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%e show, by means of a simple example, that the Bloch-Nordsieck program cannot be applied to non-Abelian
theories in an identical manner to quantum electrodynamics. The simple example is single-gluon
bremsstrahlung in quark-quark scattering to lowest order in perturbation theory, the cross section for which is
found to be quadratically divergent, i.e., —1/X', where A, is the fictitious gluon mass, Radiation from internal
gluon hnes is found to contribute to this divergence. Application to the scattering of color-singlet states is
discussed.

I. INTRODUeTION

The most popular class of models for the strong
interaction today is that of the non-Abelian (Yang
Mills') gauge theories. ' Their renormalizabiiity
and ability to explain the short-distance phenom-
enon of Bjorken scaling in terms of "asymptotic
freedom"' makes them particularly attractive.
However, no one has yet demonstrated that their
long-distance behavior can account for the feature
of "quark confinement, " essential for any realistic
description of hadron physics. The hope is that
somehow the infrared (IB) divergences of these
theories are so severe that they prevent asymp-
totic states which are not singlets of the gauge
group. To this end we are studying the most se-
vere infraxed divergences in these theories. In
this paper we present the results of a simple cal-
culation, which demonstrates that indeed these
divergences are ahorse in non aphelian (t-iA) the
aries than in @ED, so that they cannot be cured
by the standard techniques used in QED. "' The
simple calculation is the evaluation of the cross
section for the process

quark+ quark (antiquark)
—quark+ qua. rk (antiquark) + gluon,

which is found to be quadratically divergent (i.e. ,
-I/X', where X is the fictitious gluon mass). '
This divergence comes entirely from the forward
region. The cross section for the analogous pro-
cess in QED is only logarithmically divergent,
and this divergence is cancelled by virtual-gluon
contributions, in the way first discovered by
Bloch and Nordsieek. ~

Among the diagrams which contribute to this
quadratic divergence in NA theories is one in
which the soft gluon is radiated from an internal
gluon line, whereas in QED only radiation from
external lines contributes to the worst IH-diver-
gent terms. This is due to the fact that photons

couple only to massive particles, whereas the
gluons which carry the group charge can couple
to themselves through 3 (or 4) gluon couplings.

In order to put our work in perspective, we
start by briefly reviewing othex related results.
A detailed study of infrared divergences in NA
theories away from the forward direction has been
undertaken by Cornwall and Tiktopoulos. ' By ex-
plicitly evaluating lowest- order perturbation-
theory diagrams and studying all orders by means
of a certain differential equation, these authors
are able to isolate the leading infrared divexgences
to each order in perturbation theory. The validity
of their differential equation has not been estab-
lished rigorously for NA theories; nevertheless,
it seems exceedingly plausible. The leading in-
frared divergences from each order of perturba-
tion theory are then summed, and one finds that
these nonforward processes have associated with
them a factor of the form

exp -A e;f ~

where A. is the fictitious gluon mass introduced as
an IB cutoff, and f(A.)

- Ink or 1n'X, depending upon
the process and region of phase space being stud-
ied. A is a kinematic factor independent of X, and

c,. is the eigenvalue of the quadratic Casimir op-
ex'ator for the group representation to which the
jth external particle belongs. Thus if at least one
of the external particles is not a singlet, this ex-
ponential factor goes to zero as A. -O, a feature
which the authors interpret as confinement. It
will be extremely interesting to see if a similar
result can be established when forward processes
are included, since that is where the worst IH
divergences occur. It is, of course, divergences
in the forward direction which are responsible fox'

the infinite Coulomb cross section in electrody-
namic s.

In spite of the appealing results mentioned above,
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there remain the usual doubts about the validity of
summing a series of leading logarithms (especially
since the series is alternating in sign and its sum
is much smallex than the neglected terms individ-
ually), together perhaps with the doubts about the
differential equation. Several authors""" have
tried to understand the infrared structure of NA

theories order by order in perturbation theory,
analogously to @ED. In particular, Yao' has
studied nonforward quark-quark and off-shell
gluon-quark scattering to lowest nontrivial order
in the coupling constant (sixth order in the cross
section), and found that the logarithmic IR diver-
gences which appear cancel between the real and
vix'tual gluons, just as in QED, as long as the ob-
server cannot detect the group charge. For quark-
quark scattering the calculation is then essentially
the same as in @ED; none of the "new" diagrams
(i.e. , those with 3-gluon vertices, etc. ) are diver
gent. If the result of Coxnwall and Tiktopoulos'
that '*. . . cross sections of nonforward processes
involving non-neutral (i.e. , nongroup singlet)
particles, whether or not an indefinite number of
soft gauge mesons are included, vanish in the
limit X-0" is correct, then the analogy with the
situation in QED will break down in higher orders.
However, worse divergences appear in the for-
ward direction, and it is these which are the sub-
ject of study in this paper.

Appelquist et al."have studied IH divergences
to lowest order in perturbation theory in the fa-
mous process

elastic one, which makes manifest the infinite
range of the Coulomb potential. Here we will not
present any classical examples, but will study
the process

ee -ee +y (2 I)

(2.2a)

in the infrared limit, where the tt in the numera-
tor has been neglected. Similarly,

(2.2b)

Calculating the contribution of T, to the cross
section (it itself is, of course, not gauge invari-
ant), one finds that it is quadraticaily divergent.
This divergence is not a physical one, however,

in terms of Feynman diagrams. The amplitude
for this process in the infrared limit can be writ-
ten as the sum of four diagrams [Figs. 1(i)-1(iv)],
and we start by considering the first two. Working
in the Feynman gauge, we write

7, = —u(P, )e y(P, + g+ m)y "u(P, )

e'e -y- hadrons,

and found that the cross section for this process
is IB finite, diagram by diagram for the vacuum
polarization. Contributions to particular final
states may, however, be IH divergent in a given
order. This is similar to the situation in @ED."'"
Thus it seems that for this process, confinement
cannot be seen in any finite order of perturbation
theory. Since this calculation was done in one
order of perturbation theory, there is, of course,
no conflict with the results of Cornwall and
T iktopoulos. '

In Sec. II we xeview very briefly the process
e e (e') -e e (e')y in QED. In Sec. III we present
our results for the analogous process in non-
Abelian theories and show that it is quadratically
divergent. Finally, in Sec. IV we present our
conclusions, in particular, those relating the xe-
sults of Sec. III to the scattering of group singlets.

P( Pp

P) Pg

Pz

P)

Pp

H. THE PROCESS e e (e') ~e e (e') + y

Infrared divergences in @ED are now well
understood4'"' both classically and quantum me-
chanically. The only infinite cross section is the

FIG. 1. (i)-(iv) are the diagrams which contribute to
to the bremsstrahlung of a single soft photon in electron-
electron scattering. (i)-(v) are the diagrams which con-
tribute to the bremsstrahlung of a single soft gluon in
quark-quark scattering.
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since in the sum T, + T, there appears a factor [T', T'] =ic„„T', (3.2)

6'pz &' p3

p, k p, k' (2.3) where c&» are the structure constants of the
group. F„'„ is defined by

which vanishes in the forward direction, which is
where T, and T, individually are most singular.
In potential scattering, for example, the factor
(2.3) corresponds to

v; &'vy
)

co —k' v; & —k' vg

where v, (v~) is the initial (final) velocity of the

electron, ('d is the conjugate variable to time, and

k=(dx, where x is position in space. This factor
appears in the expression for the vector potential,
and hence in many physical quantities. The con-
tribution of T, + T, to the cross section is only

logarithmically divergent.
Altarelli and Bucella" have calculated the cross

section for this process to this order in pertur-
bation theory at high energy and obtain

do 8(yy' 2 E —~ E E —(u 2

d co E E —cu E 3

4E E —co 1
(2.4)

III. THE PROCESS qq(q)~qq(q)+y

We consider in this section the on-shell process

quark+ quark (antiqua, rk)

—qua. rk+ quark (antiquark)+ gluon

in lowest- order perturbation theory and isolate
the most infrared-divergent part. For this pro-
cess we do not have any obvious classical limit to
guide us. The theory is defined by the Lagrangian
density

—4E'„E''"+q(if' —M —igg'T')q, (3 1)

which couples a set of gluon fields A„' to a multi-
plet of quark fields q. The matrices T' are the
generators of the gauge group normalized by

where v is the photon energy in the c.m. frame,
r, =e /m, and E= ,Hs. The logar—ithmic diver-
gence as v-0 is explicitly demonstrated. For
e+e - e'e y there are also the annihilation dia-
grams. These diagrams individually do not lead
to any quadratic divergences.

In non-Abelian theories T, and T, now have
different group-theory matrices associated with
them so that the cancellation (2.3) as p, —p, does
not occur. However, there is a new diagram I Fig.
1(v)], and the question which will be studied in the
next section is whether the five diagrams of Fig.
1 can conspire to remove the quadratic divergence.

(3.3)

For definiteness the calculation is carried out
with SU(n) as the gauge group, but it will become
clear that our main results are independent of the

group. The charge associated with this group will
be called color, even for n+ 3.

In the infrared limit there are five diagrams for
this process [Figs. 1(i)-1(v)]. Each of the dia-
grams of Fig. 1 can be written as a product of a
group-theoretic weight and a quantity which depends
on the kinematic variables. Evaluation of the
group-theoretic factor is particularly simple using
the graphical techniques of Cvitanovid, "and we

would like briefly to illustrate this here. For
simplicity we assume that the initial state is a
quark-antiquark system in a singlet state, al-
though the reader can readily generalize this (in
particular, one can average over the colors of the
initial quarks), and as will be shown below it does
not alter our conclusions. The group-theoretic
weight is a product of factors":

(i) 5,b for each internal quark leg,
(ii) 5,&

for each internal gluon,
(iii) (T,),b for each quark-quark-gluon vertex,

and
(iv) ic,.» for each 3—-gluon vertex. 'b

These can be represented graphically as in Fig.
2. The lie algebra for the group SU(n), for ex-
ample, can then be translated into diagrammatic
identities, which in turn can be used to evaluate
the group-theoretic weights of the diagrams. We
do not reproduce these identities here; the rele-
vant ones for this calculation can be found in Figs.
2, 3, 14, and 16 of Ref. 15. Derivation of the
group-theoretic weights for the five diagrams of Fig.
1 can be found in Fig. 3. Thus T, and T, have a
factor

(the 1/v n comes from the normalization of the
initial state), T, and T, have

1-„~(;), ,

and T, has

1

~ n(T, ),b.

But it is clear from the example of Sec. II that the
sum of the momentum-space weights of T, + T, and

T3+ T4 does not produce a quadratic divergence;
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(a) a b = Sob a, b=l, 2 ~ ~ n

Slj ( j I 2 ~ e ~

= p,', and each Z„. has the same group-theoretic
factor n(n —1). We have evaluated the Z, J and
find the following:

(c) a b = ( Ti) b
(3.5)

Z = (2w)
' & flux &&

1
nn' —1

FIG. 2. Diagrammatic rules for the evaluation of the
group-theoretic weights for Feynman diagrams in non-
Abelian theories. The thick lines represent the quarks,
and the thin lines represent the gluons.

llm ~& j j=1 3 5,
da'

2 nt dI"
(3.4)

where do;&/de is T, Tf integrated over the three-
body phase space with the constraint that (p3+f3)'

thus in order to study any possible quadratic
divergence we must evaluate T„T„and T, with
the same group-theoretic weight Rn(T,)„. More-
over, it can be easily shown that for any choice of
initial colors the result is essentially the same;
in order to evaluate the quadratically divergent
terms, one must evaluate T„T„and T5 each
with the same group-theoretic factor, which, in

general, however, will not be v n(T,)„. The sum
of these three terms does not produce a factor in
the numerator which vanishes in the forward di-
rection [cf. (2.3) in QED], which would indicate
that there is no quadratic divergence. " Thus to
check whether this amplitude yields a quadratically
divergent cross section we evaluated this cross
section explicitly.

Qf course, one must make a choice of an IR
cutoff. Although dimensional regularization, or
giving the gluon a small mass, m3y be more gen-
erally applicable, for this process it proves con-
venient to calculate the differential cross section
do/dp', where p is the invariant mass of the
quark-gluon pair. Provided p is not equal to rn,
the Inass of the quark, this cross section is finite
and gauge invariant, and is a measurable quantity.
This is equivalent to calculating d&r/d~, where &u

is the gluon's energy in some defined frame. Any
quadratic divergence in the total cross section
then manifests itself as a cubic divergence in
do/dg2 of the form 1/(p2- m2)'. We calculate the
spin-averaged cross section, summed over the
final color states.

Let

and appears for all the Z, , , o =-s —2m', and dP,
is the infinitesimal three-body phase space (ex-
cept for factors of 2v which are included in K)

2E32E42(d

These integrations can be performed, and one
finds

40'Xw
m2 (g2 —m2)3 ' (3.6)

where X = [s(s —4333')]'~', the usual triangle func-
tion.

FIG. 3. Evaluation of the group-theoretic weights for
the five diagrams of Fig. 3. in a theory with SU(n) as the

gauge group.

Because the real gluon is so soft this contribu-
tion is not negligible compared to Z„, as happens
for example if the gluon energy is fixed and s -~.

4o'Xv' 1 4o'Vn' 1
33 ~2 {~2 ~2)3 3~6 (~2 ~2}3

(3.8)

Since the constraint (p3+ k)2= g' is obviously not
symmetric in p, and p4, there is no reason why

Q3 should equal Q„and in fact it does not.
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40 Xn 1 160m'm' 0+ X 47t'(T'm' 1,0+ A.

( ) 15 51 m2 (
2 m2)3 (

2 m2)3 y z (
2 m2)3

rf03~"((P.+ &)' iz-')

(P1 —P3)'[(P, —P.)'j'
(3.9)

Although the last term on the right-hand side of (3.9) is straightforward to evaluate, it will be cancelled
in Z», so we leave it in the unintegrated form. Here we have the first example of radiation from an inter-
nal line contributing to the most infrared-divergent term of the cross section.

Finally, there is

4a'Z3112 1 2A'az12 1 a+ A. . dp, b"((p, y g)2 i12)

3m' (P2 —m')' Sm' (P2 m')' a X [(p p )2j2(p p )2
' (3.10)

4X'77 1 24Xcr 7t' 1 16''A. ' 1 96m'07t' (T+ A.

3m5 (i12 —m2)3 m2 (i1' —m')3 m2 (i1' —m')' (iz' —m')' a —X

8m2512 2 o+ X Sa' ~ dp36" (( p, + )'2)' —i1')[(p, —p,)'+ (p, —p,)')

[(p. —p.)']'[(p, —p,)'j'
Summing up the right-hand sides of (3.6)-(3.11) and writing

(3.11)

g— lim
~2 2dp,

one finds

8A.zr 2 3 1 8azr2 (o''+ 26m ) a+ A 8m'zr' (a'+ 4m ) 2
o'+ A.

, , n
3m2 (i12 —m2)3 Sm' (i12 —m2)3 a —Z X (p2 —m')' o' —X

(3.12)

(3.13)

Thus the coefficient of I/(i1' —m')' is obviously
not zero. It is easy to check that the above ex-
pression is positive as required. For an arbitrary
initial color configuration the result is identical
except that the factor I/n(n' —1) in K is replaced
by the appropriate factor for that configuration.
Thus we have demonstrated that to this order in
perturbation theory the single-gluon cross sec-
tion is "quadratically" divergent.

IV. CONCLUSIONS

There are numerous situations one can envisage
as being possible in a theory for quarks and

gluons; e.g. , exact confinement of quarks, gluons
and color, confinement of quarks and gluons but
not of color, no confinement but inability to de-
tect color, no confinement and ability to detect
color, etc.

If quarks are eventually seen and these theories
are found not to confine quarks and hence are still
viable models for the strong interactions, then the
results presented in Sec. III pose a serious prob-
lem. We would like to stress that this problem
arises even when the colors of the initial quarks
are averaged over; in this case the initial quarks
are effectively neutral. Two questions immedi-
ately arise" (independently of whether color can
be observed or not): (i) Is the total cross section
finite (except for the usual Coulomb infinity) to

this order in perturbation theory, i.e. , are the
quadratic divergences of (3.13) cancelled by inter-
ference terms in the elastic cross section? (ii) If
one defines i1' by )1'= (p, + p, —p, )', then does the
experimentally measured da/diaz' behave like
1/(i1' —m')' as the energy resolution goes to zero
for p.

' close to m'& This question requires the
study of all orders of perturbation theory, sum-
ming over real and virtual gluons.

Perhaps when these two questions are studied,
miraculously all unwanted quadratic divergences
will cancel, but any cancellation mechanism will
be far more complicated than the analogous one in

@ED. If the single-bremsstrahlung cross section
was indeed quadratically infinite, then we could
have the novel phenomenon that two fermions
could not only "focus" each other at arbitrarily
large distances, but could also radiate energy and
hence decelerate.

Since quarks, gluons, and colored states have
not been observed, the relevant question may be
whether one can produce colored states starting
from color- singlet states. The simplest process
of this kind to study is e'e -y- anything. From
the results and techniques of Kinoshita ' in @ED
and Appelquist et al. ' '" in non-Abelian theories,
one strongly suspects that the vacuum polarization
diagrams of Fig. 4 (and others obtained similarly
from the diagrams of Fig. 1) are infrared finite
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FIG. 4. Diagrams which contribute to the cross sec-
tion for the process e+e y —hadrons. The dashed line
represents the massive photon.

and that the singularities are suppressed by phase
space. If one calculates the imaginary part of the
vacuum polarization by taking discontinuities
across all the physical states, then individually
they may diverge, but the divergences cancel in
the sum. However, even the contributions from
particular intermediate states are not quadrati-
cally divergent. Thus to these orders in pertur-
bation theory this reaction looks perfectly healthy,
and there is no sign of confinement. It is reason-
able that any mechanism (if one exists) which sup-
presses the IR divergence in the quark-inelastic-
scattering example of Sec. III will also provide
confinement in this process. It is an attractive
speculation that the higher-order diagrams will
yield factors such as (1.1) so that only color-
singlet states can be produced.

The problem of hadron-hadron scattering is
much more difficult, since one does not know how

to treat the binding. The analogous situation in
QED is the scattering of neutral particles (e.g. ,
the scattering of positronium), the cross section
for which is finite. In non-Abelian theories if the
colored mesons are not degenerate in mass with
the color-neutral mesons, the cross section for
hadron-hadron scattering is presumably also
finite, even though the exchanged gluons can cou-
ple not only to the quarks but also to the "gluon
sea. "

The "forward" divergences in non-Abelian the-
ories have been shown to be worse than in QED,
and in these theories radiation from internal gluon
lines does contribute to these divergences. Any
attempt to understand confinement and infrared be-
havior in NA theories must include a study of these
divergences. If confinement is to be possible
there must be differences from the situation in
QED, and the calculation presented in this paper
demonstrates that this is indeed the case.
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