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We present a systematic investigation of the problem of a spin-2 particle, described by a symmetric tensor
wave function, moving in a homogeneous magnetic field (h.m.f.). An interaction involving a multiple of the
Federbush term, besides the minimal interaction, is considered. By explicit solution of the wave equation with
an external h.m.f., we show that the energy spectrum of the spin-2 particle, like that of the spin-3/2
particle (Rarita-Schwinger theory with minimal coupling) spills over into the complex plane. This happens
even for arbitrarily small magnetic fields if the coupling is minimal, while the onset of the trouble is delayed
till the field strength rises to 2m ?/3e if the Federbush term is included. Our results also throw new light on
the problem of the number of constraints, and bring into focus the associated breakdown of Lorentz
invariance. We demonstrate that the correct number of constraints exists (irrespective of whether the
Federbush term is present or not) if the electromagnetic field is a pure h.m.f.; but the number of constraints is
too few for any other electromagnetic field (even one obtainable from a pure h.m.f. by a Lorentz
transformation) unless the standard Federbush term is included. The results of our analysis are discussed in
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relation to a similar analysis for lower spins as well as their implications for higher-spin theories.

I. INTRODUCTION

A number of investigations have been made in
recent years into the question of the consistency
(or otherwise) of the familiar relativistic wave
equations for particles of spin s>1 when coupled
to external fields. The classic work of Johnson
and Sudarshan,' which initiated these studies,
showed that the local field theory of Rarita and
Schwinger? for spin-% particles cannot be consis-
tently quantized with positive-definite metric when
minimal coupling with an external electromagnetic
field is introduced. Since then the method of quan-
tization used in their work and alternative methods
have been critically examined® on the one hand,
and on the other studies at the basic c-number
level have been made, resulting in the revelation
of different types of inconsistencies in particular
theories.

Inconsistencies in Lagrangian field theories at
the c-number level received wide attention follow-
ing the work of Velo and Zwanziger,* who showed,
by an examination of the characteristic surfaces®
of the Rarita-Schwinger equation with the minimal
coupling to the electromagnetic field, that the pro-
pagation of the spin-3 field so described is non-
causal. Further work® on these lines has brought
to light a variety of theories of spin 1, 3, and 2
with specific interactions wherein noncausal pro-
pagation occurs, and a couple of (spin-2) theories
which are free of it.”"® Another type of trouble is
typified by the stationary-state problem of charged
spin-1 particles, having anomalous magnetic mo-
ment, moving in a constant homogeneous magnetic
field (h.m.f.). As was shown by Tsai and collabor-
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ators,’ the energy spectrum of such a particle is
not purely real if the magnetic field is very large.
The use of a new method introduced by Mathews'®
not only enabled this result to be demonstrated
with much greater ease, but also made it possible
to make similar calculations for s>1. Explicit
solutions have in fact been obtained for the “sta-
tionary states” or “normal modes” of a spin-3
particle in an h.m.f.,"*"** and it has been found in
the case of the Rarita-Schwinger formalism with
minimal coupling that complex eigenfrequencies
appear®'!* if the magnetic field strength 3C exceeds
3m?/2e.

Our objective in the present paper is to investi-
gate the consistency problem for spin-2 particles
(described by a symmetric second-rank tensor
field) coupled to the electromagnetic field. In par-
ticular we apply the method of Refs. 10-12 to ob-
tain the exact solutions and energy spectrum for
spin-2 particles in an h.m.f. in the case of mini-
mal coupling as well as in the presence of an ad-
ditional interaction which we refer to as being of
the generalized Federbush type (see below). We
find that the energy spectrum spills over into the
complex plane in all cases. This happens only for
high magnetic fields if the nonminimal term is
chosen to coincide with that of Federbush,’® but
with minimal coupling the trouble is present for
arbitrarily low field strengths.

Apart from these results, our work gives new
insight into another kind of pathological behavior,
namely the extra degrees of freedom which crop
up in the presence of the electromagnetic field.
Attention was focused on this phenomenon by the
work of Federbush.!® Starting with a Lagrangian
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leading to a system of first-order differential
equations for a 50-component wave function (made
up of a symmetric second-rank tensor ¢,, and a
third-rank tensor I',,, =T,,,), Federbush showed
that on introducing minimal electromagnetic cou-
pling the number of independent components rises
from 10 (for a free spin-2 particle and its anti-
particle) to 12, and then proposed the “Federbush
term,” whose introduction removes this difficulty.
Actually the Federbush equations, when reduced
to the second-order form, coincide with the spin-2
equations obtained by Fierz and Pauli much earl-
ier.’® This was recently demonstrated explicitly
by Hagen,'” who also showed that the very same
second-order equations follow also from a mini-
mally coupled first-order theory involving a 30-
component wave function (a symmetric ¥, together
with a suitably defined third-rank tensor with 20
components) which had been given earlier by
Chang.!® Nath' and Tait*® have directly general-
ized the Fierz-Pauli formulation to obtain a one-
parameter family of Lagrangians which lead to the
correct number of degrees of freedom with mini-
mal coupling. However, this formulation does not
succeed in achieving consistency at the second-
quantized level, as shown by Nath himself. Un-
like the Fierz-Pauli equations, the second-order
equations obtained from Wentzel’s Lagrangian®!
with minimal coupling yield an excessive number
of degrees of freedom, as noted by Velo and Zwan-
ziger® while proving the noncausality of propaga-
tion in the latter case. The difference between
these two sets of equations results from an extra
term (referred to as the Federbush term) in the
Lagrangian of the second-order formulation. Much
of the confusion resulting from the lack of a defi-
nite correspondence between minimality and the
number of degrees of freedom can be traced to the
derivative-ordering ambiguity in the definition of
minimality itself when second-order derivatives
are present.?? The explicit solutions given in this
paper serve to display clearly another facet of the
consistency problem related to the appearance of
extra degrees of freedom: It brings into focus the
associated breakdown of Lorentz invariance. We
show that when the external field is an h.m.f.,
there are only five independent components (and
five first time derivatives) among the y*" for all
couplings of the generalized Federbush type, but
that for any other electromagnetic field the num-
ber of independent components becomes six except
when the coupling coincides with that of Feder-
bush; i.e., in all but this particular case, a Lor-
entz transformation which changes an h.m.f. into
a more general (crossed electric and magnetic)
field will also increase the number of degrees of
freedom.

The plan of this paper is as follows. In the next
section we write down the spin-2 Lagrangian in-
cluding a term (the “generalized Federbush term”)
which becomes equal to the Federbush term when
the constant factor o appearing in it is set equal
to unity. We solve the equation in Sec. II B for the
case when the external field is an h.m.f. Since
the method of solution is basically the same as
what we have employed in treating the spin-1 and
spin-3 case in earlier papers,® 2 we give here
only the essential steps. The energy spectrum is
to be obtained by the solution of certain quadratic
and cubic equations and it is noted in particular
that there are only five branches of E? (indicating
just five degrees of freedom) irrespective of the
value of o. The nature of the spectrum in the two
most interesting cases « =0 (minimal coupling)
and o =1 (with Federbush term) is discussed in
Sec. IIC. In Sec. IID we remark briefly on the
value of the g factor in the two cases, and then
go on in Sec. IIE to verification of the number of
independent degrees of freedom from the equa-
tions of motion direct. We conclude with Sec. III,
wherein the main results of the paper are discus-
sed against the background of what is known in the
case of lower spins, and their implications an-
alyzed.

II. SPIN-TWO PARTICLE IN AN h.m.f.

A. Equation of motion

The spin-2 particle in an electromagnetic field
will be described here by a symmetric tensor
field y" =y obeying second-order differential
equations following from the Lagrangian density

L = (0, )" (7 94) = 2(my,,, ) (14 9™)
+ (M, (@) + (m, ) (m,92)
- @ ) (@ ) - m2@L 9"~ 9TY)
- 2(zieq)yl,, F*oy Y, (1)

wherein

p=pe,
and (2)

T, =19, +eA,.

The term involving the electromagnetic field F,,
=9,A,-9,A, explicitly is of the Federbush type,'®
but the real parameter « is left arbitrary here.

It reduces to the Federbush term when a@ =1, while
a =0 corresponds to “minimal coupling.” The
Euler-Lagrange equations obtained from (1) by the
standard variational procedure are
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L* = (1% - m2) (P — g*"y) - ﬂl(ﬂusz Y e
+3(m* 1+ T+ g4V my P
- Zieq(F¥ Y™ + Fye) = 0. (3)
In the following we restrict ourselves to the case

when F,, corresponds to a homogeneous and con-
stant magnetic field.

B. Solution of the equation in an h.m.f.

We take the direction of the h.m.f. to be along
the z axis so that F,=-F, =3 and all other com-
ponents of F,, are zero. Further, we set® 7,=0.
Then three of the equations of the set (3), namely
those corresponding to (&,v)=(0,3), (1,3), and
(2, 3), get decoupled from the rest:

L%3=(r 2+, +m?)yY™

+mo(m 3+ m32) =0, (4a)
LB=(r2-m? - 12— m2) 3+ mom

+ 1 (m 3+ m,P32)

+ie30(z @ - 1)y%2=0, (4b)

and

LB=(r2 - m? - 72— w203+ mymy®®

+ 7, (m 3+ 7, P32)

—ied(3 a—1)§31=0, (4c)

The remaining seven equations of the set (3) will
be taken up after solving Eqs. (4).

We seek solutions with the time dependence
e 't and so we replace m, = p, by E. Further, we
observe that the operators a, a' defined by

a=(2e30)""?n,, a'=(2e30) V1., m =m +im,
(5)

obey an algebra identical to that of the harmonic-
oscillator annihilation and creation operators, and
we exploit this fact as in Refs. 10-12 to reduce the
differential equations (4) to algebraic equations.
First we rewrite these equations in terms of «, a'
and the “number operator”

N=d'a (6)
»
1+ (2n+1)¢ 3€p,, 3€0
€p, €2 - 1-nk+zak 2P P 1
€D 2P 1P €-1-@n+1)t-za¢

where

p,= (2nE)"/2

as
[1+(@N+1)E]p,+€(38)2(ap_+a'p,) =0, (Ta)
[2-1-(2N+1)E]o, +€(28) %ag,
+Ealap.+a'¢,) + E(Ga-1)¢,=0, (7b)
and
[€2-1- (2N +1)E]p. +€(28)"/2a’p,
+ta'(ap_+a'p,) - E(za-1)$_=0, (Tc)
wherein we have written
E=eiC/m?,
€e=E/m,
P =9, 8)

and
¢, = 13 £ g3,

If we now introduce the number eigenstates In) de-
fined by

N|ny=n|ny,
almy=Vn|n-1), (9)
a'lny=(n+1)"2|n+1),

n=0,1,2,...

and take the functions ¢,, ¢,, and ¢_to be ex-
pressed in terms of these, then it becomes evident
on inspection of Eqs. (7) that they have solutions of
the form

t=cy|m), ¢,=c,|n-1), ¢_=c_|n+1), (10)

n=1,2,...

and also the special solutions

b5=¢4]0), ¢,=0, ¢_=c_|1), (11a)

and

¢3=¢,=0, ¢-=C-|O>- (11b)

Here the ¢’s are undetermined constants. On sub-
stituting (10) into Eqs. (7) and using Eqs. (9), we
are led to a set of three algebraic equations.
These equations have nontrivial solutions only if

=0, (12)

(13)

On simplification, (12) reduces to a quadratic equation in €2,
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o e2(2n+1)E+2+ E2(1+30) ]+ [+ 1)E+1][(2n+ 1D E +1 - 3a(1+3a)£2] =0, (14)
which requires that
€= 2n+1)E+1+3(1+3@)E2+ (1 +3a)E[(2n+ 1)E+ 1+ 5£2]1/2. (15)

It is evident from Eq. (15) that €® is positive for both the values of « in which we are interested, namely,
a=0and ¢=1. The eigenvalues € are then real irrespective of the external field strength 3C.
In the case of the special solutions (11a) and (11b) we have respectively the following solutions for €2:

€=(1+8)[1+£(1+30)] (162)
and
€2=1+3at. (16b)

Here again, €? is positive for any £ if @ =0 or 1. Thus no difficulties arise from the three equations so far
considered.

Turning now to the remaining seven members of the set (3), namely those corresponding to (1, v)=(3,3),
(0,0), (0,1), (0,2), (1,2), (1,1), and (2,2), we find that they have the following forms:

L33= (12 - m?) (P +922) + (1 2+ 12 + m2P®° — [ 2922 + w21 = (m m, + m,m ) 2]+ 2wy (m 0t + m,00%) = 0, (17a)
LO=m2(y" +922) + m2+ 72 + 12005 + 1 2P*2 4w, 2Pt — (mym, + 7w PR =0, (17b)
Lo =m®°t -, (m 902 — mgPt) - o (m Y72 — mYtE) - 2iea 3CyY°? — w33 =0, (17¢)
LO2 =202 4 7 (7 0O — md°) + o (m 9*% — wth) + Sie@ 3CY°t — mom,yP33 =0, (174d)
L2 = (12 = m2®)P™2 4 mo(m Y2 + m,g°Y) + 3(m my + o ) (% = 9%%) + 3ie(a - 1)3C@*2 - 1) =0, (17e)
LMY= (12 - m?)?? + (m,2 + m2)P0 + (m,% = 1,2 = m®)Y*3 + 27w, 9°% — de(@ - 1)3CyP2=0, (17€)
L2 =2 - m®Pt + (1 2+ m2° + (12 = 1,7 = m® W32 + 2mgm 9°* + de(a - 1)309** = 0. (17g)

We now introduce the notations
X*=d)01ii¢027 wozd)oo, (4)3=¢33, (18)
9*=wll_¢22i2id}12, 9324)”'1-4)22.

In terms of these combinations, the equations (17a)-(17g) become

€(28)2(a’x, +ax.) +[1+ (2ata+ 1)&]w, + 3£(a?)?6, + 3£a20_+[€2 - 1 - 3(2a%a+1)£]6,=0, (19a)
[1+(2ata+1)E]w, — 3£(a")?0, — #a?0_+[1+3(2a%a+1)£]6,=0, (19b)
[1+&(aa’ - z0)]x, - £a®x. - €(28)"/2aw, + 3¢ (2£)'/2(a'0, - af,) =0, (19c)
g(a"?x, - [1+E(@"a+30)]x. +€(2£)2a'w, - 3€(2£)*/2(ab_ - a%6,) =0, (19d)
2€(2£)2a%y_ + 2£(a")?(w, — w,) +[€2 = 1= (@ - 1)£]6_=0, (19e)
[€2 -1+ (a-1)£]6, +(2£)/%2¢ay, + 2Ea?(w, — w,) =0, (19f)
€(28)Y%(ax, +ax.) +[2€2 - 2 - (2aTa+ 1)E]w, +[2+ (2a'a+ 1) ¢ ]w, - (€2 - 1)6,=0., (19¢)

One can see readily from an inspection of this set of equations that it has solutions of the form

X,=b,n-1), x.=b_|n+1), wy=by|n), w,=b,|n),0,=0!|n-2), 6.=b"|n+2), 6,=b4|n), n=2,3,...

(20)

Apart from these solutions for general n>1, the following special cases also exist:
X, =b,10), x.=b_]2), w,=b,|1), wy=b,|1), 6,=0, 6.=b"|3), 6,=b}|1), (21a)
X,=0, x.=b_|1), w,=b,0), w,=b,|0), 6,=0, 6.=b"|2), 6,=b}|0), (21b)
X, =0, x.=b_|0), w,=w,=0, 6,=0, 6.=b"|1), 6,=0, (21c)
X,=0, Xx.=0, w,=w,=0, 6,=0, 6_=b"|0), 6,=0. (21d)

Substitution of (20) into Eqgs. (19) leads to a set of seven linear, homogeneous equations in the 4’s and the



14 INCONSISTENCIES IN THE SYMMETRIC TENSOR FIELD... 1025
b"’s. For the existence of nontrivial solutions of these equations, it is necessary that
(€2 _ 1+(a-1)¢ 0 0 2¢p,., 0 —PpPps PP er h
0 €€-1-(a-1)¢ 0 0 2€ Do =P Pz PPz
0 0 €-1 €p, €Pp, 2¢2-2-(2n+1)¢ 2+(2n+1)¢
PP Pe1Prez 4€*~ 4 - (4n+2)E 4ep, 4€p,,, 0 4+ (8n+4)t|=0.
—PP s P perPez 4+ (4n+2)t 0 0 4+ (8n+4)E 0
€P ., 0 -€p, 2+2nt - o —PpPp -2€p, 0
L 0 €P s —€Ppy PP 2+(2n+2)E+ak - 2€p,,, 0 )
(22)

A tedious, but straightforward evaluation of this determinant shows that we get only a cubic equation for
€? from (22), irrespective of the value of . However, the form of the cubic is rather involved and so we
limit our discussion to the two special cases @=0 and a=1.

a =0. Inthis case the cubic equation (y=€?) has the form

[- NE2+ (3 1182~ 6£%)] y° + [BN2E2 + N(— 9+ 312+ 8£%) + (- 9+ 1682+ 18£%)] 92
+(N+1)[- 3N2E2 L N(9 - 26£2 - 28%) + (9 - 11£% - 16£%)] y+ (N+ 1)’ [N£% + (- 3+ 6£%)] =0, (23)
where
N=(2n+1)E. (24)
a=1. Equation (22) now reduces to
(4-98)(1+£2) 9> [N(12- 1052 - 9£%) + 12+ 1942 - 6£%] 92
+[N2(12 - 58%) + 6N(4+2£% — £4)+ (12+ 17£2 - 12£%)]y = (N+1)(N+1 - £2)(4+ 4N - 3£2)=0.
(25)

In either case we see that the number of branches of the energy spectrum, i.e., the functions giving the
dependence of €2 on », is five in all: three arising from Eqs. (23) or (25) and two from Eq. (14). Since
this is the right number of solutions to have for a spin-2 particle, it would seem that, in the case when
the external field is purely magnetic, the equations for y*” would lead to the correct number of constraint
relations. Before investigating this point further, we make a brief examination of the reality properties
of €.

C. Analysis of the energy spectrum

In examining the nature of the spectrum of eigenvalues, we begin with the special solutions (21) of the
field equations. The values of €* corresponding to these are determined, respectively, by the following
equations:

[3(4 - 9£2)(1 + £2) + 26a - 3a®(1 + 4£ — £2)]€* + 3(4+ 12£ - 382 - 4at — a®)(1+ 3&)[(1+ 3£ - £2) + a(1 + 3£ + 3£2)]
+[a®(3+ 125 + 9£2) + a?(6 + 40& + 81£2+ 27£3)
- a(12+86&+189£2+84£3 - 27£%) — (24+ 108 +T2£2 — 90£3 + 984 — 81£5)]€2=0,

(26a)
[3(1+£2)(2-38) +a(3+4E - 3£2)]e* — {3(4+ 4L - £3- 38%) +a[12+ 25t + 1582+ a(1 + £)(3+ £)]} €2
+(1+8)Q2+28+af)[3(1+£- £ +a(3+38+£%)]=0. (26b)
[1+(z - 2)E]e?=(1+3 at)(l +a), (26¢)
and
e=1+a, (26d)
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wherein we have set a=(a - 1)&.

Considering first the case @ =0 (minimal cou-
pling) we see immediately that negative values of
€? (imaginary €) appear for sufficiently large val-
ues of the external magnetic field. While €* of
(26d) remains positive up to £=1, Eq. (26¢c)—cor-
responding to the mode (21c)—yields

1-§
2——
=128

which leads to negative €2 already when £ exceeds
3. (Note that €® becomes infinite at & =% in that
mode.)

The inclusion of the Federbush term (@ =1) does
not enable us to escape this malady, though its
onset is delayed until £ reaches the value %, as
far as the mode (21c) is concerned, Eq. (26c)
giving €2=(1+3£)/(1 - 3£) for @ =1,

We see thus that modes with imaginary € (ex-
ponential time dependence) are present for large
enough £, whether or not the Federbush term is
included. It remains to be seen whether there
exists a critical value of £ below which all modes
have real frequencies (as in the spin-3 case).'!
We examine this question now.

It is known®* that all the roots of a general cubic
equation

ax® +3bx*+3cx+d=0 (27)
are real if and only if
G*+4H®*<0, (28)

where G and H are given by

G =a*d - 3abc + 2b°, (29a)
H=ac - b? (29b)

It is clear that if the inequality in (28) is to hold,
H should be negative. Consequently, whenever
H>0, Eq. (27) has complex roots. We now examine
the sign of H in the case of Egs. (23) and (25) cor-
responding to =0 and @ =1, respectively.

a=0. In this case, one finds from Eq. (23) that

H=-L£[(~ 108+ 1252+ 150£% _ 36£°)
+N(- 108 + 2442 _ 645+ 36£°)
+N2E2(= 25+ 3852 — 28E%) + 12 N 3¢4].
(30)

Since the positive term 12 N3£* dominates for suf-
ficiently large N, whatever £ may be, it follows
that H is positive, and hence complex values of €
for states with large » are unavoidable.

a=1. In this case, Eq. (25) applies, and we
have

1 6
G +4H? = — o D A, (NE), (31)
(27 =3
wherein
A,=4a’-a’,
A,=12a%a,-2aga,,
A,=12a%a,+12a,a,> - 24aa,-a 2,
A;=24aa,a,+4a,’ -2a4a,-2a4a,,
A,=12a.a?+12a,%a; - 2a 4, -a}?, (32)
A;=12aa,® -2aqa,,
and
Ag=4a*-aj.

Here the quantities a, . .
forms:

.,a, have the following

a,=133 +45£2 +81¢%,
a,=432 +160£2 + 1254 — 54£¢,
@, = EX(432 +940£2 + 51£% — 288%9),
a,=1870 +6507¢% — 1215¢* — 1458£S,
a,=10368 +27024£% - 9567¢* — 11583£°
+1458¢°,
a, = £2(62208 + 34464£2 — 552784
—24435£° +16281£9),
a,=£%(51840 + 643522 — 31248¢*
- 27405¢° +11961¢7).

(33)

It can be seen by inspection of these expressions
that all A; (¢=0 to 6) are positive for 0<£%<%, and
this observation has been confirmed by numerical
computation. Hence, we conclude from (31) that
for this range of £2, G2+4H®<0, so that the cubic
(25) has all roots real for this range of values of
g%

We see thus that unlike in the case of minimal
coupling, there exists a region of magnetic field
strengths (£ <%) for which all the modes of the
spin-2 particle have real E, if the Federbush term
is included. The situation then is akin to that in
the Rarita-Schwinger theory. It will be recalled'!
that in the latter case complex energy modes be-
gin to appear when ¢ exceeds 3. In the matter of
noncausality of propagation also the two are en-
tirely parallel: As shown by Velo (see in Ref. 6)
the propagation of the spin-2 field, with a=1,
like that of the minimally coupled Rarita-
Schwinger field,* is noncausal in the presence of ar-
bitrarily small external fields.
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D. The g factor

An inspection of the small-£¢ limit of the energy
levels given by Egs. (23) for =0 and Egs. (25)
for & =1 enables us to deduce the g factors in the
two cases. In the ground state, the z component
of spin has absolute value 2 units, and therefore
half the difference between the energy of this state
and the ground-state energy of the spinless state
(the latter being given by €?=1+§) is g(e3¢/2m) in
the limit of small magnetic fields. In the light of
this observation one finds readily that

g=1for a=0
and (34)
g=3 for a=1.

The pattern of the higher-energy levels, including
their multiplicity, is in agreement with these as-
signments: The levels are just what one would
get if the levels of the spinless case were assumed
to be split into quintuplets with spacing corres-
ponding to the above g values.

We remark here that the g value in the presence
of the Federbush term (a =1) is the “canonical”
value (1/s). It is intriguing to note that while in
the Rarita-Schwinger theory (where, with minimal
coupling, g has the canonical value %) complex
energy eigenvalues occur for g£¢ > 1, in the spin-2
theory with @ =1 such eigenvalues occur not for
gt=3£> 1 but for 3£> 1.

E. Derivation of the constraints in the case of an h.m.f.

We return now to the question of the number of
degrees of freedom. Since the basic equations (3)
are second-order equations for the ten independ-
ent components of the symmetric tensor p*V it
would appear a priovi that there are 20 initial
conditions (the initial values of ¥*" and their first
time derivatives) to be specified. However, for a

particle with spin s =2, one has only 2(2s +1) =10
J

independent degrees of freedom available and
therefore 20 — 10 =10 constraints are needed.
These constraints should follow from the basic
equations (3). It has been known (see, for in-
stance, Velo and Zwanziger in Ref. 6) for some
time that with just minimal coupling (@ =0) to
arbitrary external electromagnetic fields, Egs.
(3) do not yield the requisite number of con-
straints, so that there are apparently more de-
grees of freedom than there should be. Velo® has
shown recently that this situation obtains for all
a#1. Inview of this, the results we have ob-
tained for a pure h.m.f. appear rather surprising.
They seem to indicate that in this special case,
the number of degrees of freedom is just the right
number, implying thereby that there is no loss of
constraints. An examination of the constraints
following from (3) seems therefore to be called
for, and we proceed to do this now.

We note, first of all, that of the ten equations
(4a)—(4c) and (17a)-(17g), four equations, namely
L®=0[Eq. (17b)], L°*=0[Eq. (17c)], L°*=0 [Eq.
(17d)], and L°*=0[Eq. (4a)] are evidently con-
straints, since they involve no second-order time
derivatives. To derive the remaining constraints,
we proceed systematically as follows: We differ-
entiate these four constraints with respect to time,
and see if the second-order time-derivative terms
occurring in any of the resulting four equations
can be eliminated in favor of lower-order time
derivatives by virtue of the equations of motion.
If this is possible, new constraint equations re-
sult. We then differentiate these too, and see if
the second-order time derivatives can be elimin-
ated. We continue this process, ensuring each
time also that the constraints so derived are line-
arly independent (this can be done by comparing
their first-order time-derivative parts), until it
is no longer possible to derive any more con-
straints.

Now differentiating (17b), (17¢), (17d), and (4a)
with respect to time, we get respectively

(@2 +mAm Y + (@ 2 +mP)my® + (1 2 + 7,2 +mAw Y — (7, +mam )M P2 =0, (35a)

(m2 +mAm PO+ 2 2 —m, O = A2 +9°%) - pie adCr P2 =0, (35b)

(m 2 +mA)m Y% +m w212 —m m AP — P +y F) + zie asln Y °t =0, (35¢)
and

(w2 +m,2 +mPm % +m w23t +wm 22 =0.

(35d)

It is evident that (35a), as it stands, isa constraint. The terms involving 7,? in (35b) may be eliminated by
means of the equations of motion (17e) and (17f), and when this is done we get the constraint

m¥(w B - P*% = mP°Y)+ zie (a - 4)3Cn P2 +[ ziesen, +m,m, -7, (1,2 +m?)] (@O0 - p39)

+ie(a = 1)5e[ 37, —¢?) -7 9% =0. (36)
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The terms in 7, may be eliminated also from (35c) by using Eqgs. (17g) and (17e). We then get

mPnY°% + ziede(a — HmP°t +mPr P2 —iede(1 — a)m P2 = (w21, — m, 2w, —mPn, - Siesen ) @ — p33)

~[3ie3e(1 — ), +m?m )Yt + Siese(l - a)m 92 =0. (37)

Finally, we find that Eqs. (4b) and (4c) may be used to eliminate the 7, terms from (35d); this gives

mZ"O‘POS +m2(1r1¢31+1r2¢32) —leJC(l +%a)("lw23 _ﬂzlplS) =0.

(38)

We have thus generated four more constraints: (35a), (36), (37), and (38). The next step is to differenti-
ate these, to check whether any further constraints result therefrom. On differentiating (35a), we get

o2 [m 222+ w2 + (1 2+, 29%% — (7w m, + 7w I 22 +m P 2 + 922 +9%) = 0.

In attempting to eliminate 7,*> terms from this equation, we observe first that on adding the three equations
(17a), (17f), and (17g), one gets 7 @' +3¥*2+3*) in terms of lower-order time derivatives. Then, operat-
ing on the constraints (17¢) and (17d) respectively by n,7, and 7,7, and adding, we obtain

r 2 {(mmy + mym 1% = [ 2022 + w2t + (1,2 + 1,2 )% )}

in terms of lower-order time derivatives. The net effect of these operations is to form a combination
such as m2L%+ 2mym; L% + m; 1, LY + 3 m?(L*® - L**) whose vanishing gives the explicit equation

ie(1 — a)3emy(my® - m,9*%) —de(l — a)3e[(1,2 = m2)'2 = 1wyt + m,m 022 ] + Sm%y + 2€23C2(Y° - y33)=0.  (39)

This is the ninth constraint.

The structure of (39) shows at once that if we choose @ =1, then this constraint does not contain any
time-derivative terms at all. This means that the tenth (and the final) constraint is simply the first time

derivative of (39) when @ =1.

If we take a#1, differentiation of (39) with respect to time gives rise to the terms w,2y° and 7,2y
which require elimination. This can in fact be done. Differentiating the constraints (36) and (37) we get

T2 m* ~ Fie(a — 4)3C Y2 ] =mPuy(m, Y - m,Y'?) + mo(3i€3C T, + M2, — m, M2 — m?m, ) (P - §?)

+21e 3 (1 - a)mom, (Yt = y*2) — de 3¢ (1 — @) mym ' (40)

and

T [ m*Y® + ie(a — 4) 3y °) == m2mmyP*? + e 3¢ (1 — @) mymy'? + mo(m2m, — m,m,2 — m2m, — 3ie3e m,)(Y* — §3)

+[3ie(1 — a)3c T, +m?m,) m Yt - ie(1l — @)3C mym,P?2, (41)
and these may be written as
< m? - 3ie 3 (a - 4)) <1102 ¢°1> i (right-hand side of (40)) . (42)
zie 3 (a —4) m? Ty Y% right-hand side of (41)

Multiplying by the inverse of the 2 X 2 matrix
which occurs on the left, one obtains 7,2 and
7,2 ¥°% in terms of the lower-order time deriva-
tives. On substituting these into the equation ob-
tained by time differentiation from (39), we obtain
the tenth constraint.®

Thus we find that it is possible to derive ten con-
straints in the case of a pure magnetic field,
whatever be the value of . The computation of the
number of degrees of freedom is now simple. Our
initial system of equations allows 20 free initial
data (corresponding to 10 components of $** and
their first time derivatives.) They must be re-
stricted by the nine constraints (4a), (17b)-(17d),
(35a), (36)-(39), and the tenth constraint (whose
explicit form we do not give here) obtained by

time differentiation of (39) for =1, or by sub-
stituting for m,?y°' and 7,2 y* from (42) in the equa-
tion obtained by time differentiation of (39) for any
a#1. Therefore, we have only 20-10=10 free
initial data, as required for a spin-2 particle.
This completes our demonstration that the number
of degrees of freedom in the presence of an inter-
action with an h.m.f. is just what one expects of a
spin-2 particle, irrespective of the presence or
absence of a generalized Federbush-type nonmini-
mal term in the Lagrangian.

III. DISCUSSION

It is satisfying to note that both the approaches,
namely, the explicit solution of the field equation
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on the one hand, and enumeration of the constraint
relations on the other, lead to identical conclusions
regarding the number of degrees of freedom of the
symmetric tensor field in an interaction with an
h.m.f. However, there is one perplexing question
which remains: Suppose one imagines a Lorentz
transformation to be performed in some direction
not parallel to the magnetic field. What was orig-
inally a magnetic field will appear in the new frame
as a combination of electric and magnetic fields at
right angles to each other. The Lorentz transfor-
mation should not affect the number of spin de-
grees of freedom of the spin-2 field. (If this were
not so, one could argue that the two inertial frames
would become distinguishable by the different
values of the number of degrees of freedom; this
would be against the principle of relativity.) How-
ever, if one goes back to Eq. (3) and examines the
number of constraints in the new frame (where an
electric field is also present) one finds that for
=0 (in fact, for any @ #1) the number of con-
straints is only 8 (see Appendix). This loss of con-
straints implies that the number of degrees of
freedom is greater than is required by the spin
value. It does not seem possible to reconcile this
situation with the result of Lorentz-invariance
arguments which lead one to expect that there are
no excess degrees of freedom. What one has here
is an explicit manifestation of violation of Lorentz
invariance in the spin-2 theory with minimal cou-
pling.

It is interesting to reflect on the growing variety
and complexity of the problems encountered in
relativistic theories of elementary particles as the
spin value increases. For spin 3, the Dirac theo-
ry is satisfactory in all respects. As the spin in-
creases to 1, one already runs into trouble: With
minimal coupling to a Coulomb field a complete
set of solutions seems not to exist,”” while if a
nonminimal interaction via an anomalous magnetic
moment is assumed, one is faced with the appear-
ance of imaginary energy eigenvalues in the pres-
ence of large external magnetic fields. Neverthe-
less, propagation of the spin-1 field remains
causal®® (Velo and Zwanziger, Ref. 6). In the spin-
% case, the Rarita-Schwinger theory not only has
the drawback of appearance of complex energy eigen-
values in large magnetic fields, but also exhibits
breakdown of causality in propagation even in ar-
bitrarily small electromagnetic fields; these hap-
pen already with minimal coupling. Other known
formulations of spin 5 (Ref. 13) which are free of
these difficulties are marred by an indefinite sign
for the total charge. Finally, as the spin value
goes up to 2, serious problems about the number
of degrees of freedom arise on introducing mini-
mal electromagnetic coupling—a type of difficulty

which was not present for any other lower spin.
Though this particular difficulty is circumvented
by the addition of a suitable nonminimal term, the
other difficulties (occurrence of complex energy
modes, noncausality of propagation) still persist.
The spin-2 theory is also inconsistent at the sec-
ond-quantized level as has been shown by Nath.'®
Finally, a comment on the minimality of coupling
to the electromagnetic field may be in order. As is
well known, different formulations which are com-
pletely equivalent in the absence of interactions
can lead to different consequences when electro-
magnetic interactions are introduced “minimally.”
For instance, the Shay-Good equations®® for spin
1 yield a g factor 3 unlike the Proca formulation
which gives g=1. When other properties (causal-
ity, nature of the energy spectrum, etc.) of the
equations are analyzed, one finds that minimality
of electromagnetic coupling in the usual sense is
no guarantee of good behavior; on the other hand,
some of the inconsistencies such as noncausal
propagation and pure imaginary energy values dis-
apvear when the coupling is so arranged that the
g factor is unity. It seems then that the optimal
type of coupling is that which leads to g=1 in the
spin-1 case. For general spin s, there is a long-
standing conjecture® that the g factor should be
(1/s), which may now be considered as a “principle
of optimality” in coupling to the electromagnetic
field. The case of spin 2 lends support to such a
principle, insofar as the absence of the anomaly
in regard to the number of degrees of freedom and
the existence of a region of magnetic field values
for which energy eigenvalues are all real are en-
sured for just such a coupling as would give
g=1/s=3. It is this coupling (namely that includ-
ing the Federbush term) which is optimal, despite
its being nonminimal.’! Unfortunately even with
this optimal coupling one is a long way from rid-
ding oneself of pathologies such as noncausality of
propagation (as indeed is the case already with
spin ). One may in fact legitimately wonder
whether there exist any formulations at all of
higher-spin fields which are consistent in all re-
spects when external interactions are introduced.
Finding a complete answer to this question re-
mains a fascinating and challenging problem.
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APPENDIX

We verify here that in a frame in which both the
electric and magnetic fields are present the num-
ber of constraints is only 8, for any o #1.
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Before proceeding to do this, it might be useful
to display how constraints are derived in a covari-
ant way for a general F,, which is constant. We
observe, first of all, that setting either p or v
equal to zero in (3) leads to four constraints. The
next set of four constraints follows from contract-
ing L*” with 7,. We thus have the eight constraints

L*°=0, (A1)
vV _m-ZWuLuu
=7, d)uu_ ”vw

—de m™3[F , n™ "+ (F, my+ my F )
+(3m, F*+F*r,)y]
=0. (A2)

To derive the ninth constraint, we contract L*”
with 7,7, and compare it with the trace of L*".
Thus we form the combination

m,m, L¥ +3m?L*  =ie(1 - a)m,m (F*") + 3m*y

+3e%(F ,, F* "= 3 F,, F"Y)

It is immediately evident from (A3) that when the
electric field is nonvanishing, there exists a sec-
ond-order time-derivative term ie (1 — o) m,2F,; ¥°*.
We thus find that while the choice @ =1 reduces (A3)
and its first time derivative to the ninth and the
tenth constraints, respectively, constraints will
not follow from (A3) for any other @, unless

1o29°% (i=1,2,3) can be eliminated in terms of low-
er derivatives. Now if we are considering a ref-
erence frame obtained by a boost from another in
which only a pure magnetic field exists, the elec-
tric and magnetic fields appear at right angles to
each other in the new frame. With the magnetic
field along the z direction, the electric field may
be arranged to be along the y direction, so that the
only nonvanishing component of F,; is Fp,=§. In
such a case, the derivation of the ninth constraint
necessitates the elimination of 7,2)% in favor of
lower-order time derivatives. To see if this can
be done as before by differentiating the other
constraints, we note first that with the electric
field also present and ¢ #1, the constraints cor-

=0. (A3) responding to (36) and (37) have the forms
—
Tl MY = 3iede(a~ 4)9°% - ie 8§ m 2+ 3ie§(a+2)P2]++ -+ =0 (A4)
and
mo[m*y%” + siede(a— Y™ = Zie S(YM +9™) +zie(w = DEETC+9™)]+- -+ =0, (A5)

where the dots stand for terms containing no time
derivatives. If we apply 7, to these equations and
solve for m,?y%, the resulting expressions will
evidently contain m,29'2, m2(y* +¢%), and 7, 2(y*
+7%) and these in turn have to be reexpressed in
terms of lower derivatives. The equations of mo-
tion do enable us to eliminate 7 2*2, m(y*! +3°%?),
and 72y, but the term 7,2y°° gives serious
trouble. In fact, it is impossible to eliminate it

-
since y°° does not have any equation of motion at
all. However, it may be noted from (A5) that the
coefficient zie(a - 1)§ will accompany 7,2, so
that either the choice @ =1 or the vanishing of the
electric field will eliminate this troublesome term
altogether. For any o #1, the ninth and the tenth
constraints would therefore appear to be lost and
we would then be left with more than the requisite
number of degrees of freedom for the particle.
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