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An analysis is presented of the physical implications of theories in which the masses of
the intermediate vector bosons arise from a dynamical symmetry breaking. In the absence
of elementary spin-zero fields or bare fermion masses, such theories are necessarily in-
variant to zeroth order in the weak and electromagnetic gauge interactions under a global
U(N) 8U(N) symmetry, where N is the number of fermion types, not counting color. This
symmetry is broken both intrinsically by the weak and electromagnetic interactions and
spontaneously by dynamical effects of the strong interactions. An effective Lagrangian is
constructed which allows the calculation of leading terms in matrix elements at low energy;
this effective Lagrangian is used to analyze the relative direction of the intrinsic and spon-
taneous symmetry breakdown and to construct a unitarity gauge. Spontaneously broken
symmetries which belong to the gauge group of the weak and electromagnetic interactions
correspond to fictitious Goldstone bosons which are removed by the Higgs mechanism.
Spontaneously broken symmetries of the weak and electromagnetic interactions which are
not members of the gauge group correspond to true Goldstone bosons of zero mass; their
presence makes it difficult to construct realistic models of this sort. Spontaneously broken
elements of U(N) U(N) which are not symmetries of the weak and electromagnetic inter-
actions correspond to pseudo-Goldstone bosons, with mass comparable to that of the inter-
mediate vector bosons and weak couplings at ordinary energies. Quark masses in these
theories are typically less than 300 GeV by factors of order u. These theories require the
existence of "extra-strong" gauge interactions which are not felt at energies below 300 GeV.

I. INTRODUCTION

When unified gauge theories of the weak and
electromagnetic interactions were first proposed,
it was assumed' that the spontaneous symmetry
breakdown responsible for the intermediate-
vector-boson masses is due to the vacuum ex-
pectation values of a set of spin-zero fields. For
a variety of reasons, the attention of theorists has
since been increasingly drawn to the possibility
that this symmetry breaking is of a purely dynam-
ical nature. ' That is, it is supposed that there
may be no elementary spin-zero fields in the La-
grangian, and that the Goldstone bosons associated
with the spontaneous symmetry breakdown are
bound states.

Almost all the effort that has been put into anal-
yses of dynamical symmetry breaking has been
directed to the difficult mathematical problem, of
whether and how this phenomenon can occur in a
variety of field-theoretic models. In this article
I would like to address quite a different question:
Assuming that dynamical symmetry breaking is a
mathematical possibility in gauge field theories,
what are the consequences for the real world?

Why should we believe that the masses of the
intermediate vector bosons arise from dynamical
symmetry breaking? The absence of strongly
interacting elementary spin-zero fields is indi-
cated by a number of requirements: asymptotic

freedom, ' electroproduction sum rules, ' and the
naturalness of order-a parity and strangeness
conservation. ' On the other hand, the absence of
seeakly interacting elementary spin-zero fields is
much less certain. Apart from simplicity, the
best reason for this assumption comes from the
requirement for a natural hierarchy of gauge sym-
metry breaking. ' In order to put together the ob-
served weak and electromagnetic interactions into
a simple gauge group, it is necessary to suppose'
that in the spontaneous breakdown of this simple
group to the nonsimple gauge group of the ob-
served interactions, vector-boson masses are
generated that are much larger than the masses
expected for the W and Z; this conclusion is even
stronger if we try to include the strong interac-
tions as well. ' This superstrong symmetry break-
down may well be due to the vacuum expectation
values of elementary spin-zero fields. However,
at ordinary energies, far below the superheavy
vector-boson masses, physics is described by an
effective field theory involving those fermions
and vector bosons that did not get masses from
the superstrong spontaneous symmetry breakdown,
but no spin-zero fields. Likewise, the gauge group
of this effective field theory consists of a direct
product of those simple aud U(l) subgroups of the
simple gauge group that were not broken at the
superstrong level. The only way that the non-
superheavy fermions and vector bosons can then
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acquire masses is from a dynamical breakdown of
this remaining gauge group. Futhermore, the
mass scale determined by the dynamical symmetry
breakdown is expected to be of the order of magni-
tude of the renormalization point at which the
largest of the gauge couplings of the effective field
theory reaches a value of order unity; this mass
scale is in general enormously different from the
mass scale of the superstrong symmetry breakdown.

For the purposes of this article, we will not
need to commit ourselves to the general picture
described above. However, our assumptions are
those inspired by this picture: We assume that
weak, strong, and electromagnetic interactions
are described by a gauge field theory (perhaps an
"effective" field theory ) involving fermions and
gauge fields but no elementary spin-zero fields or
bare fermion masses, and we suppose that the
vector-boson and fermion masses arise from a
dynamical breakdown of this gauge group. These
assumptions are spelled out more precisely in
Sec. II.

In further support of these assumptions, it
should be mentioned that it is the absence of bare
fermion masses that makes it natural for a spon-
taneous dynamical symmetry breakdown to occur.
Any spontaneous symmetry breaking requires the
appearance of massless Goldstone bosons, '
whether or not they are eventually eliminated by
the Higgs mechanism. " For dynamical symmetry
breaking, these Goldstone bosons would have to
be bound states. However, we would normally
expect that any bound state at zero mass would
move away from zero mass if we changed the
strength of the binding interactions, in which case
dynamical symmetry breaking could only occur for a
discrete set of coupling strengths, " and could not
be considered "natural. " In the theories con-
sidered here, with zero bare fermion mass, there
is only one mass scale, defined by the renormali-
zation point at which the gauge couplings are
specified; thus a small change in the gauge cou-
pling constant corresponds to a general change of
mass scale, "and cannot shift a massless bound
state away from zero mass.

The consequences of our assumptions turn out
to be quite striking. Before turning on the weak
and electromagnetic interactions, the strong inter-
actions are necessarily invariant, not only under
the strong gauge group, but also, as shown in
Sec. III, under a, global U(N)SU(N) group, where
N is the number of fermion types, not counting
color or possible other strong gauge indices. This
global group is broken in two different ways,
described in Sec. IV. It is sPontaneously broken
down to some subgroup H by dynamical effects of
the strong interactions. It is also intrinsically

broken to that subgroup S~ of U(N) 8 U(N) which
leaves the weak and electromagnetic interactions
invariant. And of course the gauge group of the
weak and electromagnetic interactions is a sub-
group Ggp of Sg .

It is this double breakdown of U(N) U(N),
shown symbolically in Fig. 1, that will occupy
most of our attention in this paper. Indeed, aside
from the final section, the bulk of this paper can
be regarded as a mathematical analysis of general
theories in which there is both a strong spontane-
ous symmetry breaking and a weak intrinsic sym-
metry breaking induced by gauge interactions.
The property that is specific to theories without
spinless fields is that the over-all global group
is U(N) U(N ), but most of our discussion would
apply to any other global group.

Our analysis is complicated by three factors:
(1) We cannot use perturbation theory to describe

the strong interactions responsible for the spon-
taneous symmetry breaking. This problem is
evaded here by restricting ourselves to processes
at relatively "low" energies, not greater than the
expected masses of the intermediate vector bos-
ons, or roughly ex 300 GeV. It is shown in Sec.

U(N) U(~)

Pseudo - Goldstone Bosons

True Goldstone Bosons

Fictitious Goldstone Bosons

Symmetries broken intrinsically but
not spontaneously

Exact unbroken global symmetries

FIG. 1. Schematic representation of the various sub-
groups of U(N) SU(Ã). Cross hatchings indicate the
various ways that global or local symmetries are broken;
the unhatched lens represents the unbroken exact local
symmetries, such as electromagnetic gauge invariance.
As discussed in the text, H is the subgroup of U(N)
(3 U(N) which is not spontaneously broken; Sz, is the
global symmetry group of the weak and electromagnetic
interactions; and G~ is the weak and electromagnetic
gauge group.
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V that at such energies the terms of leading order
in e in the matrix element for any process are
given by calculating tree graphs, using an effec-
tive Lagrangian" of reasonably simple structure.
The effective Lagrangian involves those fermions
and strong gauge vector bosons that did not acquire
masses from the spontaneous dynamical sym-
metry breaking (which we identify as the usual
quarks and gluons) plus the Goldstone bosons that
accompany the spontaneous symmetry breakdown,
and the gauge bosons of the weak and electromag-
netic interactions.

(2) In defining a particular theory, it is not
enough to specify the group structure of the non-
spontaneously broken subgroup H and the gauge
subgroup G~; we must also say how these sub-
groups line up with each other" within the over-
all group U(N) g U(N ). In Sec. Vl it is shown that
the alignment of these subgroups is determined by
the condition that the Goldstone bosons must not
have tadpoles; otherwise perturbation theory
breaks down.

(3) There is a Goldstone boson for every inde-
pendent broken symmetry'0 in U(N) SU(N), but
those Goldstone bosons that correspond to genera-
tors of the gauge group G~ are "fictitious" Gold-
stone bosons, which are eliminated by the Higgs
mechanism. " In Sec. VII we show how in general
to define a unitarity gauge" in which these fictiti-
ous Goldstone bosons are absent. The masses of
the intermediate vector bosons can be determined
(to leading order in e) by inspecting the effective
Lagrangian in the unitarity gauge. The other
Goldstone bosons which are not eliminated by the
Higgs phenomenon are studied in Sec. VIII. This
class consists of "true" Goldstone bosons of zero
mass, corresponding to broken symmetries in 5~
but not G~, and "pseudo"-Goldstone bosons" with
mass of order e&&300 GeV, corresponding to
broken symmetries of U(N) SU(N) which are
neither in Sv nor Gv (see Fig. 1).

Different aspects of this analysis have been dis-
cussed before, but not to the best of my knowledge
all together. Thus, effective Lagrangians for both
broken global" and broken gauge symmetries"
are an old story, but not for the case where the
broken-symmetry group consists of a group of
approximate global symmetries with an exact
gauge subgroup. Also, the problem of subgroup
alignment mentioned in item (2) above has been
studied in the presence of strong interactions, "but
with a nongauge perturbation, and also with a
gauge perturbation, ' but in the absence of strong
interactions. Finally, previous attempts at a gen-
eral definition of the unitarity gauge' and the
pseudo-Goldstone bosons" dealt only with a spon-
taneous symmetry breakdown produced by vacuum

expectation values of elementary spin-zero fields.
In Sec. IX we take up an unrealistic example

which is designed to show' how this analysis can
be applied to specific theories. As usual in models
with spontaneously broken symmetries, we can
obtain quite detailed information about the inter-
action of soft Goldstone bosons with quarks and
vector bosons, despite the presence of strong in-
teractions. Surprisingly, one can also solve the
subgroup alignment problem explicitly. There
are just two possible ways that the subgroups can
line up, corresponding to the possible signs of a
single unknown parameter. In one case there are
two massive vector bosons, one "photon, "one
true Goldstone boson, two pseudo-Goldstone
bosons, and a finite quark mass of second order in
e; in the other case there are three massive vec-
tor bosons, no photons, no true Goldstone bosons,
two pseudo-Goldstone bosons, and an exact sym-
metry which keeps the quark mass zero to all
orders in e. Evidently the subgroup alignment is
crucial in determining the physical content of the-
ories with a given group structure. It is striking
that for both alignments the theory contains un-
welcome massless particles: in one case a true
Goldstone boson, in the other a massless quark.
This is a common problem in theories with dy-
namical symmetry breaking.

The last section offers a series of remarks
about the application of the formalism developed
in this article to models of the real world.

This article is not intended as an argument that
the masses of the intermediate vector bosons
actually do arise from dynamical symmetry
breaking. Indeed, some of the difficulties of con-
structing realistic models based on dynamical
symmetry breaking are emphasized in Sec. X.
However, it would be wise at least to keep in mind
that the experiments designed to find intermediate
vector bosons may discover pseudo-Goldstone
bosons as well.

II. GENERAL ASSUMPTIONS

The theories to be discussed in this paper are
governed by the following general assumptions:

(a) The Lagrangian is locally invariant under a
gauge group

GsG (2.1)

Here G~ describes the strong interactions, and has
gauge couplings roughly of order unity; G~ de-
scribes the weak and electromagnetic interactions,
and has gauge couplings roughly of order e. [Both
G~ and G~ may themselves be direct products of
simple and/or U(1) gauge groups. ] As discussed in
Sec. X, it is likely that G~ is larger than the usual
color SU(3) gauge group.
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(b) In addition to the vector gauge fields re-
quired under (a) there is a set of fermion fields
g„(x). Here n is an N-valued row or "flavor" in-
dex labeling fermion type 6', 3', , X, 6", etc. , on
which G~ acts, and m is a column or "color" index,
on which Ge acts. (The status of the leptons is
considered briefly in Sec. X.)

(c) The Lagrangian contains no fermion mass
terms and no elementary spin-zero fields.

(d) The theory is renormalizable.
These assumptions are made here because they

seem to be required' in simple gauge theories with
hierarchies of symmetry breaking, of the type de-
scribed in the Introduction. However, for the pur-
pose of this paper it will not be necessary to sup-
pose that the strong, weak, and electromagnetic
interactions arise from a superstrongly broken
simple gauge group; it will only be assumed that
physics at "ordinary" energies (say, up to a few
thousand GeV) is governed by assumptions (a)-(d).

Under these assumptions, the Lagrangian must
take the form

2= —gy"p„g ——,'5, Vg" ——,'G, „,G"', (2.2)

where X)„g is the gauge-covariant derivative of the
fermion field

(&„g)„=B„g„—i g (w )„„.g„,„W „
n'n

—f g(s.),y„,s.„,
haft'a

with W, and S,„ the G~ and G~ gauge fields, and
ae and s, the matrices representing the corre-
sponding group generators. (The gauge coupling
constants are included as factors in w„and s, .)
Also, F „,and G „,are the usual covariant curls
of Vf and S,„, respectively.

(2.3)

III. U(N)g, U(N) SYMMETRY

The most striking consequence of the general as-
sumptions outlined in the last section is the exis-
tence of an "accidental" approximate global sym-
metry of the Lagrangian. In the limit e-0 the
Lagrangian is automatically invariant not only un-
der the local G~ transformations on the fermion
column (i.e. , color) indices, but also under a
group U(N) SU(N) of global transformations on the
N-valued fermion row (i.e. , 8, X, X, 6",. . . ) in-
dex. That is, for each of the 2N' indepeadent Her-
mitian matrices X„(with Dirac matrix factor of 1
or y, ) there is a vector or axial-vector current

In what follows it will be convenient to normalize
the A.„and hence the J„so that

Tr(A„As) = 85„e. (3.3)

IV. SYMMETRY BREAKING

The U(N) S U(N') symmetry is in general broken
by the weak and electromagnetic interactions. This
intrinsic symmetry breaking can be quantitatively
described by writing the generators so of the weak
and electromagnetic gauge group as linear com-
binations of the U(Ã) SU(Ã) operators X„:

(4.1)
A

In accordance with our previous assumptions, the
coefficients e „are all of order e. Emission and
absorption of virtual 8' bosons will produce order-
e' perturbations which are not expected to be U(Ã)
S U(N) invariant.

We shall assume that in addition to this intrinsic
symmetry breaking, even in the limit e-0, there
is a spontaneous breakdown of the symmetry group
G e S U(N) S U(N) of the strong interactions, caused
by strong forces among fermions, antifermions,
and G~ gauge bosons. As usual in any spontaneous
symmetry breaking, it is perfectly natural for
some subgroup U to be left unbroken. For the sake
of simplicity and definiteness, we shall assume
that U does not mix the strong gauge group G~ with
the accidental global symmetry group U(N) SU(N);
that is, the unbroken symmetry group for e 0 is
a direct product

(An unusual extra factor of 4 appears here because
the trace includes a trace on Dirac indices; this is
necessary because half the A, „are proportional to
the Dirac matrix y, .)

It should be emphasized that the U(N) SU(N) sym-
metry arises only because of our assumptions that
the Lagrangian contains no fermion mass terms
mg g, no scalar field couplings pP P, and no non-
renormalizable interactions, such as a Fermi
interaction PPTt() g. Any one of these terms might
in general destroy the U(N)S U(N) symmetry. On

the other hand, once we make these assumptions,
the U(N) S U(Ã) symmetry is inescapable —the fer-
mion fields must enter the Lagrangian only in the
form gy"Q„g, and in the limit e -0 the covariant
derivative „contains only matrices which com-
mute with all X„.

~~= —
& Q4. y"(&g). .4. .

mn'n
(3.1) U=lls e (4.2)

B„Jg= 0 (for e = 0). (3.2)

Apart from triangle anomalies (about which more
will be said later) these are all conserved:

where H~ is local and a subgroup of G~, while H
is global and a subgroup of U(N) SU(N). Most, of
the considerations below would also apply to the
more general case where the unbroken subgroup
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is not of the form (4.2), but our discussion would
have to be made considerably more elaborate to
deal with this case.

For any independent generator of G~ which is not
a generator of the unbroken gauge subgroup H~,
the corresponding strongly interacting vector bo-
son gets a mass from the Higgs phenomenon.
Also, depending on the nature of the unbroken glo-
bal subgroup H, some of the fermions will acquire
a mass from the spontaneous breakdown of U(N)

U(N} to H. In the limit e-0 this theory contains
no very large or very small dimensionless param-
eters, so we would expect all these masses to be
of the same order of magnitude, say M. The only
dimensional parameter in the theory for e 0 is
the scale characterizing the renormalization point
of the G~ gauge couplings, so we would also ex-
pect M to be determined by the condition that the
largest G~ gauge coupling reaches a critical value
of order unity at a renormalization point charac-
terized by momenta of order M.

We will see below that M is likely to be quite
large, of order 300 GeV. The physics of strong
interactions at lower energies E ==M can therefore
be described in terms of those fermions and G~
gauge bosons which do not pick up masses of order
M from the spontaneous symmetry breakdown, and
hence remain massless in the limit e-0. These
may be identified as the ordinary quarks and
gluons, respectively. (Of course, we do not at
this point rule out the possibility that H~ is just
G~, so that all of the G~ gauge bosons remain
massless. ) As we shall see, turning on the weak
and electromagnetic interactions will give the
quarks masses of order e'M, while the gluons will
remain massless.

In addition to quarks and gluons, this theory nec-
essarily contains one other class of hadrons with
masses which vanish for e-O, the Goldstone bo-
sons. For every linearly independent generator
of U(N) 3 U(N) which is not a generator of the un-
broken subgroup II, there must appear a Goldstone
boson II,. Since U(N) je U(N) is not a gauge group,
there is no Higgs phenomena which can eliminate
these Goldstone bosons in the limit e-O.

The coupling of the ath Goldstone boson to the
Ath U(N) I83 U(N) current is described by a param-
eter F,A, defined by

because in the limit e -0 this is the only mass in
the theory.

It will be very convenient to adapt the basis for
U(N) 8 U(Ã) to the pattern of symmetry breaking.
We may define the generators of the unbroken
subgroup H as linear combinations of the 2N
generators A„of U(N) 3U(Ã),

(4.4}

with the C,.A chosen as orthonormal vectors so
that

CtAC~A —5]~y (4.5)

Tr(t,.t, ) = 86,, (4.8)

The unbroken-symmetry currents have no cou-
plings to the Goldstone bosons, so that

(4.'I)

Further, by a suitable unitary transformation
we can always choose the II, states so as to di-
agonalize the positive Hermitian matrix

FaAFbA '

If the element with b =a is denoted F,', we have
then

with

aA e oA& (4.8)

B,ABbA =5,b )
A

and also

(4 8)

QB,gC;„=0. (4.10)

B,~B,~+QC;~C(s =5~s.
i

(4.11)

Correspondingly, we can define a set of broken
symmetry generators

There is one Goldstone boson for each independent
broken symmetry, so the B's and C's form a
complete orthonormal set of vectors

(4.3) +a BaA~A y (4.12)

These F,A have the dimensions of a mass, and
will play a role here like that played by the param-
eter F of current algebra. We expect that al. l

F,A are of the order of the mass M introduced
earlier,

F,A =11f,

with

Tr(t,.x, ) = 0,

Tr(x,x~) = 85,~.

The generators t, and x, span the algebra of
U(N) II U(Ã).

(4.13}

(4.14)
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V. EFFECTIVE LAGRANGIAN

Ne now want to consider the special phenomena
which arise because U(N}SU(N) is simultaneously
broken both intrinsically by the weak and electro-
magnetic interactions and also spontaneously by
dynamical effects of the strong interactions. This
is not a mere matter of expanding in powers of
&, because the theory has infrared singularities
which, at momenta P much l.ess than the charac-
teristic mass M, introduce factors M/P which
can compensate for factors e.

In order to explore this problem, let us con-
sider the leading pole singularities produced by
soft virtual quarks, Goldstone bosons, and G~
vector bosons in a general Green's function with
external quark, gluon, Goldstone boson, and/or
G~ vector bosons carrying momenta of order
P«M." These singularities can be calculated
from the sum of all tree graphs for this Green's
function, constructed from an effective Lagran-
gian'~ involving quark, G~ vector boson, gluon,
and Goldstone boson fields. [For the moment,
we are ignoring the effects of loops containing
hard virtual G~ vector bosons. These produce
U(N) SU(N)-breaking corrections of order e' in
the effective Lagrangian, and will be considered
at the end of this section. ]

The effective Lagrangian here takes the general
form

gexp i II,x, F, = exp i II,' II, g x, F,
a a

x exp i p., II, g t,.

AP, ~ ~ .
~ ~ ~~ A~a (5.5)

where T» ... is a quantity, formed out of quark,
gluon, and Goldstone boson fields and their de-
rivatives, which transforms like a U(N) SU(N)
tensor (i.e. , like A.„Ae ) when II and q undergo
the transformations (5.2} and (5.3).

(3) 2, is locally as well as globally invariant
under the unbroken subgroup H~ of the strong
gauge group and under the weak and electromag-
netic gauge group G~.

It is shown in Appendix A that these conditions
require Z, to be constructed from just the follow-
ing ingredients:

(i) The quark fields q.
(ii) Their covariant derivatives (for notation,

s ee be low):

(5.4)

The gluon fields are of course invariant under
these transformations.

(2) The currents to which the products
W„„W8„ofGv gauge fields (or their deriva-
tives) couple in Z, take the form

g = ——F „„F""+2,. (5.1}
D„q=-d„q —i t. „.II B„II,F, '

The term Z, is subject to three conditions:
(1) In the limit e -0 the W dependence drops

out, and 2, becomes invariant under U(N)SU(N),
with fields transforming according to one of the
usuaL nonLinear realizations of U(N) SU(N), in

which the unbroken subgroup H is realized alge-
braically. It will be convenient to define the fields
so that II transforms like the so-called exponen-
tial parametrization'2 of the cosets in U(N) SU(N)/
H. That is, a general U(N) SU(N) transformation,
which is represented on the fermion fields in the
original Lagrangian by a matrix g, induces on

the fields in the effective Lagrangian the nonlinear
transformations

D„ii.=-F. D„(11)s„ii,F,-'

A@i „gg B (5.7)

(iv) A covariant curl of the Wfield:

&, qA„e(II}e„&W „C,s +gluon terms.
B ni

(5.6)

(iii) Covariant derivatives of the Goldstone boson
fields:

11. -11,'(ll, g), (5 2)
+A)f P ~BA II fLIAF ~PP ~ (5.8}

q-exp i p, II, g t, q, (5.3)

where q is the quark field multiplet (with com-
ponents corresponding to those fermion fields
that do not acquire masses of order M from the
spontaneous symmetry breaking}, and II' and I(.

are functions defined by the relation

(v) The usual covariant curl of the gluon field.
Here F „, is the usual Yang-Mills +-covariant

curl, ' and the functions D, F-, and A are defined
by the formulas

s- (rr) s(s)= s'. -'ga. ,(s)s,,Ps„(s)t, ,
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with

(5.10) E~ external G~-gauge bosons will obey the topo-
logical relation

g (n„, +n„„+n„„2)N—„=E,+E „+E~ —2. (5.17)
(5.11)

With our normalization convention (3.3}, the A

matrices are orthogonal,

(Gluon terms on both sides cancel, because we
exclude internal gluon lines. i) Therefore, the
total number of factors of e or p/M is

A'(ll) =A-'(ll) (5.12) N, =E, +E„+Ee —2++ N„A„, (5.18)

—e "vtv M "vmtv (5.13)

where M is the characteristic mass introduced
in the last section (of order F,) and

3
nv = 4 —2n„, -n„, -nv„—nv„. (5.14)

If a Green's function has external lines with mo-
menta of order

P=eM, (5.15)

then each power of M counts like a factor 1/e.
The total number of factors of e or p/M is

N = Nvnv —nv (5.16)

where N„ is the number of vertices of type v.
However, a tree graph with E, external quark
lines, && external Goldstone boson lines, and

[At this point, the reader may wish to be re-
minded that indices A, B, etc. label all generators
of U(N)(8(U(N}; i, j, etc. label the unbroken gen-
erators; and a, 6, etc. label the broken genera-
tors. ]

In addition to these limitations on the ingredients
in 21, the conditions (1)-(3) also require that

Z, must be invariant under formal global 8 trans-
formations, with DuII, D„q, and F»„ transform-
ing according to whatever (linear) representations
of H they happen to contain.

At this point the effective Lagrangian we have
derived still has an extremely complicated struc-
ture, involving unlimited numbers of q, Duq,
D„II, G,u„, and W»„ functions. Indeed, if we
were to take this Lagrangian seriously as a basis
for higher-order calculations, we would have to
keep all these interactions in order to provide
counterterms for the infinite number of primitive
divergents that would arise. However, the struc-
ture of the effective Lagrangian can be very much
simplified if we use it only to determine the ma-
trix elements to lowest order in e and p/M.

Ordinary dimensional analysis leads us to ex-
pect that an interaction v appearing in the ef-
fective Lagrangian with n„, quark fields, nv,
gluon fields, n„„Goldstone boson fields, nv

G~-gauge boson fields, and nv„derivatives, will
have a coupling constant of order

where

4„=-n„+pn„+ nvg + Rv~ —2 . (5.19}

gl = -qyuDuq-2 DurI DuII — qyur qDuII

+ Fermi interactions. (5.20)

Here I', is a constant matrix, proportional to y,
and/or 1, and of order 1/M, which has the same
I-transformation properties as II, ; also, the
"Fermi interactions" are qqqq terms of order
1/M which are H invariant, but may involve any
of the j.6 Dirac covariants. Note that Duq and
D„II have just the right dependence on quark, glu-
on, G~ vector boson, and Goldstone boson fields,
so that it is possible to construct an effective
Lagrangian obeying all necessary symmetry con-
ditions with only &„=0 terms. (To the extent that
a graph with loops is dominated by states with
energy E«M, it can also be calculated with this
effective Lagrangian. )

There is, in fact, one other term which in effect
has &„=0 and therefore should be added to the
effective Lagrangian (5.20). The emission and

reabsorption of a hard G~ vector boson produces
an effective interaction of second order in e. For
any such term, the A„ in Eq. (5.19}should be in-
creased by two units, so that it becomes

1
v nvtv + ~nvq + nvd + p1vs (5.21}

Thus we get a term with 4„=0of second order
in e if it is constructed solely from Goldstone
boson fields, with no G~ gauge fields, quark fields,
gluon fields, or derivatives. (See Fig. 2. )

This term will take the form

Z (fl)= — e„„e Z„,(fl),
oi B

(5.22)

Thus for any given set of external lines, the terms
of lowest order in e or P/Mwiil be given by graphs
composed of vertices with the smallest possible
values of 4„.

In fact, the smallest values of 4„ for any allowed
interaction is 4„=0. Keeping only terms with
&„=0, and normalizing fields appropriately, gives
an effective Lagrangian of the general form
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where J'» is the time-ordered product of two
U(N)S U(N) currents J& and Js, integrated over
momenta (including a I/O' weight factor from the
W"„propagator) and contracted over space-time
indices. This two-point function is a U(N) SU(N)
tensor, i.e. , it transforms like ~„~~. As shown
in Appendix B, the most genera, l form of such
a tensor is

(5.23)

with l a II-independent quantity of order M' which
behaves as a tensor under the unbroken subgroup

Thus, the O(e') term with 4„=0 is

Z, (II) = — e„„e A (II)A (II)I . (5.24)
a BCD

This conte, ins both a II mass term (with some
Goldstone boson masses of order eM) and a non-
derivative II self-interaction, like that in pion-
pion scattering.

Incidentally, the integral in J» is expected to
receive its major contribution from momenta of
order M, because in these theories there is no
reason why the integral should start to converge
at any lower momentum. This is why we do not
include the effects of G~ vector-boson masses
here; these masses will turn out to be of order
eM, so their effect is a higher-order correction. "

So far, we have seen that the leading (A„=0)
part of the effective Lagrangian takes the form

(5.25)

%e could go on and describe the structure of
higher terms with &„=1, 4„=2, etc. However,
we will content ourselves with describing one
term of particular interest, associated with the
quark masses.

The guarks are defined as the fermions that
do not pick up a mass of order M from the spon-
taneous breakdown of U(N) S U(N) to H, so there
is no quark mass term qq with ~„=—1 in the ef-
fective Lagrangian. However, emission and ab-
sorption of a G~ vector boson can produce a term

of order e' with ~„=+1. Following the same
reasoning as for Z„ this term must take the form
(see Fig. 3)

2 = — qN„e(II)qe„„e~,
a B

(5.26)

where qNq transforms as a tensor under
U(N) S U(N). As shown in Appendix C, the most
general form of N is

N~s(ll) = Aac(11)Asc(11)QcD
D

(5.27)

where Qc~ is a II-independent matrix of order
M whichbehaves as a tensor under the unbroken
subgroup H. Thus the quark mass term is

g @As en Aced» (5.29)

so quark masses are expected to be of order e'M.
In addition, there are multi). inear interactions
of Goldstone bosons with quarks, including a
11qq coupling of order e'M/F-e'.

VI. ALIGNMENT OF SUBGROUPS

There is one further step that must be taken
before the effective Lagrangian can be used for
actual calculations. The symmetry U(N) S U(N)
is supposed to be spontaneously broken to some
subgroup H by dynamical effects of the strong
interactions. However, although we can presume
that the structure of H is determined by dynamical
considerations, the strong interactions alone do
not determine tehich subgroup of U(N) S U(N) with
this structure is left unbroken. Given any solution
of the strong-interaction dynamics with a sub-
group H left invariant, we can find another solution
in which the subgroup left invariant is

qgccqA~c(II)Ass(II)e„~e . (5.28)
a 8 D

The quark mass matrix is then

I

I

/

FIG. 2. Diagrams which contribute to the term Q
in the effective Lagrangian. Wavy lines are intermediate
vector bosons and dashed lines are Goldstone bosons.

FIG. 3. Diagrams which contribute to the term 2 in
the effective Lagrangian. Wavy lines are intermediate
vector bosons, dashed lines are Goldstone bosons, and
straight lines are quarks.
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where X' is the symmetry-breaking perturbation
(in our case an operator of second order in the
weak and electromagnetic interactions) and i0,g&
is the vacuum corresponding to the solution that
has unbroken subgroup H(g):

H(g) I0,g&= I0, g& (6.3)

The g that defines the "correct" solution in the
presence of the perturbation X' is defined by the
condition that V(g) be a minimum.

For our purposes, it will be much more con-
venient to keep the solution of the strong- inter-
action symmetry breaking fixed, and instead vary
the way that the weak and electromagnetic gauge
group is inserted into the larger U(N) S U(N) glo-
bal group. That is, we now fix the vacuum and
the unbroken subgroup H, and instead let the gauge
group be

G w(g) = g G Igi (6.4)

where g runs over all elements of U(N) SU(N).
This has the advantage that we can fix the choice
of the generators t, and x, from the beginning; the
whole effect of varying the gauge group is that the
"charges" e A are replaced with

H(g) =gHg ', (6.1)
where g is any element of U(N) SU(N).

Normally we do not concern ourselves with this
sort of ambiguity, for these different solutions are
usually physically equivalent. However, in our
case, the theory contains a perturbation, the weak
and electromagnetic interactions, which also break
U(N) S U(N) down to some fixed subgroup SI, . (Of
course, S~ contains the gauge group G~ of theweak
and electromagnetic interactions, but as shown in
Sec. X, in general it is larger. ) Thus the different
solutions corresponding to the different unbroken
subgroups (6.1) are physically inequivalent, and
we must decide which is the correct one.

This problem was encountered in a different
context some time ago by Dashen, "who gave a
general solution. It is necessary to construct a
potential, given to lowest order as

V(g) =(o,g I36' lo, g&, (6.2)

The potential (6.2) is just given by the vacuum-
fluctuation part of 22:

V(g) =- &,(0,g)

or more explicitly

(6.V)

V(g) = —Q e „(g)e s(g)I„s. (6.8)

Z, (II,g,g) = 2,(II'(ll, g,),g), (6.9)

where g, and g are arbitrary elements of U(N)
S U(N), and II' is the image of II under g, . Thus
the variation of 2,(il, g) with respect to g may be
determined from its variation with respect to II.
In particular, for II =0 and g, infinitesimal, Eq.
(6.7) and (6.9) give

~.x,
Vi I+i+ ' g i= Z, (e,g),F, (6.10)

so the condition that V(g) be stationary with re-
spect to g is equivalent to the condition that

ss, (il, g)
BII,

(6.11)

Graphically, this says that tadpole graphs, in
which a single Goldstone boson disappears into
the vacuum, necessarily vanish. The rationale
for this condition is that otherwise perturbation
theory in e would break down; the dominator of the
propagator of a Goldstone boson at zero four-mo-
mentum is at most of order e' (see below) so atad-
pole produced by second-order effects of the weak
and electromagnetic interactions would be of zeroth
order in e."

Not only must we choose the gauge group G~(g)
so that V(g) is stationary; we must choose it so
that V(g) is at least a local minimum. The reason
is again to be found in Eq. (6.9); the condition that
V(g) be a minimum is equivalent to the condition
that II = 0 be a minimum of —$2(li, g), and this in
turn ensures the positivity of the mass matrix

Another interpretation can now be put on the con-
dition that V(g) be a minimum. Using Eqs. (6.5),
(B2), (B6), and (5.2) in (6.6), we have

e.~(g) =g H ~(g)e.s, (6.5)
82

m'„(g) = — Z, (ll, g)
a b IIW

(6.12)

where R(g) is the regular representation of U(N)
S U(N).

Using e „(g) in place of e~~ in Eq. (5.24}, we
see that the O(e') term in the leading part of the
effective Lagrangian is

From now on we will assume that g has been
chosen from the beginning so that (6.11) is satis-
fied and (6.12) is positive. We can therefore drop
the explicit argument g everywhere.

In order to put these conditions in a more useful
form, we note that

i', (Ii,g) = — g e „(g)e (g)A„(II)A (II)I
eAB CD

(6.6)
xm)=exp Ex.x.)x),

a
(6.13)
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+AB e Ae B' (6.15)

Condition (6.11) therefore reads

Tr(z[X„I]I=O,

and (6.12) gives the mass matrix as

(6.16)

m2, = — Tr{E[X., [X„I]]+E[X„[X., I]]).
e b

(6.17)

Since I» is H invariant, we can generalize (6.16)
to

Tr(E[A„,I]I=O (6.18)

where (X,)» is the matrix representing the gene-
rator x, in the adjoint representation of U(N} SU(N).
Hence (5.24) gives

z,(tt)= —T Eaxp(i Z ' ')lexy(-iZ ' ')
(6.14}

where E is the matrix

exp i x,II, F, =exp —i 8 II w

xexp i p, ~ II t]

for some real parameters 8 (II) and p. &(II). But by
comparing this with Eq. (5.4), we see that the

gauge transformation exp(iZ 8 tu, ) would carry the
Goldstone boson field II, into II,'=0. Thus, in this
case there would be a choice of gauge which elim-
inates all Goldstone bosons.

In the general case, we do not expect the gen-
erators of G~ and H to span the algebra of U(N)
S U(N). Note that if Gv is too large, then the weak
and electromagnetic interactions will not break the
symmetries of H sufficiently; we would then find
that any quarks which do not get masses of order
M from the spontaneous breakdown of U(N) 8 U(N)
to H will remain massless to all orders in e (see
Sec. X).

However, as shown in Appendix D, we can al-
ways write a general element X of the algebra of
U(N) 8 U(N) in the form

where A„ is the adjoint representation of an arbi-
trary generator X„of U(N) SU(N} Also, .Eq. (6.17)
can be simplified because the two terms on the
right are equal; the Jacobi identity gives their dif-
ference as

with P, constrained by the condition that

(7.1)

m'. , =m', .= Tr{Z[X., [X„i]]).
a b

(6.19)

VII. UNITARITY GAUGE AND VECTOR BOSON MASSES

The effective Lagrangian derived in Sec. V is
still locally invariant under the gauge group G~ of
the weak and electromagnetic interactions. %e
are therefore free to adopt a "unitarity gauge, " in
which the particle content of the theory is explic-
itly displayed i6

Suppose for a moment that the gauge group Gt
were a sufficiently large subgroup of U(N} 8 U(N),
so that its generators w, together with the gen-
erators t& of the unbroken subgroup H, would com-
pletely span the algebra of U(N) S U(N) (This in-.
cludes the case usually discussed, where G~ is
the whole of the original symmetry group. ) Then
any element of U(N) 8 U(N) could be written as a
product of an element of G~ times an element of
H. This would in particular be true of the element
exp(iZ, x,II,/F, ), and therefore we could write

Tr (E[X„[X~,I]]I —Tr (E[X~, [X„I]]I
=Tr(z[[X.,X„],i]),

and this vanishes according to (6.18). Thus, (6.17)
may be written

0=Tr 8 (t), F, x

=pe „BaF,Q,
eA

(7.2)

exp —i 8 w exp i,x, exp i p, &t;

[with P, satisfying (7.2)], it follows that every
element of U(N) 8 U(N) in at least some finite re-
gion around the identity may be written in this
form. In particular we may write

exp i x,II, F, =exp —i 8 II w

xexp i /~II'
a

&exp i p. , IIt, . (7.2)

But Eq. (5.4) then tells us that the gauge transfor-
mation exp[+iZ, 8 (II)zv ] carries the Goldstone
boson field II, into

II,'/F, = Q, (II). (7.4)

(The reason for adopting this particular constraint,
and in particular for inserting the factor E, , will
be made clear below. ) Hence, since every ele-
ment of U(N) 8 U(N) that is infinitesimally close to
the identity may be expressed in the form
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That is, we can adopt a gauge in which, according
to Eq. (7.2),

p, ~ =~ F Trxzo Trx&g (7.11)

Q e „B,„E,II,' = 0
cA

or equivalently

Tr zoo xg Eg IIg = 0.
a

(7.5)

(V.6)

It is immediately apparent from (7.11) that p,

vanishes if either u) or m~ is the generator of a
symmetry that is not spontaneously broken. Also,
the p, 's that are not zero are of order eF, and
since the Fermi coupling constant GF must be of
order e'/y. ', we can conclude that

This is the unitarity gauge.
The unitarity gauge as we have defined it has the

crucial property of eliminating the zeroth-order
mixing between the Goldstone bosons and the G~
vector bosons. From Eqs. (5.7) and (5.15), we
see that the part of the effective Lagrangian that
is quadratic in gauge and/or Goldstone fields is

—g Q (D~II,)„,(D II,')„„ (7 7)

with (D„H')„, the linear part of the covariant de-
rivative

Ao
(7.8)

Hence Eq. (7.5) has the effect of insuring that the
II-9 cross terms drop out in the quadratic part
of the effective Lagrangian. It was to bring this
about that we inserted the factor F,' in Eq. (7.2),
and it is this feature of the unitarity gauge that
justifies the statement that it correctly displays
the particle content of the theory.

The same result can be obtained by a simple
generalization of the method of Jackiw and John-
son and Cornwall and Norton. ' In a general gauge
there are "black boxes, " connecting a single G~
gauge boson with a single Goldstone boson line. If
we sum up the pole singularities produced by a
linear chain of II and K lines, we find that the only
poles in the sum which correspond to particles of
zero spin and zero mass are those in channels de-
scribed by precisely the condition (7.5). It is also
easy to see that the unitarity gauge as usually de-
fined in theories with elementary scalar fields
does satisfy Eq. (7.5).

Now that we have eliminated the II-8' cross
terms, the mass of the G~ vector bosons may be
read off from the effective Lagrangian. Equation
(7.7) contains a term quadratic in W

M=E=GF ~2=300 GeV

as previously indicated.

w. =g ""'"+t.,
a a

(8.1)

where h is a linear combination of the generators
t, of the unbroken symmetry subgroup H. But then
Eq. (6.19}gives

g m', „u,„=——Tr(E[(W„—H„), [X„I]]),
where W and H„are the matrices representing
ur„and h„ in the regular representation of U(N)
8 U(N). The W term can be rewritten in terms of
[W, E], which vanishes because the sum Q„e~e a
is G~ invariant. The H term can be rewritten in
terms of the double commutator [X„[H„,I]],
which vanishes because I is invariant under H,
plus the double commutator [[H,X ], i], which
gives no contribution because of the "subgroup-
alignment" condition (6.18). Thus, we see that
u, is our eigenvector

m, bub =0.
b

(8.2)

VIII. CLASSIFICATION OF THE GOLDSTONE BOSONS

The other side of the Higgs phenomenon, com-
plementary to the appearance of vector-boson
masses, is the disappearance of Goldstone bosons. "
We will now consider the nature and the mass
spectrum of the Goldstone bosons that are not
eliminated by the Higgs phenomenon.

It is useful to begin by studying the eigenvectors
and eigenvalues of the formal Goldstone boson
mass matrix m'„, before transformation to the
unitarity gauge. First, note that there is an eigen-
vector of m', b with eigenvalue zero for every in-
dependent broken gauge generator. Every gen-
erator m of G~ may be written in the form

with a vector-boson mass

P, ~g = ~F, B,AB,Be Ae B
2 ~ 2

aAB

or equivalently

(7 9)

(7.10}

These will be called the fictitious Goldstone bo-
sons, because as we shall see, it is just these that
are eliminated by the unitarity gauge condition.

The number of independent fictitious Goldstone
bosons is evidently equal to the dimensionality of
G~ minus the dimensionality of that subgroup H~
of G~ which is unbroken by the spontaneous sym-
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metry breakdown of U(N}S U(N} to H O. f course,
for every generator of H~ there will be a vector
boson whose mass remains zero to all orders in
e, so the number of fictitious Goldstone bosons
equals the number of massive vector bosons. (In
the real world, H~ would presumably consist sole-
ly of electromagnetic gauge transformations. )

The argument that led from (8.1) to (8.2) did
not actually depend on the fact that W„ is a gen-
erator of G~, but only on the fact that it is a sym-
metry of the weak and electromagnetic interac-
tions, so that W„commutes with E. But in gen-
eral there will be broken symmetries of the weak
interactions that are not themselves generators
of G~. Exactly the same reasoning tells us that
for each of these there will be another eigenvec-
tor of m'„with eigenvalue zero. These will be
called the A"ue Goldstone bosons, because they
remain massless to all orders in e but, as we
shall see, they are not eliminated by the Higgs
phenomenon. The number of true and fictitious
Goldstone bosons is equal to the dimensionality
of the complete global symmetry group S~ of the
weak and electromagnetic interactions, minus the
dimensionality of that subgroup of S~ which is
left unbroken by the spontaneous breakdown of
U(N)4tI U(N) to H. Of course, the occurrence of
true Goldstone bosons would present grave diffi-
culties for any theory that has pretensions of
providing a realistic model of the actual world.
These problems are further discussed in Sec. X.

Finally, there will in general be eigenvectors
u, of m'„ for which the quantity Q, ,ux/ Fcannot
be expressed as a linear combination of genera-
tors of S~ and generators of H. There is no rea-
son in this case why the eigenvalue should vanish,
so we expect a mass m of order

(8.6)

each of definite mass and type (fictitious, true,
or pseudo}. Further, since the u" form a com-
plete set, we can also write

Il. -=g u", 11".
n

In particular, we have

(8.7}

a rr'e~n'=~ e Il" e~n"

so the H" are canonically normalized.
Now let us impose the condition (7.6) that de-

fines the unitarity gauge. A vector u" which cor-
responds to a true or a pseudo-Goldstone boson
will be orthogonal to all u," corresponding to the
fictitious Goldstone bosons, and hence also to the
vectors u, „defined by Eq. (8.1). But it follows
then that

gu,"u. =6„., (8.5)

with each u representing either a fictitious, true,
or pseudo-Goldstone bosons. That is, we first
choose an orthonormal set of u", vectors corre-
sponding to fictitious Goldstone bosons, for which

g u,
" x/ F, is a linear combination of H and G~ gen-

erators; then add an orthonormal set correspond-
ing to true Goldstone bosons, for which Qu,"x,/F,
is a linear combination of H and S~ but not H and

G~ generators; and finally add an orthonormal
set corresponding to pseudo-Goldstone bosons,
for which Qu,"x,/F, is not a linear combination of
H and S~ generators. With a set of orthonormal
vectors u" constructed in this way, we can define
a corresponding set of Goldstone boson fields

m2 —e2 I /F2 —e2 M 2 (8.3) Y' *""gx. ". s,)a b b a

about the same as for the vector bosons. These
are called the Pseudo-Goldstone bosons, "because
they are not the Goldstone bosons of any true
symmetry of the whole theory, but only of an ac-
cidental approximate symmetry which appears
exact in the limit e- 0. As we shall see, the
pseudo-Goldstone bosons, like the true Goldstone
bosons, are not eliminated by the Higgs phenome-
non. The total number of all Goldstone bosons,
fictitious, true and pseudo, is simply equal to the
dimensionality 2N of U(N}e, U(N) minus the di-
mensionality of the unbroken subgroup H.

By use of the familiar Schmidt orthogonaliza-
tion technique, we can choose an orthonormal set
of eigenvectors of m'„

=8+ u, „u,"=0.

Hence the unitarity gauge condition (7.6) imposes
no constraint on the fields II" representing true
or pseudo-Goldstone bosons. On the other hand,
a u," which corresponds to a fictitious Goldstone
boson allows the decomposition

a a n+hnu x

where so" and h" are generators of G~ and H, re-
spectively. It follows that

T. ."g *. ."~ = T. g *'"g *. .-s.)a b b a

m, b ub ——m„u",
b

(8.4} =8+ u,"u, =85„
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Thus (7.5) requires that

0 = Tr ur" x, II,' F, =8II"'.

ti= ~ (Aoi+X3i) =-3(I +y3)(1+F3),
1

R-=2 (~OR+~OR) =3(1 —y3)(1+r3).= 1
(9.4)

We conclude that the whole effect of the condition
of unitarity gauge is to eliminate the II" corre
spondkng to fictitious Goldstone bosons, leaving
the masses and fields of the true and the pseudo-
Goldstone bosons unchanged.

IX. AN EXAMPLE

(q'} t'q'}

E,h)
(9.1)

with U a unitary matrix (commuting with color),
involving both the Dirac matrices 1 and y, . The
generators of this algebra are defined as

We shall now descend from the generality of the
previous discussion to the consideration of one
specific example. It probably is unnecessary to
remark that this model is totally unrealistic as a
theory of real particles or interactions; it is pre-
sented solely for the purposes of illustration.

Our model contains two color multiplets of fer-
mions, called q and h. (Color indices are dropped
everywhere. ) In the limit e-o, the strong inter-
actions are necessarily invariant under a group
U(2)S U(2) of global transformations

1

We can complete an orthonormal basis for
U(N)S U(N) with the five additional generators

1
x,i —= A., = ~ (I + y, ) z, ,

1
x,~

-=13' = ~ (1 + y, ) 3, ,

IR IR
1~ (1 —y, )r, I (9 5)

2R 2R
1

~~
(1 —y, )3, ,

x (1,1).
The Goldstone bosons II, may be chosen to belong
to corresponding Q(2) SQ(2) multiplets. With this
definition, we automatically have

I 1
2( ol 0R 31+ 3R) ~2y3( r )

With respect to the O(2)SO(2) group generated by
tL and tR, these generators transform according
to the representations

fx, i, x3i) (2, 1),

1&i-=~ (I+y, )r,

1
XR—= ~ (1 —y, ) 3.,

1
(I + ,),

1
~OR -=~2 (I —y3),

(9.2) where B,„are the coefficients in (9.5),

+a = Bz& Fa~g y

(9.6)

with v the usual 2x 2 Pauli matrices.
We assume that the U(2) S U(2) symmetry is

dynamically broken down to the largest subgroup
which will allow one of the two fermion multiplets
to acquire a mass:

ff =U(I)S U(1)SU(I) (9.2)

(The color gauge group Gs is assumed to remain
unbroken. ) We can always define the fermion fields
so that it is q that remains massless; the labels
"q" and "h" thus stand for "quark" and "heavy
fermion. " With this definition, the generators of
P are

and the F's are equal within irreducible H multi-
plets,

IL 2L LP IR 2R R (9.7)

We expect that the F's are of the same order of
magnitude as the heavy quark mass,

FL =FR =F0=Mq. (9.8)

It is straightforward to calculate the covariant
derivatives (5.6) and (5.7) for e =0 as power series
in the II,. For instance, the effective Lagrangian
contains a bilinear interaction of Goldstone bosons
with quarks

1 , qyo(1+y, )q(II, S„II, —II, a„li, )—,qy" (I - y, )q(II»S Il» -II»S 11|R)
1

L R

and a trilinear self-interaction of Goldstone bosons

F 2

0 R

(9.9)

(9.1o)
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The vector and axial-vector bilinear covariants that can be formed from the q field do not share the same
H transformation properties as any of the II„so there is no qqDII term in the leading part of the effective
Lagrangian. There is, however, a Fermi interaction, which after Fierz transformations may be put in
the form

-Gss[qy" (1+ys)q] [qy„(1+y,)q] —GBR[qy" (1 +y, )q] [qy&(1 —y, )q] —GRR[qy&(1 —y, )q] [qy&(I —y, )q] . (9.11)

We expect the constants Gl1. , G», and G~„ to be
of order 1/M„'.

Now let us turn on the "weak" interactions. We
will assume that the weak gauge group is

In addition, the H invariance of I» requires that
it be invariant under independent rotations around
the 3 axis on either the I.n and/or Rn indices;
thus, in particular,

G =SU(2) (9.12) 1,8,„=Insny, (9.16)

w. =eel(gs} B ass+(gR} s ORB],
B

(9.13)

where e is the SU(2) gauge coupling constant, ; n
and p run over the values 1,2, 3; ~~ and &R are the
matrices (9.2); and gs and gR are unknown 3& 3
orthogonal matrices. Nor is it arbitrary which

g matrices we choose; the definition of the fer-
mions has been fixed (up to an H transformation}
by our convention that the spontaneous breakdown
of U(2}I8 U(2} to H gives a mass to h, not q.

In order to settle this question, we must exa-
mine the "potential" term in the effective Lagran-
gian. In general, this has the form (6.8):

V(g}=- Z "~(g)e..(g»»,
nAB

(9.14)

where I» is some unknown H invariant of order
M„', and e„„(g)are the coefficients which give the

G~ generators as linear combinations of the
U(2) I3 U(2) generators

e „(g)= e(g, )„,,

e„,sR(g) =e(g„)„,.
Thus V here takes the form

(9.15)

V(g}=-e'2 [(gs} s(g, ).„IBB,Ly
GtBy

+ 2 (g )~ s(g s)„,RI Rs„B

+ (gR)as(gR)ny R B,Ry]

with both left- and right-handed fermion fields
[(I ay, ) q, (I ay, )h] transforming as Gv doublets.
However, we do not immediately know which SU(2}
subgroup of U(2} U(2} generates the weak inter-
actions. In general, the generators of SU(2) might
be any matrices of the form

V(g) = -2e'I (n, gs 'g„n) . (9.1'7)

This is to be minimized over the whole range of
orthogonal matrices g~, g~. The location of such a
minimum is quite obvious:

(A) For I &0, gs 'g„n=+n.

(B) For I&0, gs 'gRn=-n.

(9.18a)

(9.18b)

This does not, of course, entirely determine g~
and g„; given any solution, we can find another of
the form

gL, gI gL g2& gR g1 gR g3 &

where g, is an arbitrary orthogonal matrix, and

g, and g, are orthogonal matrices representing
arbitrary independent rotations around the 3 axis.
But g, represents a redefinition of the weak gauge
couplings by an SU(2) transformation belonging to
the gauge group G~, while g, and g, represent a
redefinition of the fermion fields by a transforma-
tion belonging to that subgroup H of U(2)S U(2}
which is not spontaneously broken. Clearly, there
is no way that this remaining ambiguity in the g's
could ever be resolved, nor is there any reason
why we would wish to do so. Thus, we can freely
choose any orthogonal g~ and g„matrices which
satisfy the condition for a minimum, Eq. (9.18).

We will now need to consider the two cases
separately.

A. 1)0
Here it is convenient to choose g~ and g„as unit

matrices

where n is a unit vector pointing in the 3-direction

n =(0, 0, 1),
and I is some unknown constant of order M„'. The
potential has now become simply

But the g matrices are orthogonal, so this imme-
diately simplifies to gL, =gz =1 (9.19)

V(g) =-2e p (gs 'gR)s Iss R +constant.
By

The generators of the weak gauge group are then
given by (9.13) as
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w =e(XL+XR) =ev2 l. , (9.20)

with ~ the usual 2x2 Pauli matrices. There is a
single 2&&2 matrix which is a generator of both

a G~ gauge transformation and an unbroken H
transformation

II' =—(FL'+FR') '+(FL II,L +FR rllR}, (9.26)

(9.27)

bosons P, u,"x,/F, must be a linear combination of
(9.23) and (9.24), so the fields are

1 e e
3 ~g 3 2 (L R} ~g 0 (9.21)

For the true Goldstone boson, g, u,"x,/F, must be
proportional to (9.25), so the field is simply

This corresponds to a "photon, "which keeps zero
mass despite the spontaneous symmetry breaking.
The gauge bosons corresponding to the other two
generators of G~, w„and w„acquire a mass by
the Higgs mechanism, given by (7.10) is

II0-=rl . (9.28)

(9.29)

For the pseudo-Goldstone bosons the u," need only
be orthogonal to all the others, so the fields are

11' -=(F,2+F„2)-'~(-F„II„+F,II,„),
il 1' = i12' = e'(FL'+ F„'). (9.22)

II2=(E 2+F 2) '/2( FII +-F II ). (9.30)

e( 1L + xtR) Wl ~

e(x,L + x,R) = w2 1

(9.23)

(9.24}

and there is also one other linear combination of
the x, that can be expressed as a linear combina-
tion of a generator of H and the generator of the
exact global symmetry g-exp(iy3e)g of the whole
Lagrangian

These massive gauge bosons have w, charges +1
and -1. Also, q has w, charge +1, while the Gold-
stone bosons II,L*iII,L, II,R + iII,R, and II, have

w, charges +1, +1, and 0, respectively.
In order to classify the Goldstone bosons, we

note first that there are two independent linear
combinations of the x, that can be expressed as
linear combinations of generators of H and G~:

The masses of Il', II", and II' are zero, while
second-order weak (and "electromagnetic" ) ef-
fects will give II' and II' masses that are equal
(because w, invariance is unbroken) and of order
eM~. These masses are proportional to the con-
stant I in Eq. (9.16), but I is unknown, so the
calculation is not worthwhile. The effect of the
transformation to unitarity gauge is just to elimi-
nate the fields of the fictitious Goldstone bosons:

O' =Ilu'=0

The five "old" fields II,' may then be expressed in
terms of the three "new" fields II"' as

II '
1L (F 2 +F 2)1/2

x2 = v2 y, l — (tL+tR).
1

5 2 L R (9.25)

Ils1R (F 2 +F 2)1/2

In accordance with the conclusions of Sec. VIII,
we must therefore expect that this theory has two

fictitious Goldstone bosons, one true Goldstone
boson, and 5 —2 —1 = 2 pseudo-Goldstone bosons.
Their fields are of the form

11"=p u."11 21

with u" a set of orthononnal vectors subject to
certain conditions; For the fictitious Goldstone

II2f
2L (F 2 +F 2)l/2

II — ~L II"
2R (F 2 +F 2)1/2

and, of course

II' =n".0

In particular, the bilinear interaction (9.9}of the
nonfictitious Goldstone bosons with the quarks is
(now dropping primes)

(F 2+F 2) ~2 — " qy" (I+y, )q —
2 qy" (1 —y, )q (II'8211 —II S211'),

L R
(9.31)

and their trilinear self-interaction (9.10) is

I y 2 2

2 '+(F '+F ') '+F F I — +F I — 8 II (II'6" II'-ll'6211').L R 0 R p2 L P2 P
L R

(9.32)
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The quark mass matrix is given to order e'M„
by Eq. (5.29), which here becomes

P (Qar, . r, +2Qar. a,R+ QaR. e)

In order to classify the Goldstone bosons, we
note first that there are three independent linear
combinations of the x, that can be expressed as
linear combinations of the generators of H and G~:

where Q» is some constant matrix of order M„
which transforms as a tensor under H, in the
sense of Eq. (C4). (Again, we let n and P run
over the values 1,2, 3.) It is straightforward to
show that the most general such tensor has

x~ + xrrr = wz/e p

1
x,= ~(t~ —te) -w, /e,

x~ -x,a= -wJe,

(9.35)

(9.36)

(9.37}

QcQ'„Sl. 0ag, BR

and also (with a suitable choice of relative phase
for the left- and right-handed quark fields)

Q~ e„=Q[ ,'(I+y-5)rr'rre+-, '(1 y5)n r-r's],

where @=M„ is some unmown constant, and

n'= (I,+ i, 0}.

while there is no other linear combination of the
x, that can be expressed as a linear combination
of a generator of H and the generator of any exact
global symmetry of the whole Lagrangian. Accord-
ing to Sec. VIII, we must now expect that this the-
ory has three fictitious Goldstone bosons, no true
Goldstone bosons, and 5 —3= 2 pseudo-Goldstone
bosons. Their fields are of the form

Thus, the quark here does acquire a mass of
order e'M„

11"=g I,"II„ (9.38)

M, = 2e'Q. (9.33)

Also, using Eq. (5.28), the Yukawa coupling here
is

with g," a set of orthonormal vectors subject to
certain conditions: For the fictitious Goldstone
bosons Q,u,"x,/E, must be a linear combination of
(9.35)-(9.37), so the fields are

4iM,
~~

'
qy,qll'

0
(9.34)

(9.39)

as required by a Goldberger- Treiman relation.
It happens that in this model either the massive

vector bosons or the pseudo-Goldstone bosons
are absolutely stable. This is just because they
have se, charges ~ 1; the only lighter states into
which they could decay consist of "photons, " true
Goldstone bosons, and quark-antiquark pairs, all
of which are m, neutral.

II =H, (9.40)

(9.41)

For the pseudo-Goldstone bosons the g" must sim-
ply be orthogonal to the others, so the fields are

(9.42)

B. I&0

Here it is convenient to chooseg~ andg~ as equal
and opposite rotations of 90' about the 1 axis. The
generators of the weak gauge group are then

wr = e (Xrr, + XUr) = &/ 2 7'r
~

w, = e(X~ -Xsrr) = eMyp;,

w, =e(-X~+X~) = —eely, T2,

with g again the 2x 2 Pauli matrices. No linear
combination of these generators is a generator of
the unbroken subgroup H, so there is no "photon"
here —every vector boson gets a mass. From
(7.11), we find that the masses are

The masses of II', ll", and ll' are zero, while
second-order weak effects give II' and 0' masses
proportional to I and of order eM„. These latter
masses are equal, because the whole Lagrangian
has an exact global symmetry which is not spon-
taneously broken, generated by

X~ -Roe+A~ —A~= tz —te =X~ —X~+w~/e,

(9.44)

and this rotates II' and II' into each other.
The effect of the transformation to unitarity

gauge is to eliminate the fields of the fictitious
Goldstone bosons

~2 Q2
The five fields II, may be expressed in terms of
the two remaining II", fields, as
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Ir = —(F +F ) '~F~
II =(F +F ) ~F II~,

II~ ——+ (F +F ) ~ F„II

II =(F +F ) iiF II

rr =0.

In particular, the bilinear interaction (9.9) of the
nonfictitious Goldstone bosons with the quarks is
(now dropping primes)

2/gp q y" (1+y5)q — „, „,&, q y" (1 -y,)q (II'soli —II'sqII ). (9.45)

The trilinear coupling (9.10) now vanishes. Also,
as a consequence of the exact unbroken symmetry
generated by (9.44), the quark mass remains zero
to all orders in e. The Yukawa Ilqq coupling van-
ishes, as required by a Goldberger- Treiman rela-
tion, even though it is not forbidden by the sym-
metry generated by (9.44).

The moral of this analysis is twofold. First, a
theory with a given group-theoretic character and
a given field content can have enormously differ-
ent physical consequences depending on how the
subgroups G~ and H line up with each other. The
differences between the two cases found in this
section are summarized in Table I. In addition,
although these theories do not have the predictive
power of a theory in which the spontaneous sym-
metry breaking is due to vacuum expectation val-
ues of weakly coupled scalar fields, the predic-
tive power of theories with dynamical symmetry
breaking is by no means negligible.

X. IMPLICATIONS

The foregoing analysis has been chiefly con-
cerned with mathematical formalism rather than
physical applications. We close with some re-
marks about the implications of this analysis for
real particles and interactions.

The weak interactions in this class of theories
arise both from the exchange of intermediate vec-
tor bosons and also from a direct Fermi inter-
action in the effective Lagrangian. Both are of
the same order of magnitude; the direct Fermi
interaction has a coupling constant of order M '

(where M is the scale associated with the dynam-
ical symmetry breaking), while the exchange of
vector bosons of mass p.= eM produces an effective
Fermi coupling of order e /g'~M '. Either way,
we are led to the estimate that M= 300 GeV.

The two kinds of weak interactions can of course
be distinguished by their energy dependence at en-
ergies of order elV~ or greater. They may also be
distinguished even at lower energies by their sym-
metry properties; the direct Fermi interaction is
invariant under the unbroken subgroup H of U(N)
gU(N), while the vector-boson exchange interac-
tion is not.

Some of the fermions of these theories may get
masses of order M from the dynamical symmetry
breaking. However, the ordinary quarks O', 2, X,
6" (etc.? ) can hardly be this heavy, "so we must
suppose that the unbroken subgroup H must be
large enough to prevent the appearance of masses
of order M. The masses of the ordinary quarks
would then have to arise from higher-order cor-
rections, which would presumably give them values
of order e'M. This is a gratifying result, for it
offers at least a qualitative explanation of the
mysterious fact that the ratio of the mass scale of
the hadrons (say, 1 GeV) to that of the Fermi in-
teraction (300 GeV) is roughly of order n.

Of course, in order to produce quark masses of
order 82M, the unbroken symmetry group H must
not be too large. Specifically, there must be no
chiral symmetries in H which are also symmetries
of the weak and electromagnetic interactions. The
breakdown of U(N) S U(N) to H may be signaled by
the appearance of fermion masses of order M, but

TABLE I. Summary of the properties of the model discussed in Section IX, in two cases
corresponding to the two different possible minima of the potential V(g).

A B

Massive vector bosons
Massless vector bosons
Unbroken global symmetries

(including fermion conservation)
True Goldstone bosons
Pseudo- Goldstone bosons
Quark mass

2 degenerate
1

1
1

2 degenerate
=& Mg

3 (2 degenerate)
0

2

0
2 degenerate

0
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it is also possible that H forbids all fermion mass-
es of order 3fwhile allowing other nonchiral inter-
actions, such as scalar, tensor, or pseudoscalar
Fermi interactions of order M '.

In all cases that I have examined, H must be
sufficiently small so that there are some broken
symmetries, not in II, that are also not in the
weak and electromagnetic gauge group G~. In

particular, in a theory with N' heavy fermions
and N-N' ordinary quarks, the broken symmetry
generators include all Hermitian matrices, chiral
or nonchiral, which connect ordinary quark and
heavy fermion fields. If these were all generators
of the weak and electromagnetic gauge group, their
multiple commutators would be also gauge genera-
tors. But these commutators span the algebra of
SU(N) 8 SU(N). This is not possible because then
all the unbroken chiral symmetries in SU(N)
8 SU(N), which keep the ordinary guarks from get-
ting masses of order M, would also be symmetries
of the weak and electromagnetic interactions, so
that the ordinary quarks could not get masses of
any order in g. Also, the weak and electromag-
netic gauge group cannot include SU(N) 8 SU(N);
triangle anomalies would make such a theory non-
renormalizable.

For every broken symmetry which is not a sym-
metry of the weak and electromagnetic interac-
tions, there is a pseudo-Goldstone boson that is
not eliminated by the Higgs phenomenon. These
particles have masses of order ex 300 GeV, and

do not interact strongly at ordinary energies, but
the charged pseudo-Goldstone bosons could of
course be pair-produced by the electromagnetic
interactions. Thus, it will be important to dis-
tinguish carefully between pseudo-Goldstone bo-
sons and intermediate vector bosons when collid-
ing beams reach energies adequate to produce
such particles in pairs.

It makes a great difference in the description
of the decay modes and interactions of pseudo-
Goldstone bosons whether they can interact with
ordinary hadrons and leptons singly, or only in
pairs. The broken symmetry generator corre-
sponding to a given pseudo-Goldstone boson might
have no matrix elements between quark or lepton
states, but only between states of which one is a
heavy (= 300 GeV) fermion. The pseudo-Goldstone
bosons would still interact in pairs with ordinary
hadrons, as in Egs. (9.31) and (9.45), but they
could only decay into each other. On the other
hand, the quarks might not be entirely neutral
under the various broken symmetry generators in

U(N) 8 U(N), in which case some of the pseudo-
Goldstone bosons would be able to decay into
ordinary hadrons. In the absence of a candidate
for a realistic model, it is not worth pursuing

these various possibilities in great detail.
In addition to pseudo-Goldstone bosons, such

theories will usually have true Goldstone bosons
of zero mass which also are not eliminated by the
Higgs mechanism. This is because there are al-
ways some broken global symmetries of the weak
and electromagnetic interactions which are not
themselves elements of the weak and electromag-
netic gauge group. For instance, one such global
symmetry is the U(1) chiral transformation which
multiplies all fermion fields with a common fac-
tor exp(iy, 8); this must not be a member of the
weak and electromagnetic gauge group, because
if it were then triangle anomalies would make the
theory nonrenormalizable, and it must be spon-
taneously broken, because otherwise none of the
fermions in the theory could pick up any mass.
If the generator x of any such broken exact global
symmetry could be written as a sum of a gauge
symmetry generator se and a nonspontaneously
broken symmetry generator h, then the corre-
sponding Goldstone boson would be eliminated by
the Higgs mechanism; however, in this case the
theory would have an extra exact nonspontaneously
broken symmetry (apart from fermion conserva-
tion) generated by x -w= h. This is what happens
in case B of the model discussed in Sec. IX; the
extra symmetry there keeps the quark massless
to all orders in e. If we do not want to allow such
extra exact symmetries then the generators of
broken nongauge symmetries of the weak and elec-
tromagnetic interactions must not be linear com-
binations of gauge and unbroken symmetry genera-
tors, and the corresponding Goldstone bosons can-
not be eliminated by the Higgs mechanism.

In the particular case of the chiral U(1) sym-
metry mentioned above, it is possible that the
massless true Goldstone boson, although not elim-
inated by the Higgs mechanism, would neverthe-
less not be observable as a free particle. There
is a triangle anomaly connecting one y„y, vertex
to two colored gluons; this anomaly forces us to
include gluon terms in the conserved chiral cur-
rent, which make it not gluon-gauge invariant.
Since the corresponding true Goldstone boson can-
not be proved to appear as a pole in any gluon-
gauge-invariant operator, there is at least a
chance that it is a trapped particle, like the unob-
served ninth pseudoscalar meson" with mass
(~3m, .

In a variety of models there are also true Gold-
stone bosons which could be observed as free
particles. For instance, in the familiar four-
guark version" of the SU(2)8 U(1) model there is
(in the absence of elementary spin-zero fields) an

exact global symmetry of the weak and electromag-
netic as well as the strong interactions, of the form
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X~ COSQ X~+ Sill(fl A, ~y

A.~- —sing X„+cosp X~,

(P»(P~, (P~, X»6'~, A,~ invariant.

[As usual a subscript L or R denotes multiplica-
tion with (I+yg or (1 —yg, respectively. ] This
must be spontaneously broken, for otherwise A.

and 2 quarks could not have any mass, and for the
same reason it cannot be expressed as a sum of a
gauge and an unbroken generator. Also, in this
case the symmetry current is both conserved and
gluon-gauge-invariant. Thus, a four-quark SU(2)
g U(1) model with purely dynamical symmetry
breaking will have an untrapped massless true
Goldstone boson.

I do not know whether present experiments rule
out the possibility of electrically neutral and weak-
ly interacting spin-zero bosons of zero mass.
However, if we assume (as seems reasonable) that
such particles do not in fact exist, then their ab-
sence puts a strong constraint on theories of dy-
namical symmetry breaking. In particular, it is
probably necessary to have weak interactions that
connect the ordinary quarks with heavy (- 300-GeV)
fermions, not only as a means of giving masses of
order e x 300 GeV to the ordinary quarks, but
also to avoid the unwanted anomaly-free global
symmetries of the weak interactions.

We now come to one of the most puzzling and
unsatisfactory features of dynamical symmetry
breaking. In the currently popular gauge theories of
strong interactions, the strong gauge coupling con-
stant is fairly small at a renormalization point of
order 2-3 GeV, and decreases further with increas-
ing energy. ' How then can the strong interaction
produce a spontaneous symmetry breaking char-
acterized by parameters F, of order 300 GeV?
Indeed, we believe that the strong interactions do
induce a spontaneous symmetry breakdown, with
the pion octet ylaying the role of Goldstone bosons,
but the parameter F is 190 MeV, not 300 GeV.

Another difficulty arises when we try to include
the leytons. If it is the ordinary strong interac-
tions that produce the dynamical symmetry break-
ing discussed in this article, then can the color-
neutral leptons get a mass in any order of e?

Qne way to approach these problems is to sup-
pose that in addition to the color SU(3) associated
with the observed strong interactions, there is
another gauge group whose generators commute
with color SU(3), associated with a new class of
"extra-strong" interactions, which act on leptons
as well as other fermions. If the gauge coupling
constant of the extra-strong interactions reaches
a value of order unity at a renormalization point
of scale 300 GeV, then the extra-strong interac-

tions could produce the dynamical symmetry
breaking discussed in this article. Also, we
would not observe direct effects of the extra-
strong interactions at ordinary energies, provided
that this dynamical symmetry breaking left no
subgroup of the extra-strong gauge groupunbroken,
so that all vector bosons of the extra strong inter-
actions got masses of order 300 GeV.

At first sight this possibility seems quite natu-
ral in the framework of the unified simple gauge
theories of weak electromagnetic, and strong in-
teractions discussed in the Introduction. ' The
spontaneous superstrong breakdown of the origi-
nal simple gauge group can leave any number of
subgroups unbroken, and some of these may have
gauge couplings which grow faster with decreasing
renormalization-point energy than the coupling
constant of the ordinary strong interactions. How-
ever, this naturalness disappears on closer exam-
ination. Within the realm of validity of perturba-
tion theory, the gauge couplings g,. of the various
simple subgroups of the original unified simple
group are given by

g'(M)
1+2b&g~(M) In(M/p, )

'

where p is the scale of a variable renormalization
point; M is the superlarge mass at which all the
g,.(p) become equal; and h, is the coefficient of
g,.' in the Gell-Mann —Low function P;(g). Suppose
we identify the onset of strong coupling for any
simple subgroup as the point y, at which@, (p)
reaches some definite value, of order unity, but
taken sufficiently small so that perturbation theo-
ry is still valid. Then the ratio of the p. 's for tmo
subgroups mill be given by

V,li &=(i;lM)"" '.
But M is likely to be enormous, ' perhaps as large
as 10"GeV. Thus, unless b, and bz are unreason-
ably close, the onset of strong interaction will dif-
fer by many orders of magnitude for different
simple subgroups. From this point of view, it is
hard to understand how the onset of strong cou-
pling for the ordinary strong interactions (a few
hundred MeV) and the extra-strong interactions
(300 GeV) could be so close.

Another possibility is that the color SU(3) gauge
group is a subgroup of a larger gauge group which
acts on leptons as well as on other fermions, and
whose coupling constant reaches a value of order
unity at a renormalization point of order 300 GeV.
This could produce a dynamical symmetry break-
down of the larger group to color SU(3). In the ef-
fective field theory' which describes physics be-
low 300 GeV, there could be a color SU(3) gauge
symmetry, but since perturbation theory breaks
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down at 300 GeV, the strong gauge coupling in this
effective theory would have no simple relation to
the strong gauge coupling above 300 GeV, and
might well be somewhat smaller. It would rise
very slowly with decreasing renormalization-point
energy, and even if it started just under 300 GeV
at a value only a little less than its value above
300 GeV, it would not regain this value until much
smaller renormalization scales were reached.

In either case, it is not the ordinary color SU(3)
gluons that could produce the dynamical symmetry
breaking which gives masses to the intermediate
vector bosons. These gluons presumably do pro-
duce the dynamical breakdown of the previously
unbroken subgroup H to SU(3) or SU(4) at energies
of order E,=190 MeV, with the pion octet as Gold-
stone bosons, and with the quark masses of order
e' x 300 GeV furnishing the intrinsic H breaking
which gives masses to the pion octet.

In closing, it is interesting to compare the con-
clusions of this article with the results obtained
in theories with elementary spin-zero fields. In
order to give the weak interactions the right
strength, the vacuum expectation values of some
of these fields must be of order 300 GeV. How-
ever, we can still distinguish between three kinds
of theory:

I. It may be that the spin-zero fields have weak
[say, O(e')] couplings to themselves and to the
fermions. This is the case originally considered, '
and it is the sort of theory with by far the greatest
predictive power. The quark and lepton masses
in such theories could arise directly from vacuum
expectation values of the spin-zero fields, so there
would be no need for heavy fermions. A charac-
teristic feature of these theories is the appearance
of Higgs scalars with masses that are less than
300 GeV by a factor of order Wf, where f is the
coupling constant of the quartic interaction.

Q. It may be that the spin-zero fields have weak
couplings to fermions, but strong interactions to
themselves. In this case much of the gauge-theo-
ry phenomenology would survive, but it would be
impossible to relate the vector-boson mass ratio
to mixing angles, or to say anything at all about
the existence of Higgs scalars. Again, there would
be no need for heavy fermions.

III. It maybe that the spin-zero fields have strong
couplings both to fermions and to themselves. In
general, such a theory would have very little pre-
dictive power; we would not even be able to say
that weak processes like P decay arise from ex-
chm~e of single vector bosons rather than from
complicated higher-order effects.

Viewed in this way, gauge theories with dynam-
ical symmetry breaking seem hardly distinguish-
able from theories of type III. The one significant

difference, which gives theories of the type dis-
cussed in this article much greater predictive
power than theories of type III, is the occurrence
of a natural accidental symmetry, U(N)SU(N).

(A1)

and imagining that these fields transform under
U(E)13IU(Ã) like X„. That is, we give W„„ the for-
mal transformation rule

W~~" W~~= QR~s(&')Ws~
B

(A2)

where g is an arbitrary element of U(N) SU(KJ,
and R„s(g) is the corresponding orthogonal ma-
trix in the regular representation of U(1V) SU(N):

g '&~g = QR~s(g)~s (A3)
B

[This is just like the well-known trick of introduc-
ing a fictitious octet of "photons" in order to study
the SU(3) properties of electromagnetic correc-
tions. ]

Equation (A2) is a linear transformation rule,
while 2, also contains quark and Goldstone boson
fields which transform according to the nonlinear
rules (5.2) and (5.3). It is therefore convenient,
in order to make the whole of , invariant under
U(n)U(N), to replace W» with a field which be-
longs to the same sort of nonlinear realization of
U(N)SU(N) as does q:

W„„=—Q As„(II)Ws„= +As„(11)e sW „, (A4)

where A» is an orthogonal matrix defined by

A~a(II)=R-le~ IQ F ').
a a

(A5)

It is straightforward, using the transformation
rules (A2) and (5.2)-(5.4), to check that W„„un-
dergoes the U(N)SU(XJ transformation

W~„W~„——QR~s~ exp i Q pq(il, g)t( ~ Ws„.

(A5)

The field W„„ thus behaves under U(N) I3U(Ã)
transformations just like q, except of course that
it belongs to a different linear representation of
the unbroken subgroup H.

The Lagrangian 2, will thus be globally U(N)

APPENDIX A: STRUCTURE OF COVARIANT DERIVATIVES

First, we note that under the requirements (1)
and (2) of Sec. V, the effective Lagrangian 2, can
be made formally invariant under U(N) U(N) by
introducing the G~ gauge fields
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SU(N) invariant if it is algebraically invariant un-
der the unbroken subgroup H and if it is composed
of just the following ingredients: quark fields q,
their U(N) SU(N) covariant derivatives

B„q z Q fqqE, )(II)B~II, (A7)

together with Goldstone boson fields II, and their
covariant derivatives

D„II,=—F, D Q S„II F (A8)

and W» fields and their covariant derivatives

a„w„„=Q A,„(ii)B„w,„. (A9)

We now must impose requirement (3) of Sec. V,
that the Lagrangian be locally as well as globally
invariant under G~ and H~. For a space-time de-
pendent U(N) SU(N) transformation g (g}, the gauge
field W „ transforms according to the rule

~.w.'„=g(~.w.„}g-' (B„r)g (Al0)

B„w„„-z g(f,.)„,w,P.,(ii)B„II.,
i, B

plus gluon fields and their derivatives. [The func-
tions D~ and E„are defined by Eq. (5.9).] Aside
from terms which are separately U(N) SU(N) in-
variant and hence may be dropped, the covariant
derivative of the gauge field may also be written

QA, „(11)e.,z.„„=D„w„„-a„w„„

APPENDIX B: STRUCTURE OF g2

The quantity JA~(II) in Eq. (5.10) must be an
U(N) SU(N) tensor in the sense that for any ele-
mentg of U(N)SU(N), we have

Z„,(11')= g R„,(g)R„(g)Z„(11),
CD

with II' and R defined by Eqs. (5.4} and (A3). But
it follows from (A4) and (A5) that

R(g)A(11) =A(ri')Rl exp f QP;I& (B2)

so contracting Eq. (Bl) on the left-hand side with
A '(ll') gives

—Qf»c Ws „Wc„, (A14)
BC

where f»c are the U(N) SU(N) structure constants.
Thus, this quantity is both locally G~ covariant and
(formally) globally U(N) SU(N) covariant.

Finally, we must impose invariance under the
unbroken strong gauge group H~. According to
our assumptions, it is only q that transforms non-
trivially under H~, so we must simply add a gluon
term in (All). This, together with (A12) and

(A14), comprise the three sorts of fully covariant
derivatives allowed in the effective Lagrangian 8,.

Also, derivatives of g appear in the G~ transfor-
mation rules for the quantities (A7)-(A9). By
using the derivative of Eq. (5.4) to evaluate these

g derivatives, we can easily see that in order to
cancel them, we must add gauge field terms to
(A7} and (A8}, so that those derivatives become
G~-covariant quantities":

I»(11')=g RA,
~

exp I Q&;f'
I

cD ( ]

XRsn~exp f QV;~; ~Ion(ii),

where
(B3)

B„q —z g f,qE.,(11}B„II,—f gf,qc, AwA„, .

(A11)

I„,(11) =- g A-„',(ll)A, (11)Z„(11).
CD

If we now choose II, =0 and

(B4)

nfl, .(11)B„II,+r.g c.„w„„. (A12)
@=exp i xm, F, ,

a

we find from (5.4} that
Note that these quantities are still formally locally
U(N) SU(N) covariant, as well as globally G~ co-
variant.

Also, G~ invariance requires that derivatives of
the G~ gauge field only appear in the Yang-Mills
cur 12'

II =m, p1 P

so Eq. (B3) reads here

IAg(v) =IAB(0) =IAB. (B5)

Hence IAs is a constant. Equation (B3) then says
that it is a constant tensor under H. That is,

E „„=B„W.„B„W„-Q-C.,„w,-„w, (A13)
By

where C are the structure constants of G~. It
is elementary to show that

IA~ = Q RAc(h)Rsn(h)Icn
CD

for arbitrary elements h cH.

(B8)
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APPENDIX C: STRUCTURE OF g

The quantity N„e(II) in Eq. (5.26) is an U(N) U(N) tensor, in the sense that for an arbitrary
elementg of U(N)U(N), we have

exp — pi u((( ())ii„,((('&exp i+i u(((, () = E R„,(i )((„(i()((„((((, (Cl)
t CD

with &„ II', and R defined by Eqs. (5.4) and (AS). Using Eq. (B2) and contracting Eq. (C1) on the left with
A '(Il') gives

jr'

exp -i &;p., @~a 0' exp i & &' = ~c exp i t, p, R» exp i &,.p,. Q~D II' .AC( ] ( )
(C2)

If we choose II, =O and

g=exp i xm, E, ,
a

Then Eq. (5.4} gives

so Eq. (C2} in this case just tells us that Q(x) is
w independent,

and choose 8 to minimize the positive continuous
function

QF, (t(, (8).

Denoting the value of (t(,(8) at this minimum as (j(„
we then have

0=2 gF,'(t(, ge,„B,„,
a A

Equation (C2) may thus be written

h 'Q~eh = Q R„c(h)Ren(h)QcD
CD

(CS)

(C4)

so (t(, satisfies the constraint (V.2). Also, we can
rewrite X as

X= g tj, ,'t, + g (t(,x, —g 8,e „B,„x,
a aeA

for arbitrary elements h cH.

APPENDIX D: CONSTRUCTION OF UNITARITY GAUGE

Recall first that the x, and &, are defined to span
the algebra of U(N)(3U(N), so that a.ny element X

of this algebra may be written

ot, +g (j(~,—. +. 8 (e + +8 e„„C,„t,, .
t a Ot iaA

so that X may be decomposed as in Eq. (V.1), with

+Q e AC A.
0IA
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