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It has been shown that reactions ee~3P and PPV are excellent means for testing SU(3) sum rules as well as

the quark-line rule. We can derive various relations involving the cross sections for these reactions if the

quark-line rule is valid. The connection with various decay modes of the Q meson is emphasized. We can also

test the absence of the SU(3)-singlet component in the electromagnetic interaction.

I. MOTIVATION

o(ee- pv'v )/o(ee-&un'v ) =2 (1 2)

and other relations of similar nature (see Sec. Ill),
if we neglect the mass difference between co and Q
mesons. Note that the usual quark-line rule de-
mands this same ratio to be zero rather than 2

as in (1.2). Therefore, we may easily distinguish
the two alternatives by experimentally measuring
the ratio.

Up to now only a few experimental tests of the
quark-line rule and the nonet ansatz have been in-
vestigated" " for hadronic processes involving (II),

f, and f' mesons. Also, Cheng" noted recently
that the quark-line rule enables us to compute the
so-called v-N 0 term in an agreement with the
value obtained by means of dispersion-theoretical
methods. However, it may be pointed out that
these really test the weaker nonet ansatz rather
than the stronger full quark-line rule. One pur-
pose of this note is to show that the reactions

The recent discoveries' of g and g' stimulated
renewed interest in the quark-line rule' and the
related nonet ansatz, ' since narrow widths of these
bosons may be qualitatively understood by means
of these rules4 just as in the case of the ordinary
Q meson. ' However, a relatively large experi-
mental decay ratio' of

I'(y- Po'o )/I'(q-(uv'v ) =0.20+ 0.10

necessitates either a modification' of the rules or
a mechanism for creating a large violation of the
rules' "for this particular decay mode without
disturbing various other successful explanations.
The second possibility has been discussed by sev-
eral authors' "on the basis of various dynamical
considerations. In previous papers, ' I suggested
the first alternative of modifying the nonet rule
(a,nd hence the quark-line rule) by requiring an
additional self-consistency postulate which is
relevant essentially only for the decay g- VPP.
Especially, this modification predicts a unique
ratio of

ee VP, PPP, VPP

can be used as an excellent means to systematical-
ly test the validity of the full quark-line rule as
well as the old and new nonet hypotheses ~ Here,
V and P refer to the vector nonet and the pseudo-
scalar nonet (or octet), respectively. Also, these
reactions may be used to test the SU(3) symmetry
in a systematical way in the electromagnetic pro-
cesses. Especially, experimental study of the
ratio

o(ee-o'p ):o(ee-v'~):o(ee-K'K'")

:o(ee qp):o-(ee -K'K *) (1.4)

would lead us to a better understanding' of the cor-
responding decay ratio of

I'(p -v y):I'((u- n'y):I'(K'*-K'y)

:I'(4 -nr): I'(K'*- K'r) (1.6)

The experimental deviation of this decay ratio
from the values calculated on the basis of SU(3)
and the nonet hypothesis (or the simple quark mod-
el) is considerable, '4 although the discrepancy may
not be"'" as severe as it seems. Also, the U-
spin relation

o(ee -K' + anything) = o(ee - v++ anything) (1.6)

does not appear" to be well satisfied even for the
high-energy kaon. However, this may be due to
some kinematical reasons, as we shall discuss in
Sec. IV. In view of these facts, systematical ex-
perimental checks of SU(3) relations in the electro-
magnetic process (1.3) would be desirable, since
the SU(3) symmetry is known to be pretty well
satisfied in other hadronic processes. "'"

Another by-product of the present investigation
is the fact that many of our relations are also
applicable to decay widths of P and g', if the non-
electromagnetic interaction involved in these de-
cays is an SU(3) singlet. This will be demonstrated
shortly below.

For our purpose it is convenient, though not es-
sential, to assume the standard SU(3) quark model
in which all SU(3) hadrons are bound states of
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three quarks q„q„and q, . We will not consider
the color degree of freedom unless it is otherwise
so stated. We shall eall these SU(3) hadrons nor-
mal hadrons, in contrast to possible charmed had-
rons such as g and g' which are presumed to con-
tain new quarks as their constituents. In this note,
we restrict ourselves to discussions of normal
hadronic reactions in the lowest order of the elec-
tromagnetic coupling constant {i.e., the one-pho-
ton-exchange mechanism). We can then replace
the initial ee system effectively by the hadronic
part of the electromagnetic current, which will
have the form

j'„'(x) = —,
' i q(x) y „A, q(x), (1.8)

while Ji„'(x) is an SU{3)-singlet current consisting
of only normal quarks q„q„and q„and the multi-
plicative constant 6} has been introduced for con-
venience. Theoretically, the presence (or ab-
sence) as well as the explicit form of the singlet
J~"(x) depends upon the choice of the specific
quark model. For the fractionally charged Gell-
Mann-Zweig model the electromagnetic current
does not contain the SU(3)-singlet component, so
that we can set 6 =0. However, for the integrally
charged Han-Nambu quark model, 8J~„"(x) is non-
zero, representing the color current of the quarks.
Experimentally, we see no evidence of any uni-
tary-singlet component in jP(x), either in the low-
energy phenomena" or in the high-energy reac-
tions." Therefore, in practice, we could set
8 = 0. However, we keep the singlet term for the
following two reasons. First, the special choice
8 = 0 will give rise to extra relations which could
be experimentally tested. " Secondly, if we keep
the singlet term, then the resulting SU{3) relations
are immediately applicable to the corresponding
SU(3) relations among the decay widths of the y
meson, provided that the effective decay interac-
tions responsible for the normal hadronic decays
of the g is given by'

Hq(x) = [fg'„(x) +gJ~„'l(x}tg „(x) . (1.9)

Here y„(x) is the field operator of the g meson,
and the first term proportional to f is due to the
virtual electromagnetic interaction, while the
second term, which is assumed" to be an SU(3)
singlet, is of nonelectromagnetic origin. Note
that the new SU(3)-singlet current J~~l(x) appear-
ing in (1.9) need not be the same as J&„'~(x) of (1.7).
All SU(3) relations for o(ee-X)'s will then repro-
duce the corresponding relations for I'(P-X)'s,

j'„(x)=ji„"(x)+
~3

ji„"(x)+8J'„"(x).

Here, ji„'(x) (n =1, 2, . . . , 8) is the usual octet vec-
tor current

if we replace all symbols ee and o by P and E',

respectively.

II. ee~PPI' AND VP

Here let us cons ide r the reaction

ee PgPPP3, (2.1)

where P„P„and P, refer to pseudoscalar octet
me sons with four- momenta k„u„and k3, re spec-
tively. The matrix element for the reaction (2.1)
is proportional to

M = (P,(k,)P,(k, )P, (k, ) ~ j ™(0)
~ 0}, (2.2)

+ P T r (Q P,P,P, —QP, P,P, )

+y Tr(QP, P,P, —QP,P,P, )

+ —,'8{}Tr(P,P,P~ —P~P,P,) . (2.3)

Here, Q stands for the charge spurion matrix

(2.4)

and P, (j = I, 2, 3) refer now to 3 x 3 matrices rep-
resenting the jth pseudoscalar octet. In Eq. (2.3)
the first three terms result from the octet com-
ponents in j P(x), while the last term proportional
to 8 is due to the SU(3)-singlet current 8J„"(x)in
(1.7). We note that if the interaction Hamiltonian
(1.9) is responsible for g- P,P,P, decay, then its
matrix element is also written in the form of
(2.3) with different numerical coefficients: n',
P', y', and 6'. Therefore, we can discuss both
reactions ee- Par'aP3 a d 4- P&P2P3 simultaneous-
ly, as long as we keep 8 nonzero.

The numerical coefficients n, P, y, and 6 are
actually functions of three momenta k„k„and k3.
The Bose statistics for mesons demands

n(k„k„k,}=-n(k„k„k,),
P(k„k„k,) = n(k„k„k,),
~(a„a„u,) = ~(k„a„u,),

as well as

5(k„k„k,) = -5(k„k„k,)
= -5(k„k„k,) .

Note that 6 is completely antisymmetric with re-
spect to interchanges of k„k„and k3.

From (2.3), it is easy to compute that

where jP(x} is given by (1.7). Suppressing all
Lorentz indices for simplicity, the SU(3) symme-
try together with the charge-conjugation invariance
demands that M can be expressed as

M = n Tr(QP~P, P, —QP, P,PS)
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m(ee- ~ ~-~') =(&+P+y)+ ea,
M(ee-w'w r}) =v 3 (n+P —y),
M(ee-w"K-K') =~2(n+P-2y) —(I/~2}»,

In addition to these identities, Elle. (2.9) give vari-
ous triangular inequalities such as

[o(ee —w'w w')]'r' ~ [So(ee —w'w r})]'r'

(2.7c)
+2[o(ee -K'K w')]'" .

(2.11)
M(ee-K K w') =(2n+2P - y)+ -.'86, (2.7d}

M{ee-K'K'w') =(n+P+y)- &85,

M(ee K+K r}) =0 Sy+ —'WS 85, (2.7f)

M(ee-K'Z'r}) = —WS(n+P+y) + —,
'

WS 85 (2.7g)

for decay matrix elements of M(ee- P,P,P,), if
we neglect the common multiplicative constant.
%e should note that in general we have

M(ee- PP'P') &M(ee P'P-P")

eM(ee —P"PP') .
Fol example, we fMd

(2.6)

M(ee K K-'w'}-=W~(y+ n 2P} ———85,

(2 6')

which differs from M(ee- w'K K ), although the
former can be obtained from the latter by the
cyclic interchange Q y p of In view of Eqs.
(2.5) and (2.6).

Eliminating four unknown parameters n, 13, y,
and 85 from (2.7), we find the following SU(3)
relations:

v 3M(ee- w'w rl) =v 2M(ee-w'K K )

+M(ee- w'w w'),

&3M(ee- w'w r}) =2M(ee-K'K w')

-M(ee- w'w w'),

v 3M(ee-K+K r}) =2M(ee- w'w w )

—M(ee-K'K w'},

WS M(ee-K'K' )=w-M(ee-KOK'rl) .

(2.9a)

(2.9c)

(2.9d)

o(ee -K+Kwq) =3o(ee K~Kww'), —

o(ee —w'w w )+o(ee —w'w r}}

(2.10a)

= o(ee K'K )w(+-o-ee' KrK}), (2.10h)
o(ee -w'K K ) + 2o(ee -K 'K w )

= o(ee - w'w w'} + So(ee —w 'w r}) . (2.10c)

%e may also directly derive these relations from
the U-spin consideration. The same formulas
hold for M(g- P,P,P, ), if the decay interaction
Hamiltonian (1.9) is assumed. Neglecting mass
differences among SU(3) multiplets for the sake of
the slmpllclty, Egs. (2.9) give tile following SU(3)
sum rules among the cross sections:

These relations (2.10) and (2.11) are valid for
the P decay width, if we replace symbols ee and
0 by g and I', respectively.

Next let us assume that 6I=O, i.e., that the elec-
tromagnetic interaction has no SU(3)-singlet com-
ponent. Then, we find an additional relation,

M (ee -K K w ) = M (ee - w 'w w ), (2.12)

o{ee-K~K~ w') = o(ee - w 'w w ') . (2.13)

dAo' = dAP = dAy

dAQ*P= dQ P*& = dOy*+ .

(2.14a)

(2.14h)

Moreover, if we assume 8 = 0, then (2.7) together
with (2.14) can give one more relation, so that we
have the following five relations for the total in-
tegrated cross sections or(ee -P,P,P,):

or(ee -K~Kwr}) = 3&rr{ee -K~Kww'),

Sor(ee-K'K r}) = or(ee -K'K w'),

err(ee -K~Kww') = or(ee - w'w w'),

4o (ee-K'K w )

(2.15a)

(2.15h)

(2.15c)

= Sor{ee- w'w w )+ Sor(ee - w'w r}), (2.15d)

2or(ee -K'K w')

=2or(ee —w'w w')+ o„(ee —w'K K'), (2.15e)

where we have set or = f dQcr.
%'e may remark that if the 3P-y vertex operator

can be expressed by means of a local effective
interaction

H„,(x) = G,w„„wA „(x)Tr[&„P(x)s P(x)s+(x)Q]
+ 8G, &,„wA„(x)Tr[&„P(x)S P(x)ewP(x)],

(2.16)

This relation cannot be obtained by a simple U-spin
consideration. ' Because of the special ansatz
8=0, this identity has no counterpart for the decay
of the g meson.

Up to this point, all relations derived above are
valid for total as well as differential cross sec-
tions. However, if we are only interested in the
total integrated cross section, then we have to in-
tegrate over final-state phase space A involving
three momenta k„k„and k, . Because of the Bose
symmetry condition (2.5), this leads to
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then we have & = P=y, so that we can derive more
relations. However, since the final-state inter-
action among mesons is expected to be consider-
able, the assumption of the local Hamiltonian will
be a poor approximation. The explicit form of Eq.
(2.16) with 8=0 in terms of w, . K, K, and r) mesons
can be found elsewhere.

Returning to the original. problem, we note the
following. As far as the ee -P,P,P, reaction is
concerned, the quark-line rule is automatically
satisfied as the consequence of the SU(3) symmetry
and the charge-conjugation invariance, since the
disconnected quark-line diagrams corresponding
to such terms as Tr(QP, ) Tr(P, P,) are forbidden
by charge conjugation. However, if we assume
P, (j=1,2. , 3) to represent now the pseudoscalar
nonets rather than the pure octets, this is no
longer the case. Indeed, a disconnected quark-
line term

On the basis of (2.21), we can derive many rela-
tions, for example

o(ee -p'w ) = o(ee - p w )

= o(ee - p w '),
o(ee -K ' *K }= o(ee - p'w ) .

(2.22a)

(2.22b)

Actually, the validity of (2.22a} depends upon only
the weaker SU{2) invariance. If we assume 8=0
in addition, then we find extra relations

o(ee -K'*K') =4o(ee-K'*K ),
o(ee - p'r)) =3o(ee - p'w') .

(2.23a)

{2.23b)

Moreover, when we impose the quark-line rule or
the nonet ansatz for both vector and pseudoscalar
mesons, then we can ignore all terms in {2.21)
other than the first term (i.e. , we set 8= P' =y' =0).
This gives

(TrP, ) Tr(QP, P, —QP, P, ) (2.17)

M (ee -K 'K r)' }= M(ee - w 'w r}'), (2.18a)

M(ee —w'w r)'}= MM(ee-w'w r)), (2.18b)

is consistent with both SU(3) and charge conjuga-
tion. If the quark-. line rule or the nonet ansatz is
applicable23 even for the pseudoscalar nonet, then
the presence of terms such as (2.17) is not allowed,
so that we can still use (2.3) for this instance. In
t is way, we find

o(ee —~w') = 9o(ee - p'w')

= 27o(ee - &r)),

o(ee - u)r)') = 2o(ee - &r)),

6o(ee - Pr}') = 3o{ee—Pr})

= 8o(ee -p'w'),

o(ee- Pw ) =0,
o(ee p' }')r—= 2o(ee —p'r))

= 6o(ee - p'w'),

(2.24a)

(2.24b)

(2.24c)

(2.24d)

(2.24e)
M{ee-K'K'r)') =0. (2.18c)

In this derivation, we neglected the small q-q'
mixing so that the r}' meson is a pure SU(3} sing-
let. Actually, (2.18a) is a simple result of SU(3)
symmetry, and only (2.18b) and (2;18c) represent
the consequences of the nonet hypothesis. Especi-
ally, they imply the validity of

o(ee - w'w r}') =2o(ee —w'w r)),

o(ee Kr,Ker) ) = 0 ~

(2.19a}

{2.19b)

+ 6'8Tr(VP), (2.21)

where &', P', y', and 5' are new sets of constants.

Since we did not assume 8 =0, these relations
should also be valid for the corresponding decay
rates for the g meson, if the nonet hypothesis is
good for the pseudoscalar meson.

Next, let us investigate the reaction

(2.20)

The most general SU(3)-invariant matrix element
consistent with the charge conjugation is now given
by

M(ee —VP) = &'[Tr(QVP) + Tr(QPV)]

+ P'(TrV) Tr(QP)+y'(TrP) Tr{QV)

where we assumed ideal -P mixing' and neglect-
ed the small mixing between g and q'. The rela-
tions (2.24) are intimately related to the corre-
sponding identities among I'(V- Py). However,
the decay widths for I'(V-Py} have been discussed
by many authors'"' and we will not go into de-
tail.

Finally, in ending this section, we will briefly
comment on the reactions

ee -PP, ee -VV,

ee -&B.
(2.25a)

(2.25b)

It is well known" that in the exact-SU(3) limit we
have

M(ee K'K ) =M-(ee - w 'w ), (2.26a)

M(ee-K K ) =0, (2.26b)

and the corresponding relations for K-K* and
w- p. Experimentally, the relation (2.26a) appears
to be well satisfied. " A slight improvement of
(2.26) is possible, if we assume the vector-dom-
inance model. In that case, we obtain only one
relation,

M(ee K'K ) —M(e-e-K'K') =M(ee-w'w ),
(2.27)
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as has been noted by Gourdin. " Also, we mention
that we can correlate" a(ee- VP) and o(ee- PP)
with each other if we assume SU(6) invariance.
With respect to ee-BB„we simply mention' here
t at

g (ee- Pp) = o(ee Z-'F').

If we assume 8 = 0, then we should have '

4o(ee-AZ) =o(ee-ns).

{2.28)

(2.29)

Returning to Eg. (2.27), we can prove that (2.27)
ean be derived if the combined effect of both elec-
tromagnetic and SU(3)-violating interactions has
negligible contributions from decouplets and the
27-piet components with a large octet enhance-
ment.

Here we shall consider a reaction

(3.1)

where V is a vector nonet, while P, P, refer now

to two pseudoscalar octets (not nonets} with four
momenta k, Rnd k„respectively. Hereafter, we
assume the ideal &u-{{ mixing' and neglect small
p-q' mixing for simplicity.

The most general SU(3)-invariant matrix ele-
ment consistent with the charge-conjugation in-
varianee is the linear combination of the following
nine terms:

S,=Tr(j VP, P,)+ Tr(j VP2P, )+Tr(j P, P, V)

+ Tr(jP, P, V) + 7 r(j P, VP,) + Tr(j P, VP,),
(3.2a)

S, =Tr(j VP, P,)+ Tr(j VP, P,)+Tr(j P,P, V)

+Tr(jP, P, V) —2Tr(jP, VP, ) —2Tr(j P, VP,),
(3.2b)

j =@+86k
&

A = (—',)'~'I

q = X, + (I/MS}x, (3.3)

(3.4)

where 5 is an arbitrary constant, representing the
unknown matrix element of the SU(3)-singlet cur-
rent Z~ '(x). Again, if the electromagnetic cur-
rent does not contain any SU(3)-singlet term, then
we can set 8=0 and j=Q. If we wish, we can sep-
arate out the contribution from the singlet current,
Rnd the resulting exp1ess10Q ls given ln the Appen-
dix.

In Eqs. (3.2), all S (o. = 1,2, 3, . . . , 7) are sym-
metric with r'espect to 1Qter'chRQge of P~ Rnd P~y
while A, and A2 are antisymmetric for P, P,.
Therefore, Bose symmetry demands that we have
to multiply symmetric wave functions of momenta
k, and k, to all 8 {n=1, . . . , 7) and antisymmetric
wave functions to A, and A, . Also, we remark that
the specific choice for the special combinations
given in (3.2) has been motivated by the following
consideration: If we cons1del R perIQutRt1OQ

group Z3 which consists of six permutation opera-
tions among three objects, V, P„and P„ then 8,
and 8, are invariant, i.e., they cor'respond to sing-
let r epresentations of Z, . However, two pairs,
(S„A,) and (S„A,), belong to two-dimensional
representations of the group Z, . We need not
e1Rsslfy 85 Se Rnd 87 since the assumption TrP,
= TrP, = 0 but TrV+ 0 preeludes a symmetrical
treatment of these terms by means of the group
Z, . Of course, if we wish, it is possible to do so
for these terms by adding terms proportional to
TrP, and TrP~, as we have done in the previous
paper. " We remark that S„A„A,Rre indepen-
dent of the parameter 8.

As we noted elsewhere, '"we have an SU(3)
identity equation

S, = 2Tr(j V)Tr(P, P,) —Tr(j P,)Tr(VP, )

—»(jp)»(vp, ),

S, = Tr(j V)Tr(P, P,)+ Tr(j P, )Tr(VP, )

+ Tr(jP2)Tr(VP, ),

(3.2c)

(3.2d)

so that actually eight out of nine terms in Eq. (3.2)
are linearly independent.

Expressing Eqs. (3.2) in terms of individual par-
ticle operators p, K, K, g, ~, p, K*, K*, and p
(see Appendix), we can find large numbers of
SU(3) relations

S,=(Trv)[Tr(jP, P,)+Tr(jP, P,)j, (3.2e)

S = (Trj)[Tr(VP, P,) + Tr(VP, P,)], (3.2f)
M(ee -K'*K'» ) =M(ee -p'K'K ),
M(ce -K'*K'8) = v 3 M(cc-K'*K'q), {3.5b)

S, = (Trj )(TrV)Tr(P, P,), (3.2g)
V 2M(ee- &t&K'K ) =M(ee- &uv'v ) —M(ee —p v'v ),

A, = Tr(j VP, P, ) + Tr(j P, P,V) —Tr(j VP, P,)

—Tr(jP„P,V), (3.2h)

X, = Tr(~P, )Tr(VP, ) Tr(qP, )Tr(VP, ) (3.2i).
Here, j is the 3 && 3 spurion matrix corresponding
to the electromagnetic current (1.7) and has a form
of

(3.5c)

v 2M(ee-. PZ'K ) =M(ee &dE'IT) M{ee-pK"K )&-.
(3.5d)

v 2M(ee- pv'w ) =M(ee-A)K'K ) M(ee-p'K'K"), -
(3.5e)
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M(ee K'*w'K ) =M(ee- pK K ) —M(ee —pw'w )

=v 2[M(ee-P K'K ) —M(ee P—w'w )]
= v 2 [M(ee - ew'w ) —M(ee &u-K'K )],

(3.5f)

=v 2(M(ee-K'*K w') —M(ee=p'w w )]

=( )'~'[ M( ee- p' wq) M-(ee K-'*K n}]

(3.5g)
M(ee-P'w q)

=M(ee -P'w'q)

=v 3M(ee p'w w ) —2M(ee K' K q)

2M3M(e—e —K'*K w') —,'M(ee -—K'~Kq),

(3.5h)

as well as a few others involving more than two
neutral final particles:

as well as many triangular inequalities, which we
will not bother to write down.

If we assume 8=0 in addition, i.e., if the elec-
tromagnetic interaction does not contain any
SU(3) singlet, then we find many more relations,
such as

M(ee-pK'K') = —v2 M(ee-&uw'w ),
M(ee -K'*K'w') =&3M(ee p'w—'q),
—2v 2M(ee —Pw'w ) = M(ee —poK"K')

(3.10a)

(3.10b)

+ M(ee - (uK'K"), (3.10c)

2M(ee-p'K'K ) = M(ee-p'w'w )

= v(ee K-'*K w')+3v(ee-K'*K q},
(3.9d)

g(ee pow'w )+g(ee-&uw'w )+v(ee-pw'w )

= v(ee-p'K'K )+ v(ee-&uK'K )+ o(ee- PK'K ),
(3.9e)

= M(ee - V'w'w')+ 3M(ee - Pqq)

M3[M(ee - V'gq)+ M(ee - V'qw')],

+ M(ee-poK Ko},

M(ee p'qq) -= M(ee p'K'K—') .

(3.10d)

(3.10e)

= 2M(ee- mqw ), (3.7b)

MS[M(ee - ygw ) M(ee - y—t}q)]= 2M(ee - d qw'}

= 2M(ee dwoq)-, (3.7c)

where p', 8, and p are defined by

P 2(~=- p') - (I/~&) p,
u) =-,'((u-p')+ I/v 2 g,
y = (1/V 2 )((u+ p') .

(3.8)

As an independent check of these relations, I
have verified also that these equations follow
directly from the U-spin consideration. All equa-
tions (3.5)-(3.7) are similarly valid for the cor-
responding decays g-VP,P„ if we replace ee by

From (3.5)-(3,7), we find the following rela-
tions among differential cross-sections

o(ee -K'*K' )=wg(ee p'K'K ),—
v(ee -K'*I7 w') = 3v(ee K'*K'q), -

(3.9a}

(3.9b)

2v(ee -p'w'q)+ v{ee -K'*K q)
= v{ee -K"K w')+ v(ee-p'K K'),

(3.9c)

(3.6)

where V' stan~~ for any of p', {d, and P. Finally,
we have

M(ee- p w'w ) = —M(ee- p qq),

v 3 [M(ee- ~w'w') —M(ee-~qq)] =2M(ee- ~w n)

From (3.5) and (3.10), we find then additional
relations among annihilation cross-sections:

v(ee -

/KRAK,

) = v(ee —/K~K~)

= o(ee —QK'K')

= 2v(ee —(uw'w ),
v(ee -K'"K'w') = 3v(ee -p'w'q),

4o(ee - yw'w ) + 2v(ee - (ow'w )

(3.11a)

(3.11b)

v(ee-poK'K') = v(ee-~w'w )

= v(ee —u&K K )

= o(ee -K'*w'K')

= —,
' v(ee —yK'K')

= 3v(ee -K'*@K'),

v(ee —yw'w ) = v(ee —@w'q) = 0,
(3.12a)

(3.12b)

= v(ee —poK K )+ g(ee —+K K ), (3.11c)

v(ee —p'K'I7') + o(ee - p'w'w )

= 2g(ee -p'K'K )+ g(ee -K w+K ) . (3.lid)

Next, let us test the hypothesis of the usual
quark-line rule in which we consider only con-
nected qua, rk-line diagrams. Then, we need take
into account only three terms S„S„andA. , in
{3.2). Furthermore, we restrict ourselves to the
case 8= 0. Then, from Table I of the Appendix,
we obtain the following remarkably simple con-
sequences:
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v(ee- p'K'K ) = v(ee-coK'K ),
v(ee-rtrK'K ) = v(ee —K' w'K ),
v(ee —p'w'w') = 9v(ee —p'K'K')

= 9v(ee -p'r)q)

= 27o(ee -p'qwo)

= 81cr(ee —coqq)

= 3v(ee - cow'rI) .

(3.12c)

(3.12d)

(3.12e)

K, K —K

w'--,'w'+ -', &3rI,

v) -~3m'--,'q,
we find the following relations:

(4.1)

terchange q, and q, . Noting that under the Weyl
reflection Q'» the electromagnetic current is in-
variant and pseudoscalar octet mesons transform
as

v(ee —p'K K ) = 9v(ee —cow'w )

= 9v(ee -&oK'K ')

= ~cr(ee-yw'w )

= zv(ee —QK'K'),

v(ee-PK'K ) =2v(ee- u&K'K ),
2v(ee-p'K'K )+ v(ee-K'*K w')

(3.13a,)

(3.13b)

= o(ee —p'K'K') + o(ee —p'w'w ), (3.13c)

6v(ee —coK+K )+ 3v(ee —rdw'w )

These will be the test of the full quark-line rule
in the exact-SU(3) limit. Especially, we note
that v(ee - pw'w ) = 0.

However, the SU(3) quark-line rule may not be
unambiguous for the present case because of the
SU(3) identity relation (3.4) which states that a
sum of all connected quark-line diagrams is
equal to a sum of all disconnected quark-line dia-
grams. Note that such a situation does not arise
for ee-P,P+„as we see from Eq. (2.3). In con-
nection with an explanation of the decay rate ratio
(1.1), I suggested' that we should modify the nonet
rule (and hence the quark-line rule) so that a
special combination S, should not appear at all to
be self-consistent with the spirit of the quark-
line rule. Our modified nonet ansatz' then implies
that we must consider a linear combination of
S„S3 S4 Ay and A, . In that case, we find the
following different set of predictions with 6= 0:

M(ee —w'X) =M(ee -K'X),
M(ee-w'w X) =M(ee-K'K X),

(4.2)

(4.3)

M(ee- w'X) = —,'M(ee -w'X)+ —,v 3 M(ee -qX),
(4.4a.)

M(ee-r)X) = ,v3 M-(ee-w'X) —2M(ee-r)X),

(4.4b)

where X is the Weyl transform of X, i.e. ,

X=W,Q (4.5)

for any single-particle or multiparticle state X.
Now let M be a set consisting of some particle
states (X's) which are invariant as a whole under

W„, i.e. ,

W2~M =M. (4.6)

Then, summing over all possible states X belongs
to M, Eqs. (4.2) and (4.3) lead to

X&At

o ee-r'X = o ee-K'X,
Xeg

(4.7)

g o(ee-w'w X) = g v(ee-K'K X). (4.8)
XE'4 XcAf

If we choose the setM to consist of only two states,
w' and q, then (4.8) immediately reproduces Eq.
(2.10b). Also, if M represents all possible states,
then (4.7) gives (1.6), i.e. ,

=v(ee-p'w'w )+v(ee-K'*K w'), (3.13d)
v(ee -w'+ anything ) = v(ee -K'+ anything) .

(4.9)
in contrast to (3.12). Especially, we note the
validity of (1.2). We may easily distinguish two
sets of predictions (3.12) and (3.13) by experiment-
ally measuring these cross sections.

We can find various relations for I'(g- VPP) for
the modified nonet ansatz. However, since some
of the relations are already discussed elsewhere, '
we will not go into detail here.

IV. GENERAL CASE

We consider here the general case on the basis
of the U-spin invariance, or more simply the
Weyl reflection symmetry" W», in which we in-

This relation has been experimentally found" to
be poorly satisfied at& s = 3.8 GeV and v s = 4.8 Ge V,
even for high-energy kaons. However, the validity
of (4.9) presupposes the validity of Weyl equalities
among individual exclusive reactions such as

v(ee-w'w'w w ) =v(ee-K'K+K K ).
In view of a large mass difference between the
pion and the kaon, we do not expect that this re-
lation is well satisfied even at vs =4.8 GeV. We
note that the relation (3.5a) or (3.9a) is also an
immediate consequence of the Weyl symmetry.
Perhaps in view of the relatively small mass dif-
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ference involved in E*Kn and pKFC final states,
experimental verification of (3.9a) is more suit-
able to test the SU(3) symmetry.

From (4.4a) and (4.4b), we can derive the fol-
lowing triangular inequalities:

ee- odd numbers of pions. (4.20)

identities on the basis of the weaker SU(2) groups,
i.e., the charge independence alone. Consider
the reaction

where we have set

g~= 0 ge 7T X
XGN

(4.11)

(4. 12a.)

Then, because of the G parity, only the isoscalar
component of j '„(x) can contribute to the reaction.
Especially, the average number of w' mesons
must be equal to that of the w" s when we take the
average over all final states with a given number
of pions. In this way, it is easy to find

o, = o(ee-l)X). {4.12b)

If we assume that the electromagnetic current
jP (x) does not contain the SU(3)-singlet compo-
nent, i.e., 8=0, then we can say something more.
In that case, J ~ (x) satisfies

or(ee-2s'2x w')=2or(ee-w'w 3v'), (4.21)

2or(ee- 3x' 3lrvr') =or(ee-2v'2v 3v')

+4or(ee-v'v 5v'),

(4.22)

(1+W,2+W„)j p (x)=0, (4.13)

where 8'» and 8'» are Weyl reflections inter-
changing q, —q, and q, —q„respectively. This
implies that we should have an identity

M(ee-X)+M(ee-W»X)+M(ee-W»X) =0

(4.14)
for any state X. As a matter of fact, all special
relations obtained in the previous sections for
the case 8=0 can be derived from systematic
investigation of (4.14). Especially, replacing X
by K +X in (4.14), and noting (4.1), this gives

M(ee-KOX)+M(ee-K'X')+M(ee-K X")=0,

(4.15)

+2or(ee-w'v Vv') (4.23)

for the total integrated reaction cross sections
or =jdQo involving five, seven, and nine mesons.
Since we need not assume 8=0 for this derivation,
these relations should be valid also for the cor-
responding decay rates for the g meson by re-
placing symbols ee and vT by Q and I ~, respec-
tively.

Many other equalities and inequalities for re-
actions ee-pions on the basis of the SU(2) have
been extensively studied by Pais" and others.
These are also applicable to the corresponding
pionic decays of the g mesons.

where we have set

W', M =W', M =S" M =M =CM,

then (4.15) leads to a triangular relation

(4.17)

(4.16)

Therefore, if M is now a set which is invariant
under all Weyl reflections $V», @'», and%'23 as
well as the charge conjugation C, i.e. ,

APPENDIX

Here we shall compute matrix elements of the
reaction ee- VP,P, . It is convenient to separate
out contributions of the SU(3)-singlet terms from
the rest. For this purpose, let us define S,', S,',
S~, and S,', respectively, by setting 8=0„ i.e. ,
j=@ in Eqs. {3.2). Note that S„A„and A, are
really independent of 8, so that we may set

(4.18)g o(ee-K'X) ~4+ o(ee-K'X).
X&M XE Jf

This is the best bound we can obtain in view of
(2.23a). Similarly, we can derive

S2 =S„A,=A„A2 =A2.

The identity (3.4) is now rewritten as

S,' =S4+S,'. (A2)

—,
' g o(ee -pX) ~ g [o(ee —&uX) +o(ee —p'X)j

In order to compensate for the 8-dependent terms,
we introduce

~ 5 g o{ee-QX)
XeN

(4.19)
S,'= Tr(VI,I,)+ Tr(VI,Z,),
S,' = (Tr V)Tr(I,I,),

under the same conditions.
Up to now, we assumed the validity of the SU(3)

symmetry. However, we can derive some useful

which represent the contributions from the SU(3)-
singlet current. The S„S3 SQ S5 S6 and S7 are
given by
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TABLE I. Relative numerical values for matrix elements M(ee —VPqP2). The expressions
for Sf, S2, S3, S4, S&, S6, S&, A&, and A2 are defined in the Appendix.

ee —VP&P2 S, Sp Sg S4 S5 S6 $7 A) A2

7
8
9

10
11
12

13
14
15
16
17
18

19
20
21
22
23
24

p'7t'8
P 7( 7t'

pK E
pKK
p
p' gd

p 7t 7t'

p'EOK
C0 7t 7t'

E'K
Q)K K

CO 7t Tj

QE K
Ann

fltmE K

K++ dE-
K+*qZ—

KO* qK~

E *7tK
K *7r+E

9
3

W3

3
0
3
3

-3
1

3uS
0
0

-4~2
0

—3&2

~3

~3
0
0

—2
y2
0
2
0
0

0
0

—2W2

0
0
0

—1
-v3

0
0
v2

-2y2

—3
0
2

2

2

0

—v3
—2&2
—2~2

0
ve

—2~2

—3
—~3
—3
—~3

0
0

9
3

W3

y3
—~2

—3v2

—u2

~3

~3
0
0

0
0
2

2

4
—2

2y3
Y2

y2
—~2

~6

0 0

0 0
3 0

—3 0
0 02' 0

0 0
3~2 0

3 v2

3 y2

2 v2

0 0
0 1

3W2

4&2 1

0 0

3 0
0

-3 0
03' 03' 0

—2

v2
0
0

0
0

—1
—v3

0
0

—v2
0

0
0

0
0

1

0
0
0

—~2
0

vY
1
t3

1

0
0

S, = S,'+ v 6 HAS',

S, = S,'+ 2 (—') ' '86S,',
S = S'+ (—)' '86S'

S, = S,'+ 2(—3)'~'86S,',
S, = ~6e~s,',
S, =v 6 (96S,'.

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

M(ee —wv~v') =M(ee-~w'w ),
M(ee —Pv'm') =M(ee —Pv'w ),
M(ee —p' r)v ) = M(ee —p qn' ),

we did not list these reactions in the table.

(A11)

(A12)

(A13)

Now, we express all S'„andA' in terms of m, K,
K, g, p, ~, p, K*, and K*. Then we evaluate ma-
trix elements for ee- VPyP2 The result is shown
in Table I, where the numerical entries in each
column are suitably normalized. As an additional
check, the identity (A2) has been individually veri-
fied, as we see from the table. Since SU(2) in-
variance together with the G conjugation demands

Also, we notice that M(ee- VP'P) can be ob-
tained from M(ee- VPP') by changing the signs
of the A,' and A,' terms because of the Bose sym-
metry. Besides, the charge conjugation demands

M(ee- VP,P,) =M(ee- VP,P,), (A14)

where V and P represent the antiparticle states
of V and P, respectively. From these operations,
we can calculate matrix elements of all other re-
actions not listed in the table.

The relations (3.10) are easily obtained from
Table I by omitting contributions from S,' and S7,
since they represent the effect of the unitary-
singlet current 8J„'"(x). Similarly, (3.12) follows
by considering S,', S,', and A(, while (3.13) results
by taking into account S,', S,', S4, A,', and A,', which
alone are allowed by the new nonet hypotheses.
Note that S,', S,', and A,' correspond to disconnected
quark-line diagrams, while only S,', S,', and A'1

give the connected quark-line terms for the case
8 = 0. Thus, relations (3.12) really test the full
quark-line rule, which is stronger than the usual
nonet hypothesis.
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Note added in proof. If the nonet ansatz or the
quark-line rule is applicable to the pseudoscalar
nonet P„ then we predict the validity of

e(ee- q'+pions) = 2e(ee- q+pions)

for any final state containing q or g' but any given
number of pions of a given type, such as m+w+

m w .

This genera1izes Eqs. (2.19a) and (2.24b). The
same relation holds also for the corresponding
strong-interaction reaction

e(PP- q'+ pions) = 2e( pp- q+ pions),

under the same condition.
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