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This paper is devoted to a group-theoretical analysis of the Melosh transformations. The first Melosh

transformation is derived and uniquely characterized as being minimal (i.e., little-group rotation free) by

making use of the de Sitter transformation properties of the Dirac equation. A class of transformations in the

lightlike quantization formalism is derived from its spacelike counterparts by making use of its de Sitter

structure, which coincides with another given previously. The second Melosh transfomation is considered in

the same spirit and it is seen how it can be included in this scheme. Finally, it is shown how all the

considered Melosh transformations can be associated to Wigner rotations.

I. INTRODUCTION

The SU(6)~ group arises in physics in two differ-
ent ways. First, it appears as an approximate
symmetry group of the strong interactions' under
which hadrons are classified into multiplets and

can be naively considered —forgetting about exotic
states —as made up of two or three basic entities,
the "constituent quarks, " which are associated
with the basis of its smallest nontrivial represen-
tations. Secondly, it appears as a subgroup com-
posed of "good" operators' (i.e. , those leading to
nonvanishing matrix elements between single-
pa.rticle states in the infinite-momentum frame)
of U(12), the group which results when the "cur-
rent" quark-model algebra is amplified to include
scalar, pseudoscalar, and tensor currents. Fol-

lowing Gell-Mann' and Melosh" these two groups
are usually called SU(6) ~ „„„andSU(6)~,„„„„.
SU(6) ~ „„„appears to be useful in classifying
hadrons into irreducible representations;
SU(6)~,„„„„is partly composed of directly mea-
surable quantities (e.g. , vector and axial-vector
currents).

As is well known, some of the SU(6)~ „„„gen-
erators can be identified, through generalized
conservation of vector current (CVC), as the
space integrals of the time component of the vec-
tor currents, but it is not possible to go any fur-
ther. In the free-quark model (all the considera-
tions in this paper will be made in the free-field
case) the expression of the SU(6) ~,„„„„genera-
tors is given by

$$F'= d'x5 n~'q x n,y' —q x, i=1, . . . , 8,

o„,X'
F,', = d'x6(n, x')q(x)(n, y')P "—q( ), i =0, 1, . . . , 6,

i

F,'= dx5n, x'qx n,y' —'—qx, i=0, 1, . . . , 8,

and the generators of the four-translations are

8P"=i d'xnan, x'q x n,y' qx . (1.2)

Let us consider first the case of the spacelike
charges. These are conventionally obtained by
taking n, = (1, 0) in the above expressions. Simple
inspection of (1.1) shows that only the conserved
F' can be identified with the corresponding set of
SU(6)~ „„„,the rest of the generators not ful-
filling the obviously necessary condition of com-
mutation with the Hamiltonian II=I, so that in
general F' ~0) v0.

In fact there are general arguments both of phe-
nomenological' and fundamental' nature which
prevent the identification of SU(6)~,„„„„with
SU(6)~ „«,„„„.However, it is possible to as-
sume, as indicated by Gell-Mann, "' the existence
of a unitary transformation relating the two groups,
and thus providing a form for the otherwise ill-
defined operators of the SU(6)~ „„„approximate
symmetry algebra. This program has been pur-
sued by Melosh'"' (Gomberoff, Horwitz, and
Ne'eman" have also considered a Melosh-type
transformation for the [U(6)ISIU(6)]~ algebra}.
The first Melosh transformation'" is found in the
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~V'—:VF' V ' (1.4)

or, equivalently, by defining a "representation"
W (O~= V 'OV) such that W' ~ = F' and

[H, F']= 0. (1.5)

(1.5) indicates that V must take away the "trans-
verse" term y~ 8~=y'8'+ y'9' of H. This problem
is similar to the old one of Foldy and Wouthuysen'

(FW), which suggests the answer

quark model by assuming the existence of a uni-
tary transformation V relating the strong (W') and
the current (F') charges in such a way that

[W', H ]=0, (l.3)

where

d'x5(x')q, (x)'arctan ' ' q. (x),
v2 rn

(1.8)

where q„=P,-q =-, (1+n')q H.owever, as de Alwis"
first pointed out, the F' already commute with the
lightlike Hamiltonian H =P, so that the original
motivation to introduce V vanishes unless the
postulate is made that V should be abstracted
first from the finite-momentum theory. By using
spin arguments, Melosh' has recently proposed a
second transformation" given by

Y« ——v 2 d'x6(x')q, (x)tarctan ', ', q, (x) .

(l.9)
V= exp(i Y),

Y= & d'xq x arctan ' '
q x,

leading to

H~= d'xq(x)'( in, e-, + Px)q(x)

(1.6)

(l.7)

Qwing to the process followed for its derivation,
(1.9) is, unlike (1.8), not invariant under longi-
tudinal boosts. Such invariance is obtained by
formally writing Y» in the form'

I'„=W2 d'x5(x')q, (x)'

(x = [I'+ (y, 8,)']' '}which satisfies (1.5) and thus
to strong charges fulfilling the symmetry condition
(1.3}. Besides, V preserves the C and P transfor-
mation properties of the charges, contains only
"good" operators, is an SU(3) singlet, and com-
mutes with J,.

It is clear, however, that the requirement of
the transformed charge being conserved [(1.5)]
does not uniquely specify the transformation.
Obviously, any unitary transformation commuting
with H~ could be added to V and still (1.5) would

be preserved: this type of ambiguity has already
been recognized by Palmer and Rabl, "who have
discussed the FW and Melosh transformations (also
in absence of interactions) using Fock-space meth-
ods in the equal-time formalism. For instance,
the Gomberoff et al. transformed Hamiltonian" is
the same as that of FW, although both transforma-
tions are different (Sec. II). Thus, other conditions
are needed in addition to (1.5) to determine the de-
sired V.

Let us now turn to the lightlike or null-plane
current charges" (F'; we shall use a caret for
null-plane quantities). As is well known these
are specially suitable in dealing with the infinite-
momentum limit; they can be formally obtained
by boosting the spacelike charges to infinite mo-
mentum. Quantizing the theory as is customary"
on the hyperplane x' = (x+ i)/v 2 =0 [light-cone
variables a.re defined in the form x '- (x'= (x+ I)/
F2, x, x = (f —z)/v 2)] the F„' are given by (1.1)
with n, = (I/v 2) (1, 0, 0, 1), and Y now becomes'

arctan, , /~, q, ( ),

(1.10)

where P is the over-all momentum of the system,
2P'P —P' = M', in the rest frame M/P'v 2 = 1 and
(1.10) gives again (1.9).

In terms of lightlike charges it appears that (1.9)
[or (1.10)] is better motivated than (1.6). However,
it seems interesting to analyze both transforma-
tions and the ambiguities mentioned earlier within
a general framework to see how the form of the
transformation can be constrained; after all, and
despite the better motivation of (1.9),"any of the
Melosh transformations can be considered as just
a free-quark-model approximation to the V which
is required in the physical world. The aim of this
paper is to carry out such an analysis by making
use of the de Sitter properties of the Dirac equa-
tion. Qur procedure is tantamount to assuming
that any physically meaningful transformation
(acting on the spacelike quantized Dirac field) is
associated to an element of this group. This is not
surprising since such transformation should pre-
serve some type of spinor scalar product and in
fact Bracken and Cohen"" have shown how the
usual transformations (e.g. , FW, Cini- Touschek, "
and Chakrabarti"} are related to elements of
SO(4, 1). As a result of this approach we shall
find in Sec. II that the first Melosh transformation
is uniquely characterized as being the minimal
transformation, in a sense to be appropriately
defined, which leads to (1.5); in the same way, we
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shall find the relation between the FW and the
Gomberoff et al. transformation. Because our
procedure relies on the spacelike formalism, the
derivation of transformations in the lightlike for-
malism is restricted to those cases for which the
boosting process leaves their group structure un-
altered. In this way, the application of the con-
straints imposed by the de Sitter group to the
transformation will lead to a general form of V
which will be seen to eoineide with thai given by
Eichten ef al." (See also de Abvis" and Osborn. ")
This will be done in Sec. III. It will also be shown
there how the transformation (1.10) is related to
the de Sitter group, although owing to the presence
of the momentum operator P which does not act on
the field q(x), (1.10) cannot be directly interpreted
as a transformation of the Dirac equation. Finally,
we shall bxiefly examine in Sec. IV how the trans-
formations (1.8), (1.9), and (1.10) can be under-
stood as %igner rotations.

II. THE FIRST MELOSH TRANSFORMATION AS A
MINIMAL TRANSFORMATION

Y57 g 0 4 Y5 (r5 YQ Yl Y2 Y3)

The Clifford algebra is now defined by

(2.2)

fr, r~) = 2g ~, g ~
=diag (1,-1,-1,—1,-1),

and the matl lees

In this section me characterize the class of
transformations which eliminate the transverse
y, ~ 9~ component from the free-quark Hamiltonian.
This type of problem, as already mentioned, has
no unique solution, but the first Melosh transform-
ation will arise as the minimal" transformation of
its class.

Our considerations are best made by writing the
Dirac equation in a form which makes it easy to
use its SO(4, 1) transformation properties; to avoid
cumbersome notation, me shall use an unquantized
formalism which is sufficient for our purposes
hex e. The connection between the Dirae equation
and the de Sitter group has been analyzed many
times; more recently it has been considered by De
Vos and Hilgevoord, " and by DeVries" and
Bracken and Cohen" in connection with the so-
called canonical transformations of the Dirae
equation. This is done by writing the equation in
the form (we summarize here those results which
are relevant for our purposes and refer, e.g. , to
the papers quoted above for details)

r„p p—= r(p) /=0 (n=0, 1, . . . , 4), (2.1)

where the five-vector p is defined by p =p" (for
n= p =0, 1,2, 3), p'=-m, and

Tea =-
I. ra ~ rsl (2.4)

that, with Po =—Qg,

r(P') @o=o. (2.8)

In this way the different "canonical" forms of the
Dirac equation can be classified. Bracken and
Cohen" speak of "p' ' forms" according to which
component (and scalar product) is preserved

In our ease, since we look for a unitary trans-
formation acting on the Hamiltonian H, me are in-
terested in a p"' form. Such a transformation ls
to be found in the SO(4) subgroup of SO(4, 1) and
mill belong to a eEass of transformations deter-
mined by the form of the transformed Hamiltonian.
Since to fulfill (1.5) we want it to lack the y, p,
part, S mill bring

(P', o„P', -~)

to (p', p„p', -m); this determines (p p, =0) the
value of z = (m'+ p, ')'~'. Any two transformations
performing such an operation will differ by an ele-
ment belonging to the little group of (2.9). The
general little group of a five-vector p, p '=0, is
the Euclidean group in three dimensions (this is
a,nalogous to the case of a lightlike vector, for
which one finds the Euclidean group in tmo dimen-
sions). Of it (and again in analogy with the physi-
cal situation found for the lightlike vector) only the
xotation part matters here. This is because since
the Euclidean group is noncompaet, its unitary
representations have to represent the "transla-
tions" trivially if they operate —as they do in the
present case—in a finite-dimensional vector spa.ce.
Accordingly, the class of transformations me are
interested in is one of the quotient set SO(4)/R, R
being the group of rotations which leaves the vec-
tor (6, p', -z) invariant; given a transformation, all
others are obtained by adding suitable elements of

satisfy the typical pseudo-orthogonal commutation
rules

8 T 6~=i(g T85+A5 & 6 8 A T 6}

(2.5}

which here correspond to the SO(4,1) algebra.
Obviously, and owing to the fact that p' =- m is

constant, (2.1) is not invariant under the whole de
Sitter group of' transformations. However, by ap-
plying the transformation

Q(S) =em(if~"T.,) (2 8)

(sF~ = —&o~' and real) associated to an element S~

c SO(4, 1}(S,'~ 1, det S =1) to (2.1) we find, from

r(s-'p} =r(p') = q(s) r (p) q(s)-', (2.7)
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8 =2arctan Ip, I

(x+ m)

or, equivalently,

I p& I

8 = arctan
rn

(2.11)

(2.12)

It is now simple, from (2.10), to find the infinites-
imal generator of the transformation, with the re-
sult

(2.13)

which in the spinorial representation we are inter-
ested in leads to

P P 1 yZ'PgT Ty T24 2 Z

I p, I

'4
I p, 1

'4
I p, I

Thus we find

(2.14)

Q =i ~, ~=- 2i ' ' arctan Ip, I (2.15)

which, as anticipated, corresponds to the first
Melosh transformation (QHQ ' =H~).

By using similar arguments it is simple to show
that the transformation of Gomberoff et al."differs
from V by the rotation which relates the five-vec-
tors (P', 0, 0, P', —x) and ( P', 0, 0, 0, -~) (this addition-
al rotation is a "bad" operator, but this is re-
quired for their purposes). Because of this, the

the little group. The canonical way of doing it is to
find first the transformation which is little-group
rotation-free; such a transformation is obviously
the simplest. We now show that this is precisely
the first Melosh transformation.

To characterize the little-group rotation-free
transformation one has to proceed in a geometrical
way since all directions are equivalent under SO(4}.
We define such a miminal transformation, in the
three-dimensional space in which it effectively op-
erates, as the rotation in the plane determined by
(5„-x) and (p„-m) which carries one vector onto
the other. Such a transformation can be written
locally in the form

—(1 &2) 5t ( 1 ~ ) /2~1 em+ s&

(2.10)

where q, ,„is the Levi-Civita tensor and Z is the
vector which determines the rotation, its modulus

being related to the rotation angle 8 through

2sm-2'8 = e .
In our case, & = (e /

~ p, ~
) (p', -p', 0), and a short

calculation shows that

transformed Hamiltonians of FW and Gomberoff et
al. coincide in spite of the fact that the transforma-
tions are different.

III. GENERAL FORM OF V

These constraints determine immediately in our
scheme the form of the transformation. It is clear
that, from our basic assumption, V will be in gen-
eral a product of exponentials involving the gener-
ators appearing in (2.4}. Of them, only four,

1 ~ 1 ~T .=2zy T. =2zy.
(3.1)

1 ~

03 0 y3&
IT2='zy y2

are good operators and accordingly will lead to a
V containing only good operators. T„will lead to
a nonunitary V (pp', generates the boost in the x

direction), and condition (c) leaves only T,~ and

T,4 to enter in the transformation V. Condition
(d) requires T„and T„to appear in the combina-
tion

yj. ' pi (3 2)

and the dependence of the angle of rotation on p„
p, to be of the form 8(p„P,)= 8(lp, l). The general
form of the transformation may thus be written as

V= exp iv 2 d4x5(x')q, (x)~i '8(Ip, l)q, (x)
Ip, I

(3.3)

Let us now consider the constraints that the con-
dition of V = exp(i Y) being an element of SO(4, 1)
imposes on V. In this section we shall no longer
require the condition [H~, F]=0, so that the follow-
ing analysis will be generally meaningful only when

considering lightlike charges. The general form of
V in the light-plane quantization will be obtained by
infinite boosting of V, the form of which is derived
in the spacelike quantization using the formalism
of Sec. II where the SO(4, 1) structure of the Dirac
equation has been exhibited. To do this in a con-
sistent manner, we have to require that the group
structure of V be preserved in the boosting pro-
cess.

Since in the quark model one already has [F,',H]
=0, it is sufficient to require [Y,H] =0 to obtain

[W,H] =0. Besides longitudinal boost invariance,
we shall require on general grounds the usual con-
ditions for V:
(a) V is SU(3) scalar and unitary;
(b) V contains only good operators;
(c) good C and H transformations (recall that for
lightlike charges a new operation e '" 2P—the
"mirror reflection" —replaces the usual definition
of parity); and

(d)[J„V]= 0.
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which is seen to coincide with that obtained by
Eichten et al."from general arguments (similar
forms have also been given by de Alwis" and Os-
born"), although here it has been derived in a
very economical way. The V corresponding to V

will not give rise to conserved W's unless
8= arctan[ I P, I /(& + m)], which corresponds to the
first Melosh transformation (Sec. II); any other
value for 8 requires the use of the lightlike for-
malism. Although the transformation

l p, I

exp &
' ', 8=arctan

I p, l

' Ip, +p, l +m (3.4)

obviously belongs to SO(4, 1), the transformation
(1.9) cannot be derived in the way explained above
since, because of its noninvariance under longitu-
dinal boosts (owing to the presence of

~

p'+ p'
~ ), it

is not possible to "deboost" the transformation to
the spacelike formalism where our de Sitter con-
siderations were originally made. However, the
boost-invariant form (1.10) can be associated to a
rotation of the same generators and angle

Ip, l

[(p'+ps)/(P+Ps)]M+m ' (3.5)

However, because the appearance of the factor
M/(P'+P'), (3.5) cannot be interpreted as a trans-
formation of the Dirac equation satisfied by the
free- quark field.

IV. MELOSH TRANSFORMATIONS AS WIGNER ROTATIONS

There is a point in our approach which requires
further clarification. The rotations of the de Sitter
group which correspond to the considered trans-
formations are true O(4) rotations, i.e., involve
the fourth spatial axis and accordingly are not rota-
tions of the Lorentz group. How then can they be
associated to "Wigner" rotations? The answer is
found when the transformations are obtained from
the Fock-space expression of the lightlike current
charges. This can be written in the general form

d'pFt (atras XtrS-11 IS Xs~ (2tt)' 2(or, s
—&"&-'xt"S 'I'Sx'

Q

(4.1)

where I" =(1,Pc„/2, }8o,/2, a,/2) A. '/2, the X's are
four-component Pauli spinors, S is a transforma-
tion to be eliminated by means of the Melosh pro-
cedure, and the basis used for the Fock-space op-
erators in each case will become apparent in what
follows. It is simple to show that S in (4.1) is a
rotation which corresponds to a change in the spin
basis. For instance, for the first Melosh trans-
formation (1.8) S takes the form (we use the spinor-
ial Dirac representation D' "'+D" ')

K+m+yz' p~y
[2~(~+m)]'" (4.2)

and corresponds to the rotation which relates the
lightlike basis defined through the Kogut-Soper
boost"

B(p) =exp —i ' ' exp —iK, in-' E~ p ~ a
a m

aP, +mP +y~y, ~ p~P,
v'ma

(4.3)

a+m+y, p, y'
[2a ((o+ m)]'I2 (4.5}

and turns out to be B 'A, where A is the Hermitian
boost now used in (4.1),

u)+m+y'y p
[2m (m+(o)]'" ' (4.6)

Such a rotation has been know for some time in
connection with the definition of the representations
of the Poincare group in E(2}bases."

In a similar way the rotation associated to (1.10)
can be formally written as

y~ p» aM+mA+y, ~
p~y A

I p I [ 2aA (mM +p P —p'P') ]'~' '

(4.7)

where A =P'+P'and 8 is —given by (3.5). Despite
the presence of A, it can be shown again that (4.7)
corresponds to a Wigner rotation. This has been
done by Bucella, Savoy, and Sorba" from the study
of the representations of the Poincare group in the
meson case; the rotation determined by (4.7)
arises as part of the Clebsh-Gordan coefficient"
which determines the hadron state from the pro-
duct of the Poincare group representations defin-
ing the quark and antiquark states,

E-'(p)L(p —P)a(P), (4.8)

where L(p-P), the pure Lorentz transformation
connecting the unit vectors P"/M and p" /m, is
given by"

(where a= e+Ps, E=fC, +Js, EB=.K2 —J„K,J being
the usual Lorentz generators) and the basis used in
this case in (4.1) defined through the boost

B (}p=e'x (p-il ns, exp —i, ' *cree}en

[(a+ }})+(a —~)y'y'] (K+m+y'y, p, )
2 [2ram (K + m) ] ' ~s

because B 'B'=S.
In the same way, the rotation S for the second

Melosh transformation (1.9) is given by'
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(Mm+P p)+[p'(y p)-P'(y p)]y'
[2mM(Mm+P P)]'" (4.9)

Direct calculation of (4.8) in the case P, = 0 (col-
linea. rity) gives (4.7). For P' = (M, O), (4.8) and
(4.7) reduce to 8 'A a.nd (4.5) as expected.

V. CONCLUSIONS

In this paper we have studied the set of trans-
formations which lead the ordinary Dirac Hamil-
tonian H to the form H~ described in the text.
Among the transformations of this class [one of
the set SO(4)/R] we have shown how the first iVfe-

losh transformation can be characterized by the
fact of being "minimal, " i.e., litt1e-group rotation-
free.

A class of suitable transformations V in the
light-plane quantization formalism has been ob-
tained through the usual conditions plus imposing

a SO(4, 1) st:ructure on the spacelike tra.nsforma-
tion V which, through infinite boosting, gives rise
to V. As a result, the class of transformations
obtained is seen to be the same as that obtained by
Eichten et gl. using more general arguments. The
second Melosh transformation has to be modified
(through the inclusion of the factor M/P'M2) if it
is to be included in the scheme; this corresponds
to the explicit consideration of the hadron state,
made up from the individual quarks in the sense of
Bucella et al."

Finally, we have shown how all the mentioned
Melosh transformations in the light-plane formal-
ism can be associated to Wigner rotations.
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