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Spontaneously broken gauge theories describing gauge bosons coupled in the manner of the Yang-Mills
prescription to a Lorentz scalar ¢ transforming as an arbitrary (2n + 1)-dimensional irreducible representation
of the gauge group SO(3) are considered. It is shown that given the topologically stable, static solution of ’t
Hooft and Polyakov for the isovector (n = 1) field there exists a recipe for constructing solutions to all higher-
dimensional fields ¢. The case n = 2 is worked out in some détail. The same recipe is applicable to any other
homotopy class where the isovector problem is solved, and the solutions so generated are seen to be the only
possible stable ones. Since the above solutions exist only if the vacuum is U(l) symmetric, arguments
supporting that contingency for a general rank-n Lagrangian are given. In two space dimensions, the tower of
solutions corresponding to the only stable homotopy class are outlined and the case n = 2 is described in
detail. In all cases the electric potential that may be added in the manner of Julia and Zee is specified.

I. INTRODUCTION

This paper makes a modest contribution to the
field opened up by ’t Hooft,! Polyakov,? and Cole-
man.? ’t Hooft and Polyakov independently pro-
vided us with a very interesting solution to the
classical field equations describing an isotriplet
(¢) of Lorentz scalars and non-Abelian gauge
bosons, where the interactions are invariant under
the local gauge group SO(3). The novel feature of
this symmetry-breaking solution was that at differ-
ent points on the sphere S% at spatial infinity, the
vacuum expectation value of the scalar field 5 took
on different orientations in internal SO(3) space.
This asymptotic scalar field was accompanied by a
radial magnetic field (corresponding to the sur-
viving massless gauge boson) with a total flux of
4m/e (e is the gauge coupling), which prompted
’t Hooft to call it a monopole and Polyakov a
“hedgehog.” It was then Coleman (to the best of
my knowledge) who showed that the introduction of
certain methods from homotopy theory would shed
light not only on the ’t Hooft-Polyakov monopole
but on the entire family of such solutions with non-
constant asymptotic behavior. One could see from
these notions, for example, why the flux of the
monopole had to be 47/¢ instead of some arbitrary
quantity. One could infer that the decay of the
monopole into the vacuum under the influence of
small perturbations or fluctuations was forbidden.
This stability, but for which the possibility of such
solutions manifesting themselves as new physical
particles would be greatly diminished, does not
follow from the fact that the monopole solution
extremizes the energy functional and is rather of
topological origin. Furthermore, these methods
from homotopy theory, which expose the anatomy
of topological stability, tell us if a given Lagran-
gian admits such solutions and provides an elegant
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scheme for their classification.

I began this investigation to see if these tech-
niques could be employed to answer the following
question: Are there static, topologically stable
finite-energy solutions for the Lorentz scalar
transforming as any other representation of SO(3)
besides the isovector, which corresponds to the
’t Hooft-Polyakov monopole? The outcome is pre-
sented in the following sequence. A concise survey
of the relevant elements of gauge and homotopy
theories is presented in Sec. II. The solution for
the rank-two isotensor in three space dimensions
follows in Sec. III. In Sec. IV it is shown that
similar solutions exist for all higher-dimensional
representations, and the recipe for constructing
these is presented. It is shown that these solutions
are the only possible ones. The problem is re-
visited in two space dimensions (Sec. V), and
stable solutions are given for all even-rank ten-
sors, The rank-two tensor is once again discussed
in some detail. A brief summary follows in Sec.
VI.

II. INTRODUCTION TO HOMOTOPY THEORY

The study of topologically stable solutions such
as the ’t Hooft-Polyakov monopole involves the
elements of homotopy theory as applied to gauge
theories. A survey of the necessary ingredients
will be presented in this section to render the
paper self-contained. It will be tailor-made to
suit our needs and will be rather brief; an ex-
haustive and lucid survey may be found in Ref. 3.

Imagine a rubber string parametrized by a vari-
able x ranging from 0 to 27 and a space or mani-
fold Y which may, for example, be points inside
a unit three-sphere or those on the surface of a
torus, etc. Now mentally “dip” this string in
this manifold and tie its ends. Each point x of the
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string is in contact with a point on the manifold—
this defines a map or function f(x): S'—-y, where
the string with its ends 0 and 27 identified is de-
noted by its topological equivalent, the circle, S*.
Let us restrict ourselves to maps satisfying f(0)
=f(2m)=y,, a fixed point in Y. We are still free
to deform the loop into other configurations, de-
fining other maps g(x), h(x), etc. Given two maps
f and g, the product f g is defined to be

frg(x)=f@x), Osxs<m

=g(2x -27m), mwsx<2m. @.1

Geometrically f - g corresponds to a configuration
in which the portion 0—7 of the string lies along f
and the portion m7-2r7 along g. This is clearly yet
another way to immerse the loop S' in Y. This
suggests that a group structure is possible if we
define the inverse map

f Y (x)=f(@n-x) (which is f run backwards)

2.2)
and the constant or identity map
c(x) =y, (which is the loop shrunk to
the point v,). (2.3)

This is not quite true since f~'f(x), in which the
segment 0—7 goes along f and the segment 7-27
retraces this path, is not the same as c¢(x), the
constant map, in which the loop never leaves .
However, it is intuitively clear that f~!f can be
deformed to c(x), independent of f and the struc-
ture of Y. It therefore seems that a group will
obtain if we consider as its elements not distinct
maps but equivalence classes of maps, where the
elements f,,f, of a class [ f] are homotopic, i.e.,
topologically distortable into each other. The
class [e] containing the constant map c(x) =y, will
then be the identity element. The expression

f,-;_olf,-

is used to signify that f; and f; are two loops start-
ing and ending at ¥, such that one may be continu-
ously distorted into the other. If one parametrizes
the intermediate maps by a variable {, conveniently
chosen to range from 0 to 1, the collection defines
a function #(x,t) called the connecting homotopy,
which satisfies

h(x,0)=f,(x), (2.4a)
h(x,1)=f;(x), (2.4Db)
r(0,8)=y,. (2.4¢)

If we imagine the loop f;(x) evolving in time (¢)
into the loop f;(x), k(x,t) is simply the history
of this evolution.

The set [e],[f],[gl,... will form a group pro-

vided the notion of multiplication, which was well
defined for distinct maps f and g, makes sense
for classes [f] and [ g]. The equation

[f1*[gl=[f"g] (2.5)

defining class multiplication makes sense if two
arbitrary choices of representative elements from
[f] and [ g] yield the same class, i.e., if

18278,
Yo

But this is certainly true— f, * g, is homotopic to
f»' &, since f, can be distorted to f, and g, to g,
since they are members of the equivalence classes
[f]and [g]. The desired homotopy connecting

f,& and f, g, is

h(x,t)=h,(2x,t), Osx<m

=h,(2x = 2m,t), wsx<2m @.6)
where &, and h, distort f, and g, into f, and g,,
respectively,

The group defined above is called the first homo-
topy group m (¥,,Y). A famous example is given by
Y=E?-(0,0), i.e., the plane minus the origin and
¥, any point. Loops that avoid (0, 0) can be shrunk
to a point and form [e], the identity element; loops
that encircle the origin once clockwise (counter-
clockwise) form another distinct class [1] ([-1]);
those that go around (0, 0) twice form the classes
[2] and [-2], etec.

Instead of mapping the one-dimensional interval
0-27 (with 0=27), i.e., a circle S', if we map a
unit square (with all points on the perimeter iden-
tified), i.e., a two-sphere S2, we obtain the second
homotopy group 7,. Once again the entire perim-
eter of the square (identified conventionally with
the north pole of the sphere S?) is required to go
to some fixed point y, of ¥ when we consider
Ty (¥, Y).

For our discussion of gauge theories let us con-
sider a Lagrangian symmetric under a local gauge
group G and involving the gauge fields A}, and a
scalar multiplet ¢:

Lz_%FﬁuF“y’a+T(Du¢)_V(¢), (2-7)

where as usual Fj, =9, A} -3, A% +ef*"A} A and
f%¢ are the structure constants of the Lie algebra
of G. The kinetic energy form 7T involves the co-
variant derivative

D,¢p=09,6-€eT A ¢,
where I'® are the generators that act as the space
of ¢. The potential energy V(¢) involves only non-
derivative terms. The ground state or vacuum of
such a theory is decided by the parameters of V(o).
In the simplest case it is given by KU =¢=0 (or
its gauge equivalent). In the more interesting case
of spontaneous breakdown, the energy/volume,
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V(¢), is minimized by a constant but nonzero ¢.
Given a ¢, that minimizes V(¢), we obtain a de-
generate family of vacuums g¢, (g € G) by group
action. There are two ways of describing this
family, each with its own merits. The first is to
imagine the surface, called the orbit surface,
traced out by ¢, as the group acts on it—each point
on this surface, which lies in the space of ¢, is an
allowed vacuum. An equivalent way is to label
each vacuum by the element of G that generates it
from the reference ¢,. However, if there is a
subgroup H that leaves ¢, invariant, then g¢,
=gho, (h = H), and all elements g;k are equivalent
to the element g;. If we now identify all g;~ with
£;, we obtain a new manifold called the coset space
G/H, the points of which represent the possible
vacuums. Note that in the passage G~ G/H, the
entire subgroup H is identified with the identity
element e since h; =eh;.

As an example, consider an isovector ?43 of the
group SO(3) and its potential V(¢) =-3u2(¢* @)
+iX(¢ - B)2. For the initial vacuum state ¢, we
may choose any vector ?430 of length (u2/A)2, The
i_pvariant subgroup H =Us,(1), the rotations around
¢, The orbit space is clearly a sphere of radius
(42/A)2 and this is topologically equivalent to
SO(3)/Us, (1).

Such detailed parametrization of the possible
vacuums is pointless if we are interested in just
the ground state, which corresponds to just one
point in G/H. However, consider a general finite-
energy solution. In any spatial direction it must
asymptotically tend to some allowed vacuum con-
figuration or else its V(¢) would exceed that of
the vacuum over an infinite volume. Furthermore,
if gauge fields were absent, it would have to tend
to the same vacuum in all directions—for although
V(o) is indifferent to rotations in internal space,
the derivative terms 9;¢ in T(D¢) will produce a
finite energy /volume. The gauge fields can help
us avoid such uninteresting asymptotics, for in
their presence Dy =9,¢ — e_’f-KuqJ, which canbe
arranged to vanish rapidly enough.

The existence of such solutions, which exploit
the wealth of possible vacuums, seems to indicate
an increased variety in the particle spectrum of
the theory. However, such variety is illusory if
these solutions are not stable under small pertur-
bations and fluctuation from collapsing to the
ground state. Even if we pick, as did ’t Hooft, a
solution that extremizes the energy functional,
the question of stability remains open till second
variations are calculated and found to be positive
or zero. Such computations involve detailed dy-
namics and we prefer to avoid such an undertaking.
How then are we to ascertain the status of asymp-
totically nonconstant solutions such as the 't Hooft-

Polyakov monopole?

We can ascertain this by stretching the topologi-
cal ideas we discussed earlier. Imagine for a
moment that we live in two dimensions where spa-
tial infinity is a circle SL. A given solution as-
signs to each point on it a vacuum, and thus de-
fined a map f: SL— G/H. The ground state cor-
responds to the trivial map e in which all points
on SL (in fact, all points in space) map onto some
fixed point in G/H. We are asking if a configura-
tion f can dynamically evolve into e, say under
small perturbations. The answer is trivial if we
incorporate the fact that all dynamical evolutions
are continuous topological deformations, where
the entry of abrupt spatial or temporal changes
(associated with infinite derivations) is forbidden
by the finiteness and constancy of the initial ener-
gy. Thus f cannot ever evolve into e if the classes
[f] and [e] are distant. (Of course if [f]=[e], f
may still be stable, but not for topological rea-
sons.)

Thus, given a Lagrangian L(A, ¢), the quest for
stable solutions begins with a study of m,(G/H). If
it is nontrivial, i.e., if it contains classes [ f]
#[e], the maps corresponding to the classes [ f]
are topologically stable. From such a class [ f],
one picks a map and chooses the accompanying
gauge fields to satisfy D¢ =0 on S2. These asymp-
totic fields must then be continued to finite dis-
tances in a way that will be discussed as we go
along.

Our classification of solutions by the behavior of
¢ at SL is futile if by a gauge transformation one
can go from one class [ f] to another, [g], in par-
ticular [g]=[e]. Fortunately any two gauge-equiva-
lent solutions may be shown to be homotopic to
each other.?

To play this game in three dimensions one simply
replaces S% by S% and m,(G/H) by 7,(G/H) in the
above. Before commencing, I would like to discuss
a very elegant and powerful theorem relating
m,(G/H) to m,(H) and m,(G). The proof will be brief
and is provided in the interest of completeness.

A complete discussion may be found in Ref. 3.

Consider a finite-energy solution in three dimen-
sions corresponding to which is a configuration of
¢ and A on S%. Let the sphere be spanned by loops
P,, P,, etc. that start and end _c’m_Ehe north pole
[Fig. 1(a)]. Since Dy¢ =29,¢ —eT-A,¢ mustvanishon
this sphere, the field ¢(p,) at a point p, on path P,
is related to the field ¢(0) = ¢,, the reference
vacuum at the north pole, by the solution to this
Schrodinger -type equation:

o(p,) - [T exp <+ej;p1T~K,. dx"ﬂ¢>(0)

=UP, 0,p,)$(0), (2.8)
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FIG. 1. (a) Paths on S, the sphere at infinity. (b)
The sphere at infinity represented as a square. The
perimeter corresponds to the north pole.

where the integral is along the path P, from 0 to

p, and path ordered by T. Thus to each point p,

on the sphere is associated an element U(P,, 0,p,)
of G. Let us now spread out the sphere on a plane
placing the loops P,, P,, etc. in juxtaposition

[Fig. 1(b)]. The four edges of the square corre-
spond to the north pole as they should: AB and

CD are zero-length paths that never leave the
north pole, while AC and BD are the extremities
of paths that start and end on the north pole. The
group element associated with the edges AB and
CD (the null paths) as well as the edge AC (where
the paths begin) is the identity element. On the
line BD (where the paths return to the north pole
and ¢ is back to ¢,) are mapped elements that
satisfy U¢, = ¢,, i.e., the elements of the subgroup
H that leave ¢, invariant. In the manifold G/4,
where all of H shrinks to a point, the square forms
a closed surface and corresponds to an element of
m,(G/H).

The same square when read vertically instead of
horizontally tells another story: As we follow the
line BD from & to D, we describe a loop in H
starting and ending at the identity. Thus each ele-
ment of m,(G/H) generates an element of m, (H).
This element belongs to kernel (ker) m, (H)— m,(G),
i.e., it is a loop on H that can be deformed to a
point in G. The proof is simple [see Fig. 1(b)].

As we move to the left reading along lines parallel
to BD, we see the loop in H smoothly evolving to
the point loop at the identity by the time we reach
AC. Thus the square, which defined an element

of m,(G/H), is also the connecting homotopy in

G that transforms an element of =, (H) into the
identity element of 7, (G). Conversely each element
of kernel m, (H)~ 7, (G) generates an element of
nz(G/H). Since this correspondence can be shown
to be one to one® we have the theorem

m,(G/H) =kerm, (H)~ 1,(G). 2.9)

We are interested in the following corollary of this
theorem: If the vacuum completely breaks the
symmetry G, H is trivial, =, (H) and m,(G/H) are

trivial, and there are no topologically stable solu-
tions in three dimensions.

III. THE SECOND-RANK ISOTENSOR IN THREE
DIMENSIONS

In our search for static topologically stable,
finite-energy solutions we adopt the strategy out-
lined in Sec. II: For the scalar ¢, we seek a class
[f] of maps S2 — G/H distinct from the identity
[el, pick f<[f] from this gauge-equivalent set,
and determine the gauge fields (on S2) such that
D¢ =0. The behavior of the fields at finite dis-
tances will be discussed later. In three dimen-
sions the existence of [ f]#[e] is decided by m,(G/H).
From the theorem m,(G/H) =kernelw, (H) - 7,(G) we
see that unless H is nontrivial (so it can contain
nontrivial loops) we cannot even get started. Cases
where the vacuum completely breaks G =SO(3) do
not interest us.

Of the possible (27 +1)-dimensional representa-
tions the case n =0 never interests us: All maps
are necessarily trivial, and G/H is a point. The
case of the isovector (2=1), which we will refer
to as ¢, with the potential

V($) =242+ §+1r($- P, (3.1)
is familiar. The vacuum is any vector of length
| ¢| = (42/A)2 and the set of rotations around the
vacuum vector, conventionally chosen along the z
axis of internal space, form the subgroup H =U,(1).
Instead of asking next if kerm, (H)— 7,(G) is non-
trivial, we directly consider the orbit surface:

a sphere S% /, of radius (42/\)¥2, Consider the
map in which the point (9¢) of S2 falls on the point
(6¢) of S%/. In the language of Ref. 3, S% covers
S2/ like skin of the orange covers the orange and
in these picturesque terms the stability is obvious:
No smooth deformations of the skin can shrink

it to a point (the trivial map). This map corre-
sponds to the ’t Hooft-Polyakov monopole.

When we turn to higher tensors the situation
looks bleak. Consider the second-rank tensor
which we will denote by the symbol ¢ written as a
traceless, symmetrized outer product of two iso-
vectors ¢, and $2:

@ =$f b1+ 6L bl - 564 (6,0 b,). (3.22)
Such a tensor has no axis of invariance in general;
if you rotate around &! you affect Z&z and vice ver-
sa. Thus the vacuum completely breaks SO(3) un-
less it miraculously corresponds to the case
@' || 9 [for at least a range of parameters of V(®)]
in which case H=U(1). But this is precisely what
happens. Let us represent the vacuum &;; as a
3X3 symmetric traceless matrix and consider it
in diagonal form:



—-a 0 0
&,=[ 0 -b © (3.2b)
0 0 (a+d)

In the Lagrangian density [Eq. (2.7)], T(D,®)

=i Tr(D,®D*®), D, ®=8,8 -¢[T A, ], where
T are the 3X 3 generators. The potential

V==3u2Tr®2 - 5y Trd3 +ix (Tro2) (8.3)

is the most general admissible one since (Tr®?)?
=2Tr®* and det® is expressible in terms of the
other terms.* The stationary point satisfies

3—5 =0 =[—u? - yb +2)(a® +ab +b%)] (2a +b)

(3.4a)
and

g{— =0=[-u2-ya+2x(a®+ab +b?)] (20 +a).

(3.4Db)

Thus either (2a +b)=0 or (20 +a)=0or a=b. In
any case there is a U(1) subgroup. Choosing a =0
=[y £ (% +24u2N)2] /122

-a 0 0
¢0= 0 =-a 0 N (3.5)
0 0 +2a

which is invariant under rotations about the z axis.
The other two options pick the x and ¥ axes and
are completely equivalent.

In the notation of Eq. (3.2a), we can see ¢'| ¢
ifa=0:

¢§j=5<§7¢35—§5a;$o'$o, (3.6)

with ¢,=v3a (0,0,1). The orbit surface generated
by @, is best visualized in terms of group action
on the vector $0 defined in Eq. (3.6). It is again
a sphere but with antipodal points identified—
since ¢ and —Eﬁ generate the same ®. We denote
it by $2; the slash reminds us that antipodal points
are identified. The map S2 — 32 corresponding to
the orange and the skin is clearly stable and in this
map ® at any point on S% is obtained from the cor-
responding isovector ¢ of ’t Hooft and Polyakov via
Eq. (3.6). What about the gauge fields? They
satisfy 9,® — e[ T+ A;,®]=0 on S%. The solution to
this Heisenberg-type equation is

Pl - -
4’0(P1,P1)=[Texp(+ef T-A,.dx‘ﬂ
(4]

.
X*PO[Texp(—ef 1T-Aidx‘ﬂ. (3.7
o

This equation tells us that the tensor at the point
p, on path P, [Fig. 1(a)] is obtained from that at the
north pole by the rotation generated by the gauge
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fields on the path. Since the vector field $ that
generates ® is identical to that of 't Hooft and
Polyakov it is clear that the same gauge fields will
induce the desired rotation. Thus there is a radial
spherically symmetric magnetic field (with a total
flux of 47/e) on S%. What is the solution at finite
distances 7? Let us parametrize the field at all
distances 7 as follows (see Appendix):

Al==€ —é% [1+K()], K~0as7r~= (3.8)

_Br7i=72y;) ()

(DH_ r2 er °’

gq—~ear as ¥ — >,

(3.9)

One can calculate the energy functional in terms of
K and ¢q. Its stationary point is given by the solu-
tion to

ngzx-z =6K2q +2gx2(y - 6X) — 2yxq® +127g3,

d
(3.10)
2 Zi’f “K(K* —1+947), 3.11)

where A=)/e?, y=y/e?a, and x =ear,

Our tensor monopole may be readily converted
to a dyon in the manner of Julia and Zee.* The
philosophy is that if an electric potential A,‘, satis-
fying D,® =0 is introduced, it is completely de-
coupled from ¢ and enters the Lagrangian via
3F% F% =3|D, A |? and mimics (but for an overall
sign) an isotriplet coupled minimally to the gauge
fields K,.. In the present static case we want
D, =¢[T-A, &]=0. OnSZ, where & is obtained
from the ’t Hooft-Polyakov isovector ¢ via Eq.
(3.6), it is clear that the potential of Julia and Zee
which satisfies T+ Koqb =0 automatically fulfills
[T+A,, ®]=0. At finite distances, the asymptotic
¢ and Ko get modulated by functions only of 7 that
involve no group indices, and the condition D ® =0
continues to hold.

We turn next to the task of constructing topologi-
cally stable solutions for higher-rank tensors.

It will be convenient for us to employ at times the
Cartesian representation for these spherical ten-
sors. We write the rank-» tensor as a traceless
symmetrized Kronecker product of # vectors [see
Eq. (3.2a) for n=2]:

@ik =31 hJ .. . 1 permutations — traces .
(3.12)

Such an object clearly has (2n +1) degrees of free-
dom: the product of their lengths plus the 2
angles associated with the » vectors. Since it is
traceless, it has pure spin » and transforms ir-
reducibly.
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IV. HIGHER-RANK ISOTENSORS IN THREE SPACE
DIMENSIONS

Let us assume that we have been given a topo-
logically stable map of an isotensor of rank » on
S% and ask what we can say about it. First we
know that there is a nontrivial H. This H has to
be U(1) since SO(3) has only one nontrivial sub-
group, SO(2)=U(l). Stated differently, the only
symmetry a rank-z tensor can have is that of
rotations around an axis, and this happens when the
vectors A, B, ..., N that build it up are aligned
along this axis. Thus the most general orbit sur-
face, generated by this underlying vector, is either
S? (nodd) or 2 (n even, since even-rank tensors
are insensitive to the sign of the underlying vec-
tor). There are of course many classes of maps
SZ% —~S% or $%2. The constant map, S% - a point on
G/H, is trivial. The identity map (orange and its
skin) is the simplest stable map. The rank-n
tensor in this case is given by the n-fold traceless
Krcnecker product of the ’t Hooft-Polyakov iso-
vector map. The gauge fields are the same, to
ensure D¢ =0, and the flux is 47/e. The fields at
finite distances are found by extremizing the ener-
gy functional and change with ». Notice that this
iz the most general possibility for this class.

Next we have maps in which 5% wraps around S?
or $2 m times. The fields for this case have not
been explicitly written down by anyone. But we do
know the following: (a) Given the isovector distri-
bution, the only possibility for higher-rank fields
is the traceless Kronecker product, and (b) the
gauge fields will be the same for all » with a flux
4mm/e.

Our result, that the most general topologically
stable configurations for the rank-» tensors cor-
respond to those generated from the isovector con-
figuration by formation of traceless n-fold Kro-
necker products, loses its relevance if these con-
figurations do not have finite energy above the
vacuum. [We mean by vacuum a local minimum
of V(¢).] The kinetic energy fd3x T(D¢) can be
kept finite since we know the gauge fields that
make D¢ =0 on S%. The potential energy fd3x V(o)
will diverge unless the U(l)-symmetric tensors we
have mapped at infinity correspond to possible
vacuums of the theory. We are therefore faced
with the question: Are there U(l)-symmetric mi-
nima of V(¢) for all n? We approach the question
in two stages: We first ask if V(¢) admits U(1)-
symmetric stationary points in general, and then
ask if these points are also minima in ¢ space.

Let us first observe that within the U(1)-sym-
metric subspace there will be points stationary
with respect to variations within the subspace.

To see this, let us first write the rank-» tensor
as ¢=(¢", ¢",...,d%..., d”") in the usual spher-

ical or “angular momentum” rotation. The compo-
nent ¢° is invariant under z rotations. In this sub-
space the potential is

V(9°) = =512 (¢°) - av(¢°)° +bA(¢%), (4.1)

where u? is positive (to ensure symmetry break-
down) and bX is positive for the theory to have a
stable ground state. Such a potential has three
stationary points. The origin is a maximum (due
to the negative mass term) and the other two are
necessarily local minima, Are these points sta-
tionary with respect to variations in other direc-
tions as well? The answer is affirmative® and the
proof? is as follows: Consider a change 6V in the
potential due to a change 8¢ at a U(1)-symmetric
point:

6V=%6¢*=Vi6¢‘. 4.2)
If i#0, 8¢ has isospin along the z axis and V;
must have an opposite amount so that 6V the iso-
scalar has none., But at the U(1)-symmetric point
we cannot construct an object with nonzero isospin
along z using ¢°. Thus 6V =0 if V,=0. Thus the
three stationary points in the U(1) subspace are
stationary in the entire ¢ space.

We next ask if the two nontrivial points, which
were minima with respect to ¢° variations, are
minima for arbitrary 6¢. One can try to show one
of two things:

(i) All stationary points of V(¢) are U(1) sym-
metric. Then the absolute minimum in the entire
space has to lie in this subspace—and we know
such a minimum must exist in any sensible ¢*
theory with negative (mass)?, since the potential
turns negative as we leave ¢ =0 and goes to +«
as ¢—- +>, In the isotensor case this is what
happened. We searched for a general solution to
0V =0 and found it to be U(1) symmetric. We have
not shown this in general—we have shown that
U(1)-symmetric stationary points exist but have
not excluded others.

(ii) At least one of the minima in the ¢° direction
is also a minimum in all directions.

Even if (i) is true, I do not know how I would go
about proving it. As for (ii), let us consider the
variation in V at a minimum in the ¢° subspace,
keeping quadratic terms:

n 82V
6 = m -m
14 ;——wmw-mw 6¢

=

=Y Cn0pm0¢™™, 4.3)
m=0

where isospin conservation along z has limited
the number of nonzero elements of the mass ma-
trix 82V/a$™a¢p™". We are given that C,>0. We
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also know that C, =0, since it stands for the mass
of the Goldstone bosons. (When the generators

T, and T,, which are linear combinations of T,,
act on ¢°, the Goldstone mode they excite, T ¢°
has spin +1 along z.) The other eigenvalues C;,
i>1, have to be proved =0. I have verified that

in the case of the most general V(¢) for rank-two
tensors this is what happens. But I cannot prove it
in general and must assume so. In my defense

I would like to say that such an assumption will

be mandatory later on anyway: When we modulate
the asymptotic fields with functions such as K(7),
q(r), etc. [Eqs. (3.8) and (3.9)], we only require
them (as did 't Hooft for the isovector [1]) to ex-
tremize the energy functional. Neither the au-
thors® who numerically solved for the functions
associated with the 't Hooft-Polyakov monopole,
nor those who found the solutions analytically in a
certain limit,® nor anybody else has performed the
extremely difficult task of finding second varia-
tions to verify that these functions indeed minimize
the energy. It will assume, as is generally done,
with an optimism that is enforced, that extrema
and minima are synonymous.

V. SOLUTIONS IN TWO SPACE DIMENSIONS

Spatial infinity is now a circle S% and we are
concerned with the first homotopy group 7, (G/H).
Unlike in three dimensions, the existence of topo-
logically stable solutions in two dimensions does
not require a nontrivial unbroken subgroup 4,
since m,(G/H) may be nontrivial even if H is.
However, we shall consider first the case H=U(1),
since it admits interesting solutions in three di-
mensions. Subsequently we will only briefly men-
tion the case where the vacuum completely breaks
G.

If H=U(1), the orbit surface is S? or $? for n
odd or even. Clearly S2 —-S2 is trivial; all loops
on a sphere can be shrunk to a point. Thus there
are no stable solutions for odd-rank tensors. On
the other hand, any wiggly line, from say the
north pole to the south on $2, is a loop [Fig. 2(a)]
and a stable one at that. Among these gauge-
equivalent loops we choose one that is a great
semicircle, which we can arbitrarily choose to
lie in the y-z plane [Fig. 2(b)]. The isovector at
spatial angle 6 on S% is given by $(6) =a(0, sin} 6,
cos36) and the rank n =2m tensor is given by

By joren(0) =0[ D, (6)9;(6) * * + B,(6) - traces], (5.1)
where a and b are constants chosen to minimize

V(o).

What about the gauge fields common to all even

(a) (b)

FIG. 2. (a) An arbitrary stable loop on $2. (b) Our
choice for the stable loop on g%.

n? They must fulfill
- 1 98 ~ = \=
Dd(9) =+ 55 — €T Aq)0(6)
=0 onSL.

[In the gauge K, =0 which can always be chosen,®

3.8 _
D,¢= 5 Hwo
since
B(r, ) =z 6(6).

Now (1/7)(3/36)d(6) = (1/27)&,| $|, where &, is a
unit vector in the direction of increasing o [see
Fig. 2(b)]. Thus A% =1/27e will ensure that Dy
=0, The component of Ke in the y-z plane is arbi-
trary along $ and is required to vanish in the
direction perpendicular to it. We may choose A}
=A%=0. An electric potential KO along ¢ may be
added since it satisfies D,¢=0.

The continuation of these functions to finite dis-
tances is more complicated than in three dimen-
sions and is therefore treated in the Appendix. The
case n =2 is once again treated in some detail for
illustrative purposes. It is seen that ¢ is described
by two functions of » while A% is described by one.
The differential equations obeyed by these func-
tions are derived and shown to admit, as ¥ -,
the asymptotic forms prescribed by topological
considerations. Thus the theory admits static,
finite-energy, topologically stable solutions for
n =2, Such a detailed study of higher » is not pos-
sible till a specific Lagrangian is assumed.

Since the loop we have considered is the only
distinct element of the group 7,($) (up to homo-
topies), we have considered the most general solu-
tion to the case H=U(1). We consider lastly the
case where the minima of V(¢) completely break G.
The manifold G/H is all of SO(3), i.e., a solid
sphere of radius 7 with antipodal points on the sur-
face identified.” Once again a line connecting anti-
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podal points is a stable loop. We cannot go any
further with our analysis unless a specific Lagran-
gian is given.

VI. SUMMARY

We set out to find static, topologically stable
solutions of finite energy to a Yang-Mills theory
describing gauge fields A coupled to a Lorentz
scalar ¢ transforming as a (2# +1)-dimensional
irreducible representation of the gauge group
G =S0(3). Homotopy theory told us that if G is
broken down to a subgroup H by the vacuum, stable
solutions exist in three (two) space dimensions
if 7,(G/H) [n,(G/H)] was nontrivial,

In three dimensions the theorem m,(G/H)
=kerm, (H) - m,(G) told us that a nontrivial H is an
essential prerequisite. For the group SO(3),
H=S0(2)=U(1) was the only possibility. If one
represents the rank-» tensor as a traceless, sym-
metric outer product of n vectors, the U(1)-sym-
metric possibility corresponds to all these n vec-
tors being parallel, their common direction de-
fining the axis of U(1) rotations. Thus the only
possible orbit surface is that generated by the
underlying vector —a sphere S2 for » odd and a
sphere 32 for n even.

Thus, given the 't Hooft-Polyakov isovector field
on S% the rank-n solutions were given by forming
at each point the n-fold traceless outer product.
The gauge fields that made the covariant deriva-
tive vanish were the same in all cases with a mag-
netic flux 47/e. It must be remembered that these
tensor distributions were not just a possibility,
but the only possibility for this class. We have of
course solved the problem only on S% and the be-
havior at finite 7 is decided for each n by energy
considerations as illustrated in the n=2 case de-
scribed in some detail. The isovector and gauge
fields in other homotopy classes, in which S% goes
around G/H = S? or $% more than once, have not
been written down by anyone so far. However, we
do know that given this solution, the higher-rank
tensors are once again obtained by the same
recipe. The gauge fields in each homotopy class
would be the same and would carry flux 47m/e,
where m is the number of times S2 wraps around
G/H.

In two dimensions if H=U(1) we saw that only
one stable homotopy class existed and that too only
for n even. The case n =2 was studied in some
detail. It was seen that in two dimensions topo-
logical stability was not reflected in the form of a
quantized nonzero magnetic flux. We also saw that
even if H were trivial there would exist a non-
trivial homotopy class.

In all cases discussed above, we presented an
electric potential, common to all tensor distribu-

tions belonging to a given homotopy class, that
could be introduced in the manner of Julia and Zee.

Since topological stability in three dimensions
called for H =U(1) we asked if such U(1)-symmetric
vacuums were generally admissible for all n. We
found that a necessary (but not sufficient) condi-
tion was met. There always existed two nontrivial
U(1)-symmetric stationary points. Furthermore,
both these were minima with respect to variations
within U(1)-symmetric subspace. However, it was
not shown that either of these were minima in the
other directions as well. Until this fact is demon-
strated our analysis remains valid at the one-
loophole level. You are invited either to find a
homotopy that deforms this loophole to a point or
to show that it is a nontrivial element of 7,.
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APPENDIX

In the main body of this paper, our emphasis
was on the specification of the fields at spatial
infinity, since the key to topological stability re-
sided there. We will now elaborate on the deter-
mination of these fields at finite distances such
that the field equations are satisfied.

Now we are not interested in the most general
solutions to the Euler-Lagrange equations: We
want the simplest solutions with the desired asymp-
totics dictated by topology. The modesty of our
goal permits a simplification of the problem if we
exploit once again the theorem first encountered
in Sec. IV: If V(¢) is a function(al) such that V(¢)
=V(G¢) under a group of transformations G, the
stationary points of V within a subspace ¢° such
that ¢° =H¢°, where H is a subgroup of G, are
stationary points of the full ¢ space. The proof
involves a straightforward application of Schur’s
lemma, as shown in the special case of Sec. IV.

We begin by noting that since the action S = [Ldt
is invariant under time translations, we may
choose H to contain the translations. The only
functions invariant under time translations are
time-independent ones. Our theorem then tells



us that by extremizing the action in the space of
static functions, we obtain static solutions to the
equations of motion. Furthermore, since the La-
grangian and Hamiltonians differ only by a sign
in the absence of time-derivative terms, we may
equally well extremize the energy.

We must next enlarge H judiciously, trying to
simplify the forms of the functions without de-
priving them of the flexibility to assume the de-
sired forms at infinity.

For the three-dimensional case we considered,
the optimal subgroup is H=P exp[T‘}- (J +f)], where
P is the parity operation and R(6) =exp[8- (J +T)]
induces equal rotations in space and isospace.

The only invariant form for the scalar field is that
assumed in the paper, i.e.,

_ (ry7;7,- - —traces)
"jklll -

), (A1)

where the intrinsic parity is (~1)" for rank ». For
the gauge field the only possibility is again A}
=¢€;;,7". The following argument due to Steve
Park should convince those who do not believe this
claim. Since internal and external angles are con-
strained to be equal, treat isospin as spin and
expand ¢ in tensor spherical harmonics Y7, .
Since ¢ is invariant under R(6), J =m =0. Since

S =n, the only possibility is L =n, which corre-
sponds precisely to our ansatz. Note also that the
orbital parity of (1)’ is canceled by the intrinsic
parity (-1)". For the same reason, A} is a sec-
ond-rank tensor and our ansatz is the only one
with the desired parity.

In two dimensions, the group H contains P and
J

{1 /dL\* 9Q2L® 1 daQ\?
por [rarigre (5) + 5t 52(3)
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exp[6+ (J +31,)], where P=Pexp(nl,), and where
P is the operation of reflections on the spatial
x axis (- —6). The scalar fields are assigned
even parity. Let us consider in some detail n =2.
We have in general ¢*/ A} AL i j=x,y,z, which
may be functions of ¥ and 6. Let us see what in-
variance under H implies. If we choose 6=27 in
R(6)=exp[6(J +31,)], we find x-x, ¥y~ -, and
z— -z in isospace. This eliminates ¢**, **, A2,
Af, Ay, A§. Invariance under R(6) for all 6 de-
mands that A}, A% be functions only of 7, while
parity forces A} to vanish. So we parametrize

% =(1/2re)[1+L(r)]. Consider next ¢**, $**, ¢*’,
¢**. We trade the y and z indices for those of
e, =(y+iz)/¥2, which have simple transforma-
tions under x rotations. Invariance under R(6)
requires

o= (r, 0)=m(r),
¢ T (r,€)=3e0Q(r), (A2)
o~ (7, 0)=3e”0Q*(r).

The factor % is there for convenience. The trace
conditions give us 2¢*~ +¢** =0. Under P, ¢**(r,6)
- ¢~ (r,-0)=3Q*(r)e'® which equals ¢** if Q =Q*,
Going back to Cartesian components,

m 0 0
o= 0 —2m+3iQcosb -3Q siné . (A3)
0 -3Q sinb -3m-3Qcosé

Our theorem tells us that if we extremize the ener-
gy calculated in terms of m, @, and L, we obtain
solutions to the equations of motion. We find

(&) ]

~ £12(9Q7 +3m2) + Emy (97 - m?) +25 A(9Q* +3m2)2}. (a4)

The functions which extremize E obey

d (1 _dL\_9°L
ar \4re® dr) 4r

(A5a)
d 9L2 3
dar <%y' gg) B 4rQ - guer * gm;m +3M(9Q2 + 3m2)18Q7 , (A5Db)
2 2 2

As v—=_ these equations admit L—~ 0, @ =m=a=[y
+ (P+24M2)2) /121, i.e., the fields approach the
topologically stable forms prescribed in Sec. V.
Presumably such an analysis can be carried out

r

for higher n, given the Lagrangian.

Let us note incidentally that as -0, we find
L—--1+ar? Q-0br, m—~2a. Since m does not de-
pend on 6, it need not vanish at the origin.
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