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We analyze the sheet structure of the effective potential for relativistic field theories that have a bound state
(mass m~) and show that if m~

' goes negative the vacuum changes sheets avoiding tachyon problems and
giving dynamical symmetry breaking if the bound state has quantum numbers. We illustrate a transition of
this type in the O(N)-symmetric cr model for large N. We resolve a tachyon problem in this model noted by
Coleman, Jackiw, and Politzer by finding the vacuum state of lowest energy. We show this model has no
symmetry breaking of any kind in the leading 1/N approximation. Any symmetry breaking in the tree
approximation is restored dynamically.

I. INTRODUCTION

Spontaneous symmetry breaking plays a central
role in many contemporary ideas in particle
physics. This is the phenomenon in which the
vacuum state breaks an exact symmetry of the
Hamiltonian. ' There are two ways in which the
noninvariance of the vacuum can manifest itself:
One is through the nonvanishing of the vacuum ex-
pectation value of a field carrying quantum num-
bers, (P;)e0; or alternatively, it is possible to
have (TQ, Q~ ) not invariant even though the (P,)
= 0.' The former can occur at the classical (tree)
level or as a consequence of dynamics. The latter
necessarily has dynamical origins. It is fortu-
nate that we have a classical picture of the former
type since it has significant pedagogical value for
developing one's intuition about this phenomenon.
One starts with a symmetric Hamiltonian, and
concocts the nonderivative part, V(Q), to have a
minimum for Q; + 0. The classical ground-state
value of P& becomes the vacuum expectation value
of the quantum field. One can "see" the transition
from normal to spontaneously broken vacuums
take place by varying p,

' in the mass term --,' p, 'ft)

from positive to negative values. The theory
"saves itself" from a tachyon disaster by choosing
a new vacuum.

The central purpose of this paper is to show that
an equally simple picture exists for the latter type
of symmetry breaking, i.e. , noninvariant, vacuum
with (P,) =0. We show the following: given a
theory with a spin-zero bound state, if the bound-
state mass m~ can be driven to rn~'( 0, the theory
always saves itself from the tachyon disaster, and
spontaneous symmetry breaking will occur if the
bound state carries quantum numbers. This is the
analogous situation to the above discussion but with
the bound state playing the role of the scalar field
and hence this is not a surprising result. However,
the simple picture becomes sufficiently disguised

in the bound-state case to warrant discussion.
Also, a new approach to dynamical symmetry
breaking is suggested. The majority of this paper
deals with the transition between the two vacuums
in the absence of internal-symmetry considera-
tions. The generalization to spontaneous symmetry
breaking is immediate.

In order to check these general ideas we looked
for a model that has this transition between vac-
uums. The O(N) c model is soluble as an expan-
sion in 1/N and the leading term displays the de-
sired effects. ' ' The transition does not break a
symmetry because the bound state in question is
an O(N) singlet. In this illustration the Lagrangian
parameters were chosen to be those which have a
normal (symmetry-preserving) vacuum.

Finally, we were led to a very interesting con-
clusion concerning the O(N) o model when param-
eters are chosen to give symmetry breakdown of
the tree level. It is this. I'he O(N)-symmetric o
model in 4-sPace has no symmetry breaking of
any kind in the large-N limit. This result is not
an illustration of the above-stated objective of this
paper, but fell out as a consequence of our analy-
sis. In studying this case, Coleman, Jackiw, and
Politzer' noted that the model (in 4-space) has an
asymmetric vacuum and that the theory defined
from that vacuum has a tachyon. They concluded
correctly that there must be another vacuum of
lower energy and speculated that it occurs in
higher order in 1/N They faile. d to note that their
own solution has another vacuum which is always
lower in energy. The correct vacuum has a bound
state, not a tachyon. The interesting thing is that
the true vacuum is O(N) symmetric Dynamic. s
restores the symmetry that is broken in the tree
approximation. If this restoration of symmetry
were also true for smaQ N, it would cast doubt
on the validity of the classical argument for
spontaneous symmetry breaking in quantum
theories. This would bring us full circle to the
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awkward position of questioning the validity of the
very picture that we wished to generalize in the
first place. Unfortunately, we do not know if the
restoration of symmetry does or does not occur
for small ¹

The central object we study in this paper is the
effective potential V(P;).' V(P;) is a c-number
function of a c-number field P, , whose global
minimum determines the vacuum expectation value
of the quantum field P;. For all cases of interest
in this paper, V(Q) has a 2-power branch point in

Q at a finite real positive value of Q. It was noted
in an earlier paper that the branch point was a
consequence of a deep bound state. ' It was also
noted to occur in the O(N) o model. " The signifi-
cance of the branch point was not fully appreciated
in either case; all the new results in this paper
follow from a careful look a.t the second sheet of
this branch point.

The transition of vacuums described above is
due to the following circumstance: V(Q} has two

local minima at Q =0 on the two sheets of the
aforementioned branch point. As m~' passes
through zero to negative values, the global mini-
mum shifts from one sheet to the other. In the
new vacuum the bound-state mass is positive.
The wrong vacuum is not a local maximum of V(Q),
it is just not the global minimum. The interesting
vacuums we found for the O(N) 0 model lie on the
second sheet of the branch point in V(P).

In Sec. II we present the argument for the
switching of vacuums as a bound state passes
through zero. Also, we give the generalization to
dynamical symmetry breaking. In Sec. III we
illustrate these ideas with the O(N) a model. The
desired features are found in published solutions
which made life easy. In Sec. IV, we show our
contention that the O(iy)-symmetric o model has
no symmetry breaking in the large-N limit.

II TRANSITION OF VACUUM-DYNAMICAL
SYMMETRY BREAKING

Let us illustrate this mechanism first in the ab-
sence of internal symmetry with a pseudoscalar
field Q interacting in an unspecified way producing
a scalar bound state at mass m~. m~' is a function
of coupling constants, but let us adopt m, ' as a
parameter-measuring attraction which is the
bound-state mass when it takes on positive values. '
To see how the transition at m~' =0 arises, let us
look at the effective potential V(Q):

(2.1)

V is in fact the generating function of the n-point
one-particle-irreducible vertices (IPIV)

I'~"'(P, P,„) with all momenta zero. In a recent
paper we derived an expression for V(Q) under the
assumption that a theory has a deep bound state
and that the bound-state poles dominate I' '" at
zero momentum' (although the 1PIV's do not have
poles corresponding to elementary fields, they do
have bound-state poles. ) We found' the following
expression for t/'

V(@) = —,'m&'Q' —,I3$ —2+2(1 —()' '], (2.2)

If one eliminates x by demanding that V(P, y) be
stationary in y,

~ V(+~ X) 2 (2.4)

then V(P) = V(P, !t(P)) subject to the constraint Eq.
(2.4). In other words, V(Q) is simply a constrained
polynomial in two variables, P and X. The poly-
nomial V(Q, y) is the tree expression one would

have written down had the X been an elementary
field. The constraint to eliminate X is simply that

V(Q, !!)be stationary in!I. To paraphrase our
claim in Ref. (7), Eq. (2.3) is a power series in Q

and the auxiliary field y, valid for small Q and y,
and containing a sufficient number of terms to ex-
hibit the transition at m~' =0."

Figure 1 shows the constraint curve in the Q', X

plane. The two local minima in V(P, !((P)) are
marked. For ma' &0, the global minimum is
V& = V(0, 0}=0by assumption. Forms'&0,
V« = V(0, —2 ms /y) = 2ms'/3y' is lower. We have
assumed in this illustration that P and y are finite
and nonzero as m~'-0. Figure (2a) shows schema-
tically the two real branches of V(g). The two
minima pass through each other as m~' goes nega-
tive.

Higher terms in the expansion of V(@, r) that
were neglected in Eq. (2.3) are:

40'+ 0'x' + i'+ '
4t 4 41

(2.5)

The argument for a transition depends on the be-
havior of V(Q, r) in an arbitrarily small neighbor-
hood of Q', g =0 as m~'-0. Hence, as long as the
expansion converges, higher terms will not affect
the argument. "

For ma'&0, we can reexpress Eq. (2.3) in terms

where $ = Pyp'/m~', P is the (P-P-bound-state}
coupling, and y the (three bound-state) coupling.
Equation (2.2) has the features stated above but
before discussing them let us write Eq. (2.2) in an
equivalent but much more transparent way. In-
troduce a scalar classical field y and define V(P, y):
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FIG. 1. Plot of the constraint curve BV(P, )()/By=0 in the Q, g plane for mz &0 and mz &0. (We have taken P and
p as positive numbers. ) V(P) =V(P, p(P)) subject to this constraint. V(Q) has a branch point at Q~ =Q, =m~ /Pp and
is real for 0&) ~p&, . The two local minima on the two sheets of p are marked. As mz 0 the two minima coalesce
at O'=X=o.

of a shifted g to see some gross features of the
new vacuum: Define X

=—X+2m~'y; then

+—4" X+—X'.
2 6

{2.6)

i'(4;, X ) =-'jjke'4j'+-'jsB Xj + PA kf ljXkj'

The coefficient of X' is positive, giving a positive
bound-state mass. The mass of the Q field picks
up a correction of order m~'. ' If we had included
higher-order terms [Eq. (2.5)], then P, y, and
higher-order terms would pick up corrections of
order mg'.

In models for which the bound states and fields
belong to irreducible representations of a sym-
metry group, Eq. (2.3) would generalize to an in-
variant form of V:

(a)

v(y)

(b)
v(y)

r
/

rr

4b„

that V be stationary in X;, the stationary points of
the constrained problem and unconstrained prob-
lem are identical. Hence the intuition developed
from the classical picture can be carried over for
this form of dynamical symmetry breaking. One
must be careful in that the type of stationary
point —maximum, minimum, or inflection —need
not be identical in the constrained and uncon-
strained problems. In fact, the vacuum with the
tachyon in the constrained problem is a local

1+ 'Vh'y~X XgXa (2 7)

together with constraints to eliminate the X s:
& Vj&X, = 0. The unconstrained problem leads ex-
actly to the classical picture of symmetry break-
ing, where the parameters are free rather than
arising dynamically. Since the constraints demand

FIG. 2. (a) Behavior of V(P) for a deep bound state-
Eq. {2.2). Dashed curve indicates V is complex. (b)
Behavior of V(Q) for p~ & 0 in the O(N) model.
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minimum of V(P) but is a saddle point in V(Q, g)
and would have been rejected in the unconstrained
problem also.

There does not seem to be any problem in ex-
tending this argument to local gauge symmetries.
Gauge fields would acquire a mass through
couplings to g. However, this needs to be investi-
gated further.

III TRANSITIONS OF VACUUMS IN THE O(N) e MODEL

The solution of this model in the large-N limit
has been worked out by Schnitzer" and by Cole-
man, Jackiw, and Politzer. ' In this section we
are interested in the values of parameters that
correspond to no classical symmetry breaking,
which is treated by Schnitzer. ' However, we

follow the notation and renormalization conven-
tions of Ref. 5, even though they did not treat this
case, since this formulation is more concise.

The Lagrangian is

where

The effective potential has been calculated in Ref.
5, Eq. (2.5), and we will not repeat this calculation.
%e evaluate this explicitly using the definitions of
renormalized p,

' and X [Ref. 5, Eqs. (2.9) and (2.10)
in 4-space] to get the following: V(Q) = V(Q, )((P)),
where

N
V(4, X)=-&~ X'+-'X4'+

~ X

P =0 in Eq. (3.2) and solve for X:
x

X
—P — 2x. ln 2 =0. (3.4)

Take p,
' & 0 and choose the renormalization mass

M' = p' for convenience. This has two real solu-
tions for 0& A. & ~, '

p~ = p. ', and y&&. The character
of the constraint curve is shown in Fig. 3 marked
"2 roots. " Let us define a new interaction para-
meter A. (A.) which is monotonic and single valued
over the desired range of ~:

A, -$
32m' ln A.

(3.5)

Then g„=g'/R and all the needed formulas can be
given in closed form in terms of X. [Solving Eq.
(3.5) for R gives a transcendental equation. ] The
results we wish to note are summarized below:

Ng' 2A. ln A.

Vtt = V(0~ Xrr) 128v2@ g 1
—1

(3.8)

Corresponding to each vacuum there is a Q mass
and a bound-state mass. The bound-state mass
was found by calculating the QQ scattering ampli-
tude A from the generating functional, [Ref. 5, Eq.
(3.1)] and expanding: A '(s) =A '(0) +s(A '(0))'.
Then

me' = -A '(0)/(A '(0)) '

= 2g [-32m'/A. +1+in (y/1lf')], (3.7)

This is a good approximation to m~'

NK X 1
+128 w

2ln ~, —1), (3.1)

subject to the constraint to eliminate y,

8 V(Q, y), 2' 2''N.
16m"- M'

=0 (3.2)

The minima are found by noting

&V BV BV dg

dy ey +a~ dP
(3 3)

Hence, all the stationary points d V/dP = 0 are on
the lines g = 0 and Q = 0. V(Q, y) is complex for
g &0, so we eliminate that region from considera-
tion. A normal vacuum would have Q =0, y &0; an
asymmetric vacuum $&0, g =0. Since we are in-
terested in the former in this section, we set

FIG. 3. Schematic behavior of the constraint curve
BV(Q, y)/BX =0, Eq. (3.4), in the 0(N) o model. The
number of roots of this constraint with Q =0 are used to
label the curves.
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when !m~'! /4M&' «1. Rather than go into the
details of this calculation we can note from the
analysis of Sec. II that

s e'V(4» 2
mB 2ax

(3.8)
at min&num

where X is a properly normalized field. If we
disregard the normalization of X, we get an ex-
pression for mB' of the right sign, which is all
we care about in this argument:

32' 2 (3.9)

mBr =2@ (3.10)

II. m& =q&&=J /j. ,

2p2 4 ln A.

maii'= - 1 —
1

For 0&A, (1, V&, is the global minimum"'" and

m»&'&0&mB&'. Similarly for ~&1 V& is the glo-

baal minimum and m» & 0&mB&&,' for X =1,
V& = V», mB&' =mB«' =0,"which is what we wished

to show. The behavior of V(Q) for A. near 1 is the

same as for our general discussion [Fig. 2a].

(3.11)

This differs from Eq. (3.7) by a positive constant
factor and a factor of g. Since the minima all have

X &0, one may substitute this expression, Eq.
(3.9), in place of m~' for the following arguments
if the reader prefers. %e find

y =Xr=

It would be desirable to have a closed-form
model with internal symmetry. In the O(N) model,
the bound state is an O(N} singlet and hence no
symmetry is broken. A useful feature of the O(N)
model is that the generating functional is calcul-
able, from which finite-momentum vertex func-
tions can be obtained about either vacuum. Al-
most any two-body dynamical scheme with a
bound state carrying quantum numbers will ex-
hibit this symmetry breaking. However, only if
the generating functional is known can one obtain
detailed information about the asymmetric vacuum.

IV. DYNAMICAL RESTORATION OF SYMMETRY
IN THE O(N) 0 MORSEL

Let us now look at A, &0 as before, but p'&0.
The curve marked "1 root" in Fig. 3 shows the be-
havior of the constraint curve. There is a sym-
metry-breaking minimum of V at X =0, Q'
= —2N p'/X:

( 2N 2 i/a

V
I
—,o!=o.

J
(4.1)

This is the minimum studied in Ref. 3 and 5 and

marked by "I"on Fig. 2(b). The theory has a
tachyon as reported in Ref. 5. [Our Eq. (3.7} is
not a valid expression for mB' for this case, since
there are thresholds at s = 0 arising from zero-
mass Goldstone bosons. ]

Let us verify that the symmetric minimum
marked II is always lower than V, (V, = 0}, and

that the theory defined at V&& has a dynamical

TABLE I. Summary of the types of vacuums for all values of A, and&2 based on Eq. (3.4).
In the "domain" column, M2 is the renormalization mass and is left arbitrary (positive). The
&«'s are values of & for which the character of the roots change. They are easily calculable
from Eq. (3.4). The "roots" column gives the number of symmetric minima. The "properties
of roots" column are weak but useful inequalities described in the text. The last column indi-
cates whether there exists an asymmetric minimum or not.

Domain of p2 and ~
No. of roots of

sv(e. x}laxl, =,
Properties

of roots

Existence of
asymmetric

local minimum

A,„&A,

&A, &A,, &

2)M2

!p o

Xgs X2 &M

Xgs X2 &0 2

M'&X, &P2

No

No

No

Yes

Q&A,

Q&p2&M2
A, &Q

Xi&P; X2&M

V'&X& &M'

No

Yes

p&A

Xi, X2&M2

Yes

No

No
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state of positive mass. Take p, '&0 (p,'eM'), X&0
in Eq. (3.4) and note that it has one root, y = g»
and it satisfies

X»&M &0. (4 3)

Now evaluate V(P, y}, Eq. (3.1}, at P =0, g =g»,
using Eq. (3.4) to eliminate X:

Vrt = V(0~ Xtt)= l36 2 Xtt 2inM22 2~ Xii
128m Xii -~

mair =2Xii &ln 2 +1 &0Xii

x« -v
Hence, choosing p,

' negative in an attempt to gen-
erate symmetry breaking does not work in this
model.

(4.4)

(4 3)
showing V«& 0. Since this is a symmetric mini-
mum with no Goldstone bosons, our formula for
ms', Eq. (3.7), is valid. Expressing ms' in terms
of g» gives

Finally, we check for other domains in A., and
p,
' to be sure the same phenomenon takes place

whenever there is an asymmetric minimum. This
is aQ summarized in Table I and Fig. 3. The
values A, , ~, , and A. , are special values of A.

p 3
where the character of the X roots of
e V(P, y)/sitz, =0 changes. The above discussion
corresponds to row 7 in Table I. One can easily
check that for p' & 0, and A. & 0 (rows 4, and 6}the
inequality on the root is sufficient to show V„&0,
m~«'& 0 as before.
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