.11). In this
section we will discuss the properties of the wave
function which must be known in order to find the
location of these poles. The poles will arise from
two differ ent mechanisms.

The first mechanism is a divergence of the in-
tegral at large q'. The location of these "short
distance" poles is determined by the large-q' be-
havior of X2(q'), which in turn is determined by
the leading terms in the operator-product expan-
sion for $(0)g(x). Thus, the location of the "short
distance" poles will be expressed in terms of the
anomalous dimensions of the operators which ap-
pear in the expansion.

The second mechanism is the presence of poles
in the wave function )(~(q'). As discussed in Sec.
II [following Eq. (2.15)], these poles are deter-
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mined by the behavior of X(q" +P",q") as (q+P)'
-~ with q' fixed. Thus, in terms of the original
loop integral in Minkowski space, these terms
correspond to the region of integration in which
only one leg is far off the mass shell. Unfortu-
nately, we are unable to reliably determine the
behavior of the wave function in this limit. If q'
were also asymptotic, then the form of the wave
function would be governed by conformal invari-
ance, and the necessary limit could be extracted.
In order to obtain an answer, we will have to as-
sume that even for modest q' the behavior of the
wave function as (q+ P)'-~ is the same as the be-
havior of the conformally invariant wave function.
More precisely, the conformally invariant wave
function is a linear sum of computable functions

(q" +P",q"), corresponding to the dif-
ferent operators 8 which appear in the operator-
product expansion. We assume that as (q+P)'-~
with q fixed

(4.1}

[We allow for a matrix factor on the right because
we know that y, ~ has a physical (i.e. , massive)
propagator on the leg of momentum q, while

y"~"'" " has a massless propagator. Of course it
is likely that f„~(S,q"} does more than simply cor-
rect for the propagator. ] We emphasize that we
know of no model-independent proof of the regu-
larity property (4.1). Thus, we, along with Callan
and Gross' and Menotti, ' must adopt Eq. (4.1) as
an assumption in order to proceed.

In view of the evident ad hoc nature of regularity
assumption (4.1), we have investigated its va, lidity
using the ladder-model Bethe-Salpeter equation
with scalar-gluon exchange. In this model we are
able to compute the positions and residues of the
rightmost poles of X~(q'). We find that the wave
function does satisfy Eq. (4.1). We will report on
this investigation in a separate publication. '

It is worthwhile to note that if further analysis
should indicate that y~(q') is not quite as nicely be-
haved as indica. ted by the ladder model (so that,
for instance, poles become cuts), it would be an
easy matter to insert the improved information
about the wave function into Eq. (3.17) to find how

F(q') is modified.

Operator-product expansion

We now begin the analysis of y~z(q'} for large q'
by writing down the operator-product expansion"
for two Dirac fields:

TQ(0)p(x)}=+ p x~'~'C)~(S x')y (x') x'&}S' .'. .
J=Jp(~)

+g x~'~'"C (S,x')y"y, (x x'J- }S' .'. .
J=max Jp($ ), 1]

+ x '~' 'C~($ x')y"y (x'& ~ ~ x'&xj S'
J= 0(S)

+ ~ ~ ~ (4.2)

Here S is a local operator with J,(S) tensor indi-

ces, S(x), ..., , that is symmetric and tracelessVI' ' 'PJ
in those indices. For instance, one possible 8 is
$(x)y,(8, ~ ~ 8, })()(x). The operators S' ' are
formed from S by differentiating' —d, times and

taking the traceless symmetric part:
S(J) (s s S(0)gj ~ ~ o@J L. PJ +j gJ w g) ~ ~ ~ QJ0 0

(4.3)

p(S) = dg —do(S) —2d~, (4.4)

Since we are expanding the time-ordered product
of the two fields, x~ is to be interpreted as (x'x„
+i&)~" The exp.onent P(S) is to be chosen by di-
mension counting so that the remaining functions
C~z(S;x') approach constants C~(S) as x'-0:

where d~ and d~ are the dimensions of 8, ..., and

P, respectively.
There is a sum over possible operators g. The

dots indicate other terms in the operator-product
expansion that do not contribute to the Bethe-Sal-
peter wave function (0~ TQ(0)g(x}}~P). (The non-
contributing terms involve operators that either
have the wrong parity or are not fully symmetric
in their indices. )

Implications of conformal invariance

If we take x'=0 in the coefficients C~~(S, x') we
obtain" "' the coefficients C~(S) of the massless
theory (in our case, the massless g)T$4) theory)
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evaluated at the fixed point of the renormalization
group. " Since this massless theory:s conformal-
ly invariant, there must be relations among the
coefficients C~(8) that reflect conformal invar-
iance. These relations can be derived by applying
the methods developed by Ferrara, Grillo, and
Gatto" for the operator-product expansion of two
scalar fields.

We commute the conformal generator K„with
both sides of the operator-product expansion. On
the left-hand side we use

[T{q(0)q(x)},K„]

= TQ (0)y(x)}(2idqx„ —is,x' + 2is xx„——,'[y„,g]).

We insert the operator-product expansion for
T(g(0)g(x)} and apply the differential operator in-
dicated to the x's andy matrices in each term. Qn

the right-hand side we use

[S~'& . .„,rC"] =2iP -Z, )(Z +d, —1)/St'.—.'& „g"„},
where the traceless-symmetric operation on the
right-hand side applies to the indices p. , but not to
v. We then collect the results into terms that
transform under the various irreducible represen-
tations of the Lorentz group, ignore those repre-
sentations that do not contribute to matrix ele-
ments between the one-pion state and the vacuum,
and in each remaining term ignore pieces that are
of higher order in x'. This gives us four recursion
relations for the four sets of coefficients C~(8),
C~(8), C~(8), and C~(8) that correspond to each
independent operator. (The details of this calcula, -
tion, including a treatment of mixed symmetry op-
erators that do not contribute to the pion wave
function, will be given in a separate publication. ")

The four recursion equations are

2J + ds -4, 2 C~(8) 2( )( )
C~„(8) (4.5)

27+ dg —J' 2(Z. 1)(Z+ 2) (C', (8)) (C'„,(8)~
= 2(Z+ 1 -z,)(Z+ d3)

0 u. d, Z. ic,(8))
' iC„,(8))

(4.6)

We note immediately that the four recursion
equations in four unknowns break up into two sets
of two equations, one for C~, C~ and one for
C~, C~. This is consistent with the requirement of
chiral invariance that C~(8) = C2~(8) =0 for even-
chirality operators 8 and C~(8) = C~(S) =0 for odd-
chirality operators 8. (One proves this rule by
noting that the zero-mass PP(I) theory is invariant
under the chiral transformation U with U ')U=y, g,
U 'gU= —+5, U 'QU= —(t). Thus

U 'T(g(0)g(x)}U= -y, TQ(0)g(x), y, .

When we insert the operator-product expansion
for T(g(0)g(x)} we learn that the sign of the y-ma-
trix part of each term under I' ——y,T'y, must be
the same as the sign of the operator S~~& under S~~~

—U '8&~& U, or else the coefficient Cz(8) of that
term must vanish. )

The recursion equations are easily solved, but
we can see where the poles in J of the solutions
are even without solving the equations. We assume
that C~z(8) is analytic in the right half J' plane, and
use the recursion equations to continue C~ into the
left-hand plane in steps of AZ= —1. Poles in C~

(2J + d ~
—J,)' —1 = 0;

that is, when J =t. , where

Z, =+ — [d, -Z, (8)] (4.7)

or when J = ——,
' ——,'[d~ -J',(8)], which is Z=Zs —1.

(There are double poles at Z~ —1, Z~ —2, . . . ; these
lead to log@' factors in the expansion of the form
factor. )

In a gyp' theory the lowest-twist odd-chirality
operators with nonvanishing matrix elements be-
tween the one-pion state and the vacuum are

q(x)y, (a„~ s„}q(x), Z, =0, 2, 4, . . .

$(x)y,(y„s„' s„}$(x)p(x), J'o = 1, 3, . . . .
These ope.",. ators have twist 3, so (for small anom-

occur at those points J'~ where the matrix in the
recursion equation becomes singular (and at Zz —1,
J~ —2, etc.).

In the case of an odd-chirality operator 5, the
nonzero coefficients are C~ and C~. They become
singular when
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= 3+J,—,+ O(g')
Jp+ 1 Sp'

for S = yy, (a„~ ~ ~ sgp and

dz = 2+ [(J,+ 1)'+g'/(2m)']'/'

1=3+J,+,+ o(g')
p+ 7T

for gy, (y 8 ' ' s)fp
The residue of C~(S) at the pole J =Jl is also

easily computed (up to a normalization constant)
directly from the recursion equation. At J=Jz the
matrix multiplying C'J is

This matrix annihilates the vector C' = (2, —1).
Thus

Res CI (S) = const x (2, —1,0, 0).
J =J g

(4.8)

Let us turn to the case of an even-chirality oper-
ator 8, with corresponding nonzero coefficients
CJ and C'J. According to the recursion equation,
these coefficients have a pole at J=J~ where

J, =--,'[d, -J,(s)]. (4.9)

(Further poles then occur at J =Jz —1, J)) —2,
etc.).

In a ~g(It theory the lowest-twist even-chirality
operators that contribute to the pion wave function
are

alous dimensions) dz —J,= 3 and J~ =+ —,
' ——,'(d~ —Jo)

= —1. In the ~g(t) ladder model we find" d&=-,'
and

dl = 2+ [(Jo+ I)'-g'/(2~)']"

&0[s'„',.) . . „ I» =i'O'„" P„]&s& (4.10)

where &S& is a, constant that depends (nly on the
base operator S„.. .„ofthe series to which

S„J.~. .„belongs. The courier transforms of the
0j.' '

factors x«(x» ~ ~ x "&) are certain constants times
q

' ~ «(q» ~ q)'i) Com. paring the result to the
definition E)I. (2.7) of the partial-wave amplitudes
)/~(q'), we can read off the q'- ~ asymptotic ex-
pansion of )t~z(q') corresponding to the x'-0 opera-
tor-product expansion:

))"~(q')- Q a~(s)C~(s)q ' I + ~ ~ ~, (4.11)

where the dots indicate terms of higher order in
q', p(S)=d~ —J, —2d«, and

1
( ) IS 22Pfg)& &

r(J 2f (S))
r(- 9 (S))

a', (S) = —2a,'(S),

multiplying C~z(s) in the even-chirality recursion
equation becomes identically zero at J=Js instead
of annihilating just one vector t"J. Thus, the two
independent solutions have different residues. What
linear combination of the two conformally invariant
solutions CJ actually occurs must be determined
by the Bethe-Salpeter equation. Using the ladder-
model BS equation we find, "at J=J~,

Res C~(S) =constx(0, 0,g'/Sw', 1 —(dz —J, —3)').
J =Jg

We can now translate our information about the
operator-product expansion (4.2) into information
about the pion bound-state wave function. We take
the matrix element of the operator-product expan-
sion between the vacuum and one-pion states and
the Fourier transform. The matrix elements of the
operators 8~ J~. have the form

Px

y(x)y, (y, s„a„]g(x), J,=1,3, 5, . . . .

These operators have twist 2, so, for small anom-
alous dimensions, d~ —J,(s) =2 and J~ = —1. In
the ~Pf ladder model we find"

3(s) = 15 22'~)&S& «+-'+&(S»
r(- @(s)——,') '

a,'(S) = S~'2""(S&r(- @(s)+-,')

(4.12)

+ Jp + 2 Jp+

g2 g2 1/2 1/2
—2 (J,+1)'-

8p2

1
J (J +1) 8)/'

The residue at J =J~ of Cz(s) is not determined
by the conformal recursion equation in the case of
an even-chirality operator 8. There are two linear-
ly independent solutions of the recursion equation,
as in the odd-chirality case. However, the matrix

8r')S -4-&(3,n) «(&)-J-J(s, n)
g, n

(4 13)

We have found that the coefficients C)~(S) in the
operator-product expansion have poles in the left
half J plane. The coefficients a~&(S) that arise in
the Fourier transform to momentum space also
have some poles in the left half J plane. " Let us
denote the positions of the poles of the product
a)~(s)C«~(s) by J(s, n) (n=1, 2, . . . , ), and the corre-
sponding residues by )'(S,n) Thus the .leading
terms in y~(q') as q'- ~ have the form
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This J-plane structure has been determined by
applying conformal invariance at large values of
q'. As explained at the beginning of this section,
we assume that this structure is modified only by
multiplication on the right by a matrix function

f&8(S,q"), as shown in Eg. (4.1). Let this function
be written as

f{S q'} =f"(3 q')+f"'(S, q")~g.

Then note that multiplication of a wave function by
on the right has the following effect on the par-

tial waves: If X(q'+P', q") = X(q" +P', q")ig, then

X~{q') =q QX~(q'}M&',

where the matrix M~~ is defined by

G', (q",P")Q =q g M'J G', (q",P').

The matrix can be worked out explicitly using the
identities of Appendix B of Ref. 7. and is given by

0

1 0 0

—2(Z+ 1) —2(Z+ 1)

2(J+ 2)

—(J+ 1}

(Z+ 2) (Z+ 1)
(4.14)

yd(S n)
-& -&(8 .&) -P(s)

Xz(q }= g g(S n}

x[f ' (S,q')5~'+qf ') (S,q')M~ ]

+ Xz(q') & (4.15)

where P~(q') is analytic in the region of interest,
and as q'- ~, f"- 1 a,nd qf ~') - 0. We are as-
suming that Eg. (4.15) accurately describes at least
the leading poles (i.e. , those which occur near
Z=- 1).

The assumption of Eq. (4.1) can now be rewritten as
a direct statement about the leading poles of X~(q'):

It is apparent that the structure (4.15}is consis-
tent with the large-q' form (4.13). A number of
possible modifications of Eq. (4.15) that are equal-
ly consistent with Eq. (4.13) spring to mind. One
might imagine that the pole positions are functions
J (q', S,n) of q' with Z{q'; S, n) -Z(S, n) as q'- ~.
One might also ixnagine that the matrices f~'~5~'

+qf ~')Mz' that multiply the residues are more gen-
eral matrix functions A~'(S, q') that tend to 5~' as
q'-~. There are also more exotic possibilities.
One could easily discuss the implications for F{Q')
of any of these possibilities. However, we will re-
strict our discussion to the simplest case repre-
sented by Eg. (4.15), as suggested by the ladder
model.

V. EVALUATION OF THE FORM FACTOR

(5.1)

We must now use our information about X~(q') to find the poles in the integral G(Z) defined in Eq. (3.11):

22 2

[Xz{4 )+z, g+1XS+1(q }™Xz+2(q K, z+1XZ+1(q 6&
j,/=1

where the matrix D~' ~„(q'/I') is given in Eq
(3.9}. [Recall that a pole in G(J) at J=Z produces
a term F (Q') in the form factor that falls off like
(q')~~ as g'- ~.] We will be concerned only with
the leading group of poles in G(J}, which occur
near J= —1.

Poles in G(Z) can arise directly from poles in
X~(q') or they can arise from a divergence of the
integral at large q'.

Consider first the poles in G(Z) produced directly
from poles in X~~(q') at O'= J(S,n), beginning with

those poles associated with an odd-chirality opera-
tor S. The leading such poles in X~&(q'} occur at

(5 2)

where ) z is the anomalous dimension of S [see Eq.
(4.'I}]. Thus these poles in X produce poles in G(Z)
near Z = —1; they also produce poles in G(J) near
J = —2 and J = —3, but we do not consider these
nonleading poles.

The residue of X~&(q'} at one of these poles is
given by Eq. (4.15) with
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r' = constx (1,1,0, 0), (5 3)

Res )tz(q'} D" „(q/m)J Jg

4-J g P(&) -p r) [f( &) 5f&+ f ) 2)Mf&1ZplJ' J J,J+1
f,k

which we obtain by combining the conformal-in-
variance result (4.8) with the kinematical factors
described by Eqs. (4.11) and (4.12). However,
when we refer to M~'[Eq. (4.14)] and D"' [Eq. (3.9)]
we notice that"

~ +y&. These poles arise from the factor
I"(J+-,'+ @(S))in the coefficient a~(S), Eq. (4.12).
However, the residue x' at such a pole has only
an i =3 component and" [f~')5'~+f&')M "]D ' =0, so
there is no corresponding pole in G(J). [The lead-
ing poles that do occur in G(J) because of poles in
the coefficients a~(S) are located near I = —2. ]

We now turn to the poles in G(J) that arise from
a divergence of the integral at large q'. The terms
in the wave function that are largest as q'- ~ arise
from the twist-two even-chirality operators
S =~,fr„s„aJp. These behave like

=0 (5.4) ))', (q') - Q u', (S)C', (S)q
' ' & ")'s ' (5.6)

Thus G(J) does not have poles at the locations J=J~
of poles in the wave function associated with odd-
chirality operato"s 5.

This cancellation was first noticed by Menotti, '
who used a different method of calculation. (He
actually discusses only the contribution from
3 = Py, P, but his method can easily be generalized. )
The cancellation can easily be seen in momentum
space by noting that the odd-chirality part of the
conformal-invariant wave function" has the as-
ymptotic form

X,(q" +P",q"}-(2q I'+ [&,q])

as (q+P)'- ~ with q' fixed. When multiplied on the
left by I) [as it appears in Eq. (3.3) for the form
factor], one can see immediately that the dominant
term is canceled exactly. This cancellation is a
property of the vector vertex function, and will not
occur for a scalar form factor. It should also be
noted that this cancellation depends crucially on the
precise Dirac matrix structure of the wave function
in the appropriate limit. If this structure were to
be modified more than is allowed by Eq. (4.15), then
then the cancellation would disappear, although the
other conclusions of this paper would remain un-
changed.

Consider now the poles in G(J) produced by poles
in )i~(q') associated with even-chirality operators.
The leading such poles are associated withthe op-
erators S =)()),Ir„a„~.a Jg and occur at

J= —1— (5 5)

where again yz is the anomalous dimension of S.
nonformal invariance does not determine the resi-
due of y~ at a pole associated with an even-chirality
operator, so we cannot guarantee that no cancel-
lation occurs in the product y~D". However, no
such cancellation occurs in the ladder model. Thus
we may presume that G(J) does indeed have poles
at the locations J= —1 ——,'y~ .

There are also poles in y~(q') associated with
even-chirality operators Q and located at J= —1

[see Eq. (4.11)]. Thus the large-q' part of the in-
tegral G(J) behaves like

4 —3 -g +2/-~. J -3 -'}t' I +2/-~. —J-1
dqq q ~ ~ q

Therefore G(J) has "short distance" poles at

J= —1+2y~ —
~2 ~

——,'y q, ) (5. 't)

where 8 and 5' are any two of the twist-two opera-
tors (y,(y 8 BP.

There are a few other mechanisms that could
produce poles in G(J), but do not. We have dis-
cussed divergences in the integration as q - ~.
One might also imagine that the integration be-
comes divergent at some finite value q' of q' as I
takes on some particular value J. However, this
would mean that )) z(q') has a previously undis-
covered singularity in the J plane —a possibility
that we have aplumed does not occur. There re-
mains the possibility of a divergence coming from
the q'- 0 end of the integration. Inspection of the
representation (2.15) of )t'z(q') suggests that )) z(q')
behaves like q~ as q-0, where L, equals the num-
ber of q"'s in the basis function G~z (L =J for i = 1,2,
L =J —1 for i = 3, L =J+ 1 for i = 4). This gives a
leading small-q behavior of the integrand in G(J)
of q "and thus a.. apparent pole at I = —2. Sim-
ilar poles would appear to occur at other negative
integer values of J. However, recall the Lorentz
reflection symmetry properties of the wave func-
tions, Eq. (2.23). These sa.y, for instance, that
))'„(q') = —)t„',(q') for integer N. Since ))„',(q') has

a q dependence of q
' instead of q as q —0, we

conclude that the coefficients of the terms in )i''}
that are most singular as q'-0 must have zeros
at I = —2, —3, . . . . These zeros (along with similar
ones associated with y)z for i =2, 3, 4) cancel the
poles in G(J) due to infrared divergences of the in-
tegral. Finally, the apparent poles caused by the
factors (J+ 2) ' in the definition of G(J) and (J + 1} '
in the matrix D~ J 1 are canceled by zeros of the
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wave functions, as one can verify by using the Lor-
entz symmetry relations.

F s (Q') = const x (Q') ' (5.8)

Second, consider the "short-distance pole" terms
F ~3, -(Q')~ with J' given by Eq. (5.7): J= —I+2y&

~
——,'ys, , as determined by the behavior of the

loop integrand when all legs are far off shell.
These terms are now modified by extra factors
(Q') &t from the vertex and (Q') ~t from the inverse
propagator, giving

F z ~, (Q') = const x (Q') ' ~ & t ' -& s ~t'. (5.9)

VI. CONCLUSION

We have analyzed the leading terms in the asymp-
totic expansion of the pion form factor and found
terms of two types.

First, there are "short distance" terms connect-
ed with the large-q' behavior of the loop integra-
tion. One such term is associated with each pair

Modifications for dressed quarks

In the calculation just presented we have care-
fully analyzed the pion wave function, but we have
simplified the quark inverse propagator and the
quark-photon vertex in Fig. 2 by replacing them by
(i4(+m) and y, respectively. If the full quark in-
verse propagator and vertex are used one would
expect the results obtained above to be modified.
One would also expect the modifications to be small
in the limit of a small anomalous dimension y& of
the quark field, since in this limit far-off-shell
quarks behave almost like bare quarks.

The pion form factor, including a dressed quark
propagator and vertex, can be analyzed by using
conformal invariance to determine the relevant be-
havior of the propagator and vertex and then using
a modified version of the calculation presented
above to extract the leading terms inF(Q') as Q'-~.
Since this analysis requires a large effort to pro-
duce a miniscule modification of the results, we
content ourselves here with a statement of the mod-
ified results. A sketch of part of the required an-
alysis is presented in the Appendix.

The quark-photon vertex is effectively modified
by an extra factor (momentum) '&s when two or all
three of its legs are far off shell. The quark in-
verse propagator is also modified by an extra fac-
tor (momentum) '&y when it is fa,r off shell. Con-
sider first the "wave function" pole terms in F(g').
These terms were Fs -(Q')~ with J given in Eq.
(5.5) by J = —1 ——,'ys, as determined by the behav-
ior of the loop integrand when (P+q)'-~. These
terms are now modified by an extra factor (Q')
from the vertex, giving

F ~ (Q') = const x (Q') ' & s t' (6 2)

Here y& is the anomalous dimension of the quark
field g(x) and, again, y ~ is the anomalous dimen-
sion of S.

We can conclude that, as long as anomalous di-
mensions are small, the pion form factor behaves
roughly like (Q )

' for large Q . A more detailed
conclusion can be reached if we assume (1) that as
one chooses operators 3 with higher and higher
spin, y~ -2y&,"(2) that, as suggested by the ladder
model, "y~ & 2y& for these operators 8, and (3) that

y& &-0." On these assumptions the contributions
from high-spin operators dominate the form fac-
tor. As long as the sum of these terms is abso-
lutely convergent, one may conclude that the form
factor falls off at least as fast as (Q') ' '~e and
that it does not fall off faster than (Q')
for any positive e.

These results can be compared with those of
Callan and Gross' and of Menotti. ' Callan and
Gross obtained F(Q')-(Q') ' » t' ~e, where 8
was the leading odd-chirality operator, ~,g. This
and similar terms would indeed be present except
that, as first pointed out by Menotti, the coeffi-
cient of these terms happens to vanish. [See Eq.
(5.4).] Menotti then argued that the short-distance
term corresponding to the operator ~,P would
dominate the form factor. Since this operator has
twist three, the corresponding short-distance
term is F(Q')-(Q') ' &" . Our analysis differs
from that of Menotti by including the twist-two
even-chirality operators gy,y„g, . . . , which, it
turns out, provide the dominant terms in the form
factor. "

The result obtained here also agrees approxi-
mately with the dimensional counting rule" that the
form factor of a bound state of n quarks should be-
have like (Q')'
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of operators g and 5' chosen from among the twist-
two traceless symmetric operators ~,y g,
qy, (y a&a„Jg, . . . . The corresponding term is

t~~, (Q') =constx(Q') ' &s t' & s't', (6.1)

where y ~ and y~, are the anomalous dimensions
of S and 3', respectively.

Second, there are "wave-function pole" terms
associated with poles in the complex O(4) J plane
of the pion wave function. There is one such term
for each of the twist-two operators enumerated
above:
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APPENDIX: MODIFICATIONS FOR DRESSED QUARKS

Ss '(q) =i (tA((q') +B(q'). (A I)

In order to compute the "short distance" terms in
the asymptotic expansion of the pion form factor,
we need to know the form of Sr '(q) as q'- ~.
Conformal invariance" at large q' dictates

Sr '(q) -const xi(j(q')-)'e (A2)

in this limit.
The dressed quark-photon vertex is not so sim-

ple. Let us call the (amputated) vertex I')'(k", k" ),
where k" is the momentum of the final quark and

In the main text we made use of a bare quark
propagator (ig+m) and a bare quark-photon vertex
y". In this Appendix we will sketch, with some
glaring lapses in rigor, the modifications that are
necessary when one uses a dressed-quark inverse
propagator and vertex.

The dressed inverse propagator has the simple
form

k' is the momentum of the initial quark. Lorentz
invariance and parity allow us to write I' t' in terms
of twelve form fa,ctors':

I'~(k'", k') =y$, + kk'f, + k'kf,
+ $kf, + f'k'f, + P'y "@s

+ k f, + k'fs+o""k„f,+o""k„'f,o
+ok„'k'skf 2) + o k' k() k'f, , (A3)

The form factors are functions of k', k', and Q',
where Q" = k" —k'.

As we will see, the only information about l ~

that is relevant for us is its dependence on Q' and
k' when Q' and k' are large but k" is finite, its
dependence on Q' and k" when these variables are
large and k' is finite, and its dependence on all
three variables when all three are large. We will
assume that this information is correctly given by
the conformally invariant vertex for two spinor
fields and a conserved current, l"",. The conformal
vertex has been given by Todorov. " In momentum
space it is

l+P' „ f+k I)'+k)'+I)'+k')'
(I+ k') (I+ k)2 (I d. k)2(l d. k')2 (A 4)

where C and D are constants not fixed by conformal invariance. [The derivation of Eq. (A4) involves the
assumption that I'I,' contains an odd number of y matrices. Terms in I'" containing an even number of y
matrices are smaller by a factor of (mass)/(momentum) inthe large-momentum limit in perturbation theo-
ry. ] One can extract the limiting behavior of the form factors f„ from (A4) when needed by introducing
Feynman parameters.

Let us consider now the contribution to the pion form factor from the term yf, in I' . We will treat this
term as an example; the analysis of the other terms is similar in general method. We define the Mellin
transform of f

1',(s', s, r) =
0

dkr 2(krs)s' —)

0

dk'(k')' ' dQ'(Q')" ' f,(k", k', Q').
0

(A5)

The Mellin transform f, can be presumed initially to be analytic in 0& Res' &s, 0&Res &s, 0 &Re r&a
for some small s. We will discuss the singularity structure of f, in more detail shortly. The inversion
of the Mellin transform is

a +iso

f,(k", kQ') = (2)ri) ' ds'(k") "
a -j~

~a+joo
gs(k')-& dr(q') "f,(s', s, r),

where 0(a =c.
Let us substitute yg, for y in the loop integral (3.4) for the pion form factor, with f, given by Eq. (A6)

and the s', s, and r integrations brought to the outside of the loop integration, to be done at the very end
of the calculation. We also substitute the dressed-quark inverse propagator (Al) for [i(f'+m]. This gives

r(S')=(2 i) 'f d 'dsdrs(()', ', , )J,t ', s, r), (A7)
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where

oo

x q dq dQ Tr(g(q!P) ] y(q" +P",q")[i4/A(q )+B(q)] y(q", q" +P' )[(q+P') ] ].
P 0

(A8)

This expression for F(q'; s', s, r) is nearly identical to the original expression (3.4) for 8'(Q') Th.e dif-
ferences are the following:

(1} There is an overall factor (q') ".
(2) The quark inverse propagator is modified, resulting in an extra factor (q') &(( at large q'.
(3) The wave function y is modified to an effective wave function g,« = [(q+P)'] 'y. From y,«one can

form partial-wave a.mplitudes ydg(q'), «as before [see Eq. (2.7)]. The 8'-plane poles of yz(q'), « tell how

k,« falls off as (q!P)'-~. Therefore a pole of y'g(q') that was located at 8 =J(S,n) is now moved to
J =J(S, )22—s. At fixed' and large q', }(g(q') falls off faster than yz(q') by a factor (q') '.

(4) The wave function y is similarly modified by a. factor [(q+P')'] ', so that its J-plane poles and pow-
er behavior at large q' are shifted by an amount s'.

If one now repeats the calculation in Secs. III and V, one finds that the asymptotic expansion of
F(q', s', s, 2') for large q' is modified by small shifts in the powers of Q' that occur. The leading "short
distance" terms in the expansion previously had the form

F(0) (q2) (q2)
—2 +2) ~ -) 2 /2 -Z

2) r /2

where g is a constant [see Eq. (5.7)]. These terms now become

F22, (Q';s', s, r) =g(s', s, r)(q') ' '/e ~s /' ~2 '/'(q') " ' " )'e (A 9)

(The coefficient g is now a function of s, s, and 2, reflecting the dependence of the effective wave func-
tions on s and s' and on J, which has been set equal to —1+y& —ys /2 -y 2,/2 —s' —s —r )The .leading
"wave-function pole" terms previously had the form

F' (Q)=k(q') '
SS

[see E(I. (5.5}]. These now become

F, (q'; s', s, 2') = k (s', s, )(q') ' ~ '(q') " '. (A 10)

The pion form factor is given by E(I. (A7) as an integral of the product of F 2 (Q'; s', s, 2') and the Mellin
transform of the quark form factor. Let us consider the contribution from one of the "short distance"
terms in Fs (Q'; s', s, 2) given in Eq. (A9):

g„,(Q')" (Q') ''rr " r' r 'r'(2 ') ' jd d drg( , . )'(Q. ') ' ',' 7, (d', , ). (A11)

The s', s, and r integrations initially run parallel to, and just to the right of, the imaginary s', s, and r
axes. The integral as it stands falls off at least as fast as Q' to the power —Res' —Res —Rex;this mani-
fest rate of falloff can be increased by moving the integration contours to the right until a pole of the inte-
grand is encountered.

The location of the leading pole in f,(s's, r) as s'+s+ r increases tells how f,(k", k', Q') falls off as k''-,

k', and Q' become large with k"/Q' and k'/Q' fixed. In this limit we expect f, to behave like the conform-
ally invariant f ', calculated from the conformally invariant vertex function I'„Eq. (A4). In order to make
the analysis as clear as possible, let us adopt a. definite model for f,(k", k', g2) that approaches f ', for
large momenta, has good enough infrared behavior so that its Mellin transform exists, and is simple
enough so that its Mellin transform is exactly calculable:

f,(k", k', q') =
Jp

2 —P g(k/2) d —)'(2(k2) 2

(Z IZ3+ZPCr3 +8IZd)@+2182
(A12)
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This model f, is the same as the conformally in-
variant function f ', except for the term z,z,A' in the
denominator. This term improves the infrared be-
havior of the model f, by making it finite at k" = k'
= g'=0, as one would expect for the true form fac-
tor f,.

The Mellin transform of the model f, is

f,(s', s, r) =I'(y&-s'-s-r)i'(s')I'(s)I'(r)(A')' "'" &'0

xl'(I-y&+s')I'(I-y&+ s)I'(I+y&-s -s')

xr (2 -y~)-'I'(1+y~)-'. (A13)

We see that j, is analytic inside a tetrahedron in
(Res', Res, Rer) space with sides at Res'=0,
Res=0, Rer=0, and Res'+Res+Rex=y& as in-
dicated in Fig. 3.

Returning now to Eq. (A11), we move the inte-
gration contours to the largest value of Re s'+ Re s
+ Re r attainable before encountering a singularity,
that is, to Res'+Res+Re&=y&. We then move,
say, the r integral past the pole at s+s'+r =y&,
picking up a residue term

Fss, (q') =constx(q')-'-~s ~'-&'3 ~' (A14)

and leaving a background integral that manifestly
falls off faster then the residue term as g'- ~.

[We have neglected mentioning the singularities
of the factor g(s', s, r) in Eq. (All). This factor
can be expected to have a pole at s' =y& -y, ,/2,
since at this value of s' the "short distance" pole
of the effective function G(J), Eq. (3.11), at J= —1

+y&-ys/2-ys, /2 —s' —s —r and the "wave func-
tion" pole at J= —I -ys /2 —s —r coincide. We can
simply choose not to move the s' contour past this
pole. ]

The contribution to F(Q') from one of the "wave-
function pole" terms, Eq. (A10), in F(Q', s', s, r)
can be analyzed in a similar manner. We begin
with

F, (Q') = (Q')-'-» ~'(2wi) '

x ' ds'dsdrh(s', s, r)(q') " 'f, (s', s, r)

(A15)

Here we want to increase Re s+Re r as much as
possible, moving near the edge of the tetrahedron
in Fig. 3. If we then move, say, the r contour

FIG. 3. Region of analyticity of the Mellin transform
of the quark form factor.

past the pole of f, at s'+ s+ r=y& we obtain a back-
ground integral plus a dominant residue term:

—(q') '-xs I'(2si) '

x ds'dsh(s', s, y&
—s' —s)(Q') &ll"

x ' dsh(0, s, y&
—s)Res Res f,(s', s, r)

Ss=o r=y~-S -S

The background integrals fall off faster than the
double residue term, so we have as Q'-~

Fs (Q') =constx(q')-'-~s ~'-~e. (A16)

This completes the analysis of the contribution of
the quark form factor f, to the pion form factor.
The analysis of the other form factors is similar
in spirit, although one must do some additional
trace algebra in order to handle the more compli-
cated spinor structure that accompanies these
other form factors. Analysis of the other form
factors leaves the results Eq. (A14) and Eq. (A16)
unchanged (including the cancellation of the wave-
function pole term from the odd-chirality opera-
tors).

x Res f,(s', s, r).
y= j'g-S -S

(This residue term can be thought of as represent-
ed by a point in Fig. 3 on the surface Res'+Res
+ Rer=y&. ) We can now increase the manifest rate
of falloff of the residue term by moving the s' con-
tour to the left, past the pole of Res f at s'= 0.
This gives a background integral plus a double
residue term:
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