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Use of the rapidity y as a parameter in high-energy multiparticle scattering appears to be natural. In this paper
we point out that since y is a longitudinal boost angle, it has a natural canonical conjugate variable, namely

the boost operator X3 in the longitudinal direction, and that the eigenvalue k3 of K„unlike y, is an additive

quantum number. Hence it might be useful to expand the scattering amplitude in either y or k3. A field

theory in y or k, space is developed in which simplicities in y can be translated into coordinate space,
through the relationship between k3 and s. The invariant inclusive cross section, which is known to be a
simple function of y, is related to the field number operator. This gives us a way of distinguishing in principle
between different coordinate-space properties of particle production.

The invariant inclusive cross sections for high-
energy multiparticle production processes are
known to be simple functions of the rapidity vari-
able y of the observed particle. ' The regularity
of the cross sections, sometimes called the "cen-
tral plateau" because they appear to flatten about
y„=0, suggests that there should be a regular-
ity in some physical variable canonically conju-
gate to y.

The quantity which has the "central plateau"
flatness or possibly Gaussian shape in y is
o„„dN/dy, where a„„is the inelastic cross sec-
tion for the inclusive process under study, and
dN/dy is the number of particles of the type being
measured at y in an interval dy. For example, in
the reaction

In general the Poincard generators of boosts,
K, =M«, are canonically conjugate to the boost
angles P&,

[Kq, P~]=i5)~ (4)

0+&
n

and H and P are the Hamiltonian and momentum
operator s. That is,

We wish to point out here that a result similar to
Eq. (4) holds also for the operators K, (we take
the 3-direction to be the beam direction; thus
Ps=Pi) an& Y, where

[K~, Y]= K3, ln ' =i.H+I3
(6)

the quantity plotted as a function of y is
&sna&pp~r+&~t'/dy.

The rapidity y has several equivalent defini-
tions,

y = sinh '(P„/m~)

E+p(,= glnE

If we recall the definition of the boost angle P,

P = sinh '(P/m), (2)

m =(m'+P ')'~'

we see that the first of these definitions displays
the longitudinal boost angle nature of y, ' except
that m is replaced by an effective mass m„

Thus K, and Y are conjugate operators. ' Further-
more, although the range of (H+ P,)/M, is (0, ~),
the range of Y= in[(H+P, )/M~] is (-~, ~), as is
the range of K, . Hence Y and K, are self-adjoint
conjugate operators in the same sense as I' and

are self-adjoint conjugate operators in quantum
mechanics, and the eigenvalues y and k, of Y and

K, are conjugate Fourier transform variables.
Even if the range of y is kinematically cut off to
(-Y/2, Y/2), we can still do the Fourier trans-
form in a box of length Y to find the k, dependence.
We emphasize that since K, is a generator of the
Lorentz group, its eigenvalue k, is an additive
quantum number, unlike y, which is not.

The asymptotic scattering states can be labeled
by complete sets of commuting variables. Two
possible sets of labels corresponding to use of
Y and K, are
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Im &
s

& ss& p&.& y}

m, s, s»p~, k,).
We note that because

[H, Y]=0, (6)

' =$[H K ]+ =0.
dt

(10)

We note that K, acts as a dilation operator on the
operator (H+P, )/M~ which is the argument of Y,

H+P, .H+P,
»M, 'M, '

This leads us to the relationship

H+ P3 3 . H+ P3 3
E» ' =ik,

L I
which implies that the eigenstates of K, are asso-
ciated with the monomials in (E+P,)/m~ and ap-
pear multiplied by [(E+P,)/m ] '~~ in the expan-
sion

Imss, && &)- J SS, ' )mss, p S,). (&&)
m

As was noted in Ref. 3, E, has the interpretation
of being like a coordinate, namely

a particle can be in both an eigenstate of H and an
eigenstate of Y. On the other hand,

[H, Ks] = —iP»
so that a particle cannot simultaneously have a
definite value of E and of k, . However, we point
out that the uncertainty relation &Edk, ~ 2if (P,)!
is a weak uncertainty relation, while that for y
and k, is strong, 4y4k, ~ &S.

Both Y and E~ are constants of the motion, in
spite of the fact that K, does not commute with H.
This is because E, contains an explicit t-depen-
dent term, -P,t, so that the total time derivative
of K, is zero,

a(y) = vX a(p). (16)

Here a(P) is the usual momentum-space (boson)
operator satisfying

[ V», "(p)]=6(p-p). (16)

a constant of the free motion. Thus the asymptotic
value of k,(v') is equal to the value immediately
after the interaction ceases. Because of the coor-
dinate nature of E» the spread of values of k, re-
flects the degree of localization of the observed
particles when they are produced.

There are several possible models of, for ex-
ample, pion production at very high energies. If
the interaction and production are assumed to take
place in a highly Lorentz-contracted disk, then the
energy density is localized and the distribution of
k, for all observed m" s should be very sharply
peaked. In a Landau-type model, the disk is ex-
panding as the pions form, which would lead to a
distribution, probably Gaussian, in the k, "posi-
tions" of the newly formed pions. In a multi-
fireball model, there would be several sharply
peaked values of k, in the distribution. The con-
stancy of the quantity Ez for all observed pions
would also imply that higher-energy pions are pro-
duced closer to the center of the collision, in a
cascade or bremsstrahlung fashion.

The distribution which is measured (the square
of the scattering amplitude) is a function of y which
can be Fourier transformed into a function of the
conjugate variable k, . Thus rapidity distributions
give information on the localization of the particle
production. For example, when the k, distribution
is a 5 function or Gaussian, the rapidity distribu-
tion is flat or Gaussian, as seems to be the case
experimentally. Note that 6(k,) corresponds to the
Feynman x distribution.

We turn now to a Fock representation of dH/dy
First, letting the transverse variables p~=0, but
still labeling m as m~ to ensure that E' =p~'+ m~',
we can define creation and annihilation operators
a~(y) and a(y) by

K3 -Ez, (14)
and p is for now just p3. Then since

where E is the energy and z is the third compo-
nent of the center of energy. During an interac-
tion the total K, remains constant, but the K, of,
for example, the positive pions in the inclusive
reaction

dy
Ey

we find that

(16)
PP %+X

is not separately a constant of the motion. Thus,
the scattering matrix must contain a term which
generates some k, value for the m' during the in-
teraction. For the asymptotically separated par-
ticles, H is again a free Hamiltonian and K, (v') is

Thus a(y) is canonically defined.
The expectation value @!at(y)a(y)!s)counts the

number of m" s in the unnormalized n-particle
state ln) in an interval dy about y. The (inclusive)
expectation value (a~(y)a(y)) includes an average
over all possible n-particle final states,
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&a'b)ab)) =g &t la'b)ab)ln), (19)

and we may write

—= &a'b}ab)).
cLy

(2o)

There are other equivalent ways to write the Fock
space representation of dN/dy, but we feel that
Eq. (20) is closest to the experimental quantity. '

The approximately flat or Gaussian distributions
of &a~(y)a(y)) suggest simple shapes also for &ata)

as a function of the eigenvalue k, of g. In k, space
a(k, ) is defined by the Fourier transform of a(y),

a(k, ) =~ dy e '+"a(y),
4 ~00

so that

[a(k,), a~(k,') ]= 6(k, —k,').

(2l)

(22)

That is, a(k, ) is also canonically defined.
Any field P can now be expanded in terms of a(y)

or a(k, ) in the conventional way. Writing the boson
field (t (z, t) in coordinate space as an expansion,
first in terms of p3 and E, then in terms of y, then
finally in terms of k„we find

(z t)
3 e((oat zt)a(p )

dp~
„„44mE

+ Hermitian conjugate

connection with the light-cone formalism.
We can now let p~ take on any value and incor-

porate all three space coordinates into the pre-
ceding integrals. This involves defining creation
operators at(p~, y) and at(p~, k,), both of which have
the canonical commutation relations. The result
is the field p to be used as P,„,or (t „„in the
scattering amplitude (see Ref. 4),

p Cl

(t (x, t)=,I, d'p,
,

dk, a(p~ k, )e(s~' &
i (2(()$12 J I s Jt 3

e~g/2

x H((~@(m,(t —z')' ~'). (26)

Thus the ordinary p3 shape function ej~3' and the

p, dependence of a(p~, p, }have been replaced by a
k, shape function H((2+ and k, dependence of a(p„k,).

The Lorentz transformation properties of the
shape function of Eq. (25) are particularly simple
under a boost in the z direction with boost angle
P. The argument of the Hankel function contains
t' —z', which is invariant. The phase depending
on t +z becomes

t + z t coshP —z sinhP —t sinhP+ z coshP
t —z t coshP -z sinhP+ t sinhP —zcoshP

=( }s '. (27)

d 3

%00

~ (0

11 y ~(o z ~(o 1l

(23)

The only effect of a boost in the z direction is
therefore to multiply the shape function by a phase
factor e j 3~/2

Any function of y can be expanded in a Fourier
transform in terms of the eigenstates of K,. We
let F(y) be such a function. Then

+ H.c. (24)

The integral over p3 is a function of z, t, and k,
readily evaluated, '

The term ei~3' involves the exponential of a loga-
rithm, so that p(z, t) becomes

p 00

y(z, t) =~2 dk, a(k, }
J ~'@e"& z"

p (I

F(y) = dk, e('0'F(k, ).

We change variables to v= ik„so that

~ ~ j(o

E(y) =P dv e~E(v).
j0O

The substitution of

(28)

(29)

p (O jk34's ((gast& +Ps-
E e

mJ

jk /2
i~e~k3 /2 Jf"'(m (t2 —z')'~')

t —z (25)

where Hj+ is a Hankel function of the second kind.
This function is a shape function or wave function
in coordinate space, determined by the simple re-
lationship between p3 and y and the simple eigen-
functions of K, .' The appearance of the light-cone
variables t +z in this function is suggestive of a

E+P3e'=
m J

into Eq. (29} gives us the expansion

i "'" E+p
E(y) = —~ dv ' E(v).

(30)

(3l)

F(t, , . . . , u. , p, , . . . ,p„).
3 3 J.

(32)

Now we consider a scattering amplitude for an
n-particle final state. We write the amplitude I"

as a function of p3 and p, for each of the particles,
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We change variables from p, to y and make the transformation given by Eq. (31) on just one variable y„
-g El+Pi

F(ylt tyntpl t i ptt )=
vt2 ~1 (~lty 21 tynt pl 1 ' ' tpti }' (33)

F(y) -F(y+ P),

or for many variables
~et

(ylt ' ' i ynt Pl i ' ' ' t Pn }L
~I/I

-F(y, + &, , y.+ P, p...",p.,}.

(36)

(36)

Thus a Lorentz-invariant function such as the
scattering amplitude must be a function of the dif-
ferences of y's,

F=F(yg -yg, pg, ) ~ (37)

Furthermore, if the final state consists of identi-
cal particles, E must be a symmetric function of
the y's and must therefore depend only on the mag-
nitudes of the differences of y's.

F=F(lyi -y~l p~,). (38)

These statements are all consistent with what is
known about scattering amplitudes as quadratic
functions of four-momenta, which can be verified
using the identity

(P„p1,P,) = (m, coshy, p~ m1 sinhy}. (39)

Such symmetry arguments give us constraints
on the form of the transformed scattering ampli-
tude F of Eq. (33). For example, if the final state
contains three pions we want a symmetric function
such as

F(y„y2t y2) =f (ly, —ynl)f(ly2 —y. l) f (ly, —yJ),
(40)

where we drop the variables p~. Each function

For high energies &, the integrand of Eq. (33) has
the form

Pg
1

m ( lty2t ' ' 'tyntpl i tPn)il
lg

as in a Regge representation.
The integral of Eq. (33) may contain singularities,

though we do not know their nature. As an example,
if the leading singularities in the left half plane were
poles, and if y, were large and positive, then we
could slide the contour to the left to pick up a
leading contribution 2v2s"»»ResF(&»») It is .rea-
sonable, in fact, to expect Regge-type behavior of
scattering amplitudes in some kinematic regions
(large rapidity). '

We have some clues as to the form of the scat-
tering amplitude of Eq. (33). Under a Lorentz
transformation along the 3-axis of boost angle P,
we have

I

f(&y) is given by a Fourier transform of the type

] tn00

f(&y) = ~~„dI.e'"'"f(I.),

with

f(-hn) =f(h2).

Then if we expand F(y„y„y,) as

(41}

(42)

F(&1. y2 y2) = ~ dh f(&)f(ly2-ynl)f(& —&12)

X ~~&&~3-"&-~~i,~3. (46)

In Eq. (45) we have the functional form of the Fou-
rier transform of the scattering amplitude on the
boost variable of one of the final particles.

W'e have shown that there is a well-defined field
theory in terms of y or kn. This means that dN/dy
in the invariant inclusive cross section can be
properly written as (at(y)a(y)} and Fourier trans-
formed to dN/dkn. The shape of dN/dy gives the shape
of dN/dk„which in turn gives information about the
localization properties of the particle production
mechanism. The incoming asymptotic states will be
eigenstatesof P and H. During the collision, some
property such as energy density is localized, and the
outgoing asymptotic states may be expanded in eigen-
states of E, in a way similar to the angular mo-
mentum formalism. Scattering amplitudes may
be analyzed as functions of y and k, for final par-
ticles.

The authors appreciate the hospitality and at-
mosphere of the Aspen Center for Physics, where
this collaboration took place. Conversations with
several people have been helpful, particularly L.
Durand. This paper was finished while B. Durand
was visiting the Los Alamos Scientific Laboratory
Theory Division, whose hospitality is also appre-
ciated.

] tn 00

F(yt, yn, yn)= ~ dh, e"»"»(&, , y2, y2) (43)
~t »40

we find that
1

F(&», y2, y.) = ~2„dy, e """1f(ly,—y. l)

xf(ly. -y.l}f(ly. -y, l).
(44)

This expression can be expanded using Fourier
transforms of f(Iy, -ynl) and f(lyn -y, l) with Fourier
conjugate variables k and k', respectively, then
integrated over y, and k' to give
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'Different models predict different shapes for this func-

tion. The multiperipheral and hydrodynamic models
predict, respectively, flat and Gaussian invariant
inclusive cross sections in y. For the multiperipheral
prediction see C. De Tar, Phys. Rev. D 3, 128 (1971).
The hydrodynamic prediction along with fits to the data
are in P. Carruthers, Cornell University Report No.
CLN8-219, 1973 (unpublished) . The present data span
too small a region of rapidity space to judge confidently
which model gives the better fits, particularly consid-
ering experimental difficulties in obtaining the data.

2A "fake" rapidity g is often used because it is easier
to measure than y. The definitions of g are

g = ln cot(0/2)

lh P Pll

p p))

dy
—=+&ala'()) (X)ln&

=Q &PP I „„,&& .„,I (3)... b)...l;.&&;., IPP;. &

n, n'

= &PP l~ (y)...~(y).„,IPP )-
The preceding equation may be a more familiar ex-
pression for dN/dy to some readers.
Tables 0f Integra/ Transforms (Bateman Manuscript
project), edited by A. Erdhlyi (McGraw-Hi11, New
York, 1954), Vol. 1; see page 313, number (17);G. N.
Watson, Theory of Bessel Functions (Cambridge Univ.
Press, New York, 1966), Sec. 6.21, number (7).

~The phases of this function have been determined for
different regions of z and t:

l
eo ik~dp3 E +pe 3 i(p3Z Qg)

E m~

ise -~/2 33 B 2 (m (t2 —z2)1/2)t + z ike)'2

t-z ik3

t2&z2, t &0

where 8 is the laboratory scattering angle of the ob-
served particle. While g approximates y in many
cases, it can be seen from the definitions of y and g
that only y can be considered 8 boost angle.

It is interesting to note that in classical physics K3 =Ez,
and the canonical transformation [see H. Goldstein,
Classical Mechanics (Addison-Wesley, Reading, Mass-
achusetts, 1950), Chap. 8] generated by F2 = m~z sinh P
takes conjugate variables z, P3 into conjugate vari-
ables Q, I', with Q=zE =K& and P =sinh (P3/tplj) Y.
In this sense Ks is a coordinatelike operator and Y is
a momentumlike operator.

20ur unuormalized state
~ n) is related to the normalized

free state ~n) via the S matrix,

f n) = /n) &n / Supp)
1

inel

1= ~n& &n.„,Lpp, „&
~hei

where (n (n) =1. It can be shown that

&n[ata[n) = (n,„,[at„,a,„,[n,„,) ~

so that our expression (19) is

2e-(33/2))t + 3 ff ( (e2 22)1/2)
t z 2 gk)

t2&z2, z&0

=2e ~ ~3 —Kiz (m~(z -t ) 2)
t -z, 2 '~3

t2 &z~, z &0

1 Xe {v/2)k3-+. 3 ff &2) (e-imam (22 z2)1/2)
2

t2&z2, t &0.

Professor Paul Fishbane has pointed out to us the sim-
ilarity of this formalism to the "longitudinal impact
parameter" representation used in S.-J. Chang and
P. M. Fishbane, Phys. Rev. D 2, 1084 (1970), Sec. V,
and P. M. Fishbane and J. D. Sullivan, ibid. 6, 3568
(1972), Sec. V. In those papers on deep-inelastic el-
ectroproduction and inelastic e e annihilation, re-
spectively, it was discovered that the structure func-
tion W2 has a particularly striking form in a "longi-
tudinal impact parameter*' space corresponding to our
k 3 space. Fishbane and Sullivan were able to prove
theorems based on the nature of singularities in k 3
space. This reinforces our opinion that the k3 space
representations of scattering functions have real phys-
ical meaning.


