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Recent methods in applying the renorimalization group are used to study the existence of spectral-function sum
rules. A spurion expansion closely related to Wilson’s original analysis is developed in the context of
renormalized perturbation theory. Criteria for the validity of various types of sum rules are developed in terms
of the anomalous dimensions of symmetry-breaking operators. Limitations on the order to which the spurion
expansion can be carried because of infrared singularities are discussed.

I. INTRODUCTION

The spectral-function sum rules were first pro-
posed by Weinberg.! These sum rules equate cer-
tain moments of the spectral weight functions of
two-point functions for vector and axial-vector
currents. The original derivations rested on var-
ious ad hoc assumptions about the high-momentum
behavior of products of currents and the nature of
the Schwinger terms of the current commutators.

These Weinberg sum rules have been extended
and applied to various aspects of chiral-symmetry
breaking.?~’° In view of the continuing interest in
them it may be worthwhile to investigate in a gen-
eral way the conditions for the sum rules to be
valid in renormalizable field theories. This can
be done by a combination of various techniques

and ideas that have been developed in recent years.

The problem of the Weinberg sum rules is equi-
valent to the problem of the small-distance or
large -momentum behavior of propagators for vec-
tor and axial-vector currents. Suppose that our
theory has a symmetry limit in which the currents
belong to a single irreducible representation of
the symmetry group and are conserved. In this
limit all the propagators are equal.

Actually, however, the symmetry is broken and
not all the propagators are equal. If the symme-
try breaking is “soft,” the leading small -distance
or large-momentum asymptotic behavior of the
propagators may be identical or related. There-
fore, we can find certain linear combinations of
propagators whose asymptotic behavior will be
less singular than that of the individual terms.
Using the spectral representations, the vanishing
of the coefficients of the leading asymptotic terms
for these linear combinations can be expressed as
the vanishing of certain moments of the equivalent
linear combinations of spectral weight functions.
These are precisely the Weinberg sum rules.
From this point of view they are a type of super-
convergence relation.

This approach was originally given a precise
form by Wilson, who applied operator -product ex-
pansions to study the small-x? behavior of the cur-
rent propagators.!! By expanding perturbatively in
the symmetry -breaking operators, he developed
a spurion analysis of the symmetry -breaking
terms and used it to discuss the validity of the
Weinberg sum rules in terms of the group repre-
sentation content and of the anomalous dimensions
of the symmetry -breaking terms.

Wilson’s discussion is not in the context of con-
ventional renormalizable Lagrangian field theory.
The appropriate machinery to treat the problem
in Lagrangian theory is the renormalization-group
or Callan-Symanzik equations.'®'® With them we
can study the behavior of the propagators at large
Euclidean momentum. For combinations which
decrease fast enough in this region, there will be
superconvergence relations which correspond to
the spectral-function sum rules.

The form of the renormalization-group equations
will depend on the additive counterterms needed
to define finite renormalized propagators for the
currents. The number of counterterms required
depends on the symmetry -breaking terms present.
The rules for determining the necessary renor -
malization subtractions have been systematically
developed.**

We can get useful results only in the case of so-
called soft symmetry breaking, where the sym-
metry-breaking terms in the Lagrangian have
canonical dimensions 6 <3. In practice, this means
symmetry breaking by mass terms and by scalar
fields with nonvanishing vacuum expectation val-
ues. It turns out, not surprisingly, that in these
cases the propagators approach their symmetric
values in the asymptotic spacelike limit. But de-
riving the sum rules requires knowledge also of
nonleading terms which depend on the symmetry -
breaking effects. The tools to study this are given
by Weinberg’s approach to the renormalization
group for mass terms's**®and by the method of Lee
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and Weisberger for scalar fields.?

When these ingredients are combined in proper
proportions and blended, there results a form for
the asymptotic behavior of the propagators which
is precisely what we require to derive the super-
convergence relations. In fact, we obtain effec-
tively Wilson’s spurion expansion in a Lagrangian
framework and without explicit use of the opera-
tor -product expansion.

The detailed applications for specific symmetry
groups and specific types of symmetry breaking
closely parallel those developed already from the
original analysis. Therefore, this paper is limited
to the derivation of the general theoretical criteria
for the validity of the sum rules without specific
applications. The next section deals with the so-
called first spectral -function sum rules. In Sec.
III, the analysis is extended to the second spec-
tral -function sum rules. Following this, Sec. IV
deals briefly with third spectral -function sum
rules. Finally, there are some concluding re-
marks and discussion.

II. FIRST SPECTRAL-FUNCTION SUM RULES

We suppose that we are given a renormalizable
Lagrangian field theory. When certain parameters
in the theory are set to zero, the Lagrangian is
invariant under a group of symmetry transforma-
tions and so is the vacuum state. There is a set
of conserved Noether currents associated with the
generators of the symmetry group. In the usual
models the currents are bilinear in the fundamen-
tal fields.

For each current we define a covariant propa-
gator or two-point function, including contact
terms if necessary, so that the propagator is con-
served in the symmetry limit. J%(x) denotes a
current component with space-time index u and
internal quantum numbers denoted by a. The
corresponding momentum -space propagator is

0, (p) = W(p°)guy + T(P*)pubs « 1)

In the symmetry limit, MM%(p%)= - p*Me(p?).

The renormalized propagators are defined by
introducing counterterms according to the Bogo-
liubov -Parasiuk -Hepp procedure. The currents
have dimension 6=3 and index of divergence d
=8 -4=-1. The superficial degree of divergence
of the propagator is D=2. Therefore, II,, which
has a coefficient quadratic in the external mo-
menta, is rendered finite by a single counterterm
(in addition to those required to renormalize the
Green’s functions of the fields themselves). The
same subtraction renders II, finite in the symme-
try limit.

Specifically, in the symmetry limit we take all
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renormalized masses to be zero and each scalar
field to have a vanishing vacuum expectation value.
The theory is defined in terms of some dimension-
less coupling constants. For notational simplicity
we will assume that there is only one and call it

g. The unrenormalized Green’s functions are made
finite by some symmetry -preserving cutoff pro-
cedure characterized by a squared cutoff momen-
tum, AZ%, and the theory is renormalized at some
Euclidean point p®= — p2.

Using the subscript # to denote unrenormalized
quantities, the finite invariant functions are given
by

5(p% &, 1) = (% £,y A°), = T3 (= 1% g,y A°),,.
(2)
The limit A -~ after subtraction is implied.

To obtain a renormalization-group equation for
this amplitude, we note that,'® obviously,

:0’

]
u? Wﬂg(pz;gml\z),,
e A

and we use the chain rule to rewrite the differential
operator acting on I1%(p?; g, u®) to obtain

9 9
[“28_112+B(g)5§]ng(1>2;g, w)=C(g), ®)
where
9
C(g) =MZWH§(P2;gm A?), p2on?’

C(g) is cutoff-independent by power counting, is
u?-independent by dimensional analysis, and is
independent of the quantum numbers a by symme -
try. Because the current is conserved and unre-
normalized there is no anomalous dimension for
the current, y;=0.

Now suppose the symmetry is broken softly by
a term in the Lagrangian of canonical dimension
6=3, or index of divergence d=6 -4<-1. First,
the renormalizations of the partially conserved cur-
rents are finite, which means that y; =0 still.
Second, the superficial degree of divergence of
any Feynman graph with » insertions of the sym-
metry -breaking term is D=2+nd. If n#+0, D=1,
which means that graphs with symmetry -breaking
insertions give cutoff-independent contributions
to II,. Therefore, the single symmetric subtrac-
tion term still renormalizes all the II$ functions
even in the presence of soft symmetry breaking.!®

The possible kinds of soft symmetry breaking
effects are fermion mass terms, meson mass
terms, and scalar fields with nonvanishing vacu-
um expectation value. When the effect of such
parameters is included in the renormalization-
group analysis,’ 7 the differential equation (3)
becomes
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5 -2 ZYf(g)mf om

g

where
my stands for fermion masses,
M, stands for boson masses,

v;=(01¢;(0)10) (¢ is a scalar field),

- zZY;,(g)Mb aM

- T, 5o T80 mM, 1 1)=C ), (4a)

y,(g) is the anomalous dimension of a fermion mass insertion in the symmetric theory,

¥5(g) is the anomalous dimension of a boson mass insertion in the symmetric theory,

and

yi(g) is the anomalous dimension of the scalar field ¢; in the symmetric theory.

All the v’s are defined in the symmetric theory and, therefore, are functions only of the dimensionless

coupling constant g.

It is convenient to introduce dimensionless variables

t=In(|p?|/n?) and {x;}={m,/ 1, M, /1, v,/ u}.
Since II, has zero physical dimension, we get
9 3
ﬁ—B(g)EEHZ[lw,(g)]

i

The x,;’s now appear as additional coupling con-
stants. The solution can be written in a standard
form by introducing effective coupling constants
Z(t, g) and %;(t, g, x;), which satisfy the following
differential equations and initial conditions:

%8 _ a5 7 -
g;_ﬁ(g)’ g(09g)—g!

(5)
ox;

at‘— —3H1+y;(@x;, %0,8,%)=x

The solution of Eq. (4b) can be written as

H‘;(t,g, {x,}) = Hg(o: E(t’g)’ {J_Ci(ts 8 X,)})

_Kc(g(t',g))dt'. (6)

Z(t,g) is the running coupling constant of the sym-
metric theory. If g is known and the function 7;( g)
is determined, the effective symmetry-breaking
constants are easily found from (5):

%ilt, g, %) = x,-exp{— 3 [t+ f'y,-(g'(t',g))dt']} .

(7)
If lim,.,v;(g(t, g))> -1, then
limx;=0.
te oo
In this case

Lim 13(2, g, {x.}) = 0, (¢, £), 101

- f ‘ezt gNar, 8)

(4, g, {x;,p=-C(g). (4Db)

r
which is the symmetric Green’s function IT(¢, g,{0}).
For the mass terms, the condition lim,. . v;(2)
> —1 is true to any finite order in perturbation
theory by Weinberg’s power -counting theorem.*

In an asymptotically free theory lim,_ y;=0.

For a manifestly covariant theory with positive
metric, v, >0 follows from the K4llén-Lehmann
representation for the two-point function. In an
asymptctically free gauge theory, limy,=0.

We assume that, at least, the weaker inequality
limy; > -1 is satisfied. If not, all attempts to ana-
lyze high-momentum behavior by Callan-Symanzik
equations and renormalization-group methods are
in difficulty.

If we can expand II, in a power series in the ¥;,
the zeroth-order term is the symmetric propaga-
tor. The symmetry-breaking terms of order (¥)"
behave as

(P-Z/PQ)'(" /2)1’ ’rEt+ft)/(§(t'))dt'.

The difference between any pair of invariant
functions vanishes faster than |p*|~'/2, Hence,
the difference satisfies an unsubtracted dispersion
relation, and the relevant spectral weight func -
tions must satisfy a convergence condition

ap®; ., .2 br oo

ap_ _ _ t
_/_‘bz [p%(p?) - p8(p?)]=cons o
(a Oth spectral-function sum rule).

Infrared singularities limit the number of terms
which can be expanded as simple powers about the
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x;=0 limit. The basic analysis was given by Wein-
berg.'® Boson masses enter only as mass squared.
Though the M =0 limit is finite, the first deriva-

tive with respect to M? at M*=0 is infrared-diver-
gent. Therefore, the remainder behaves as x*lnx2.

For fermion lines, we must differentiate at least
three times before infrared singularities enter.
Similar restrictions hold for scalar tadpole in-
sertions, since they generate fermion mass terms
via Yukawa couplings and boson mass terms from
¢* interactions. These limitations on the number
of simple power-series terms do not apply if we
want to expand the Green’s functions about some
symmetric point where x;#0, for example, if we
want to study mass -splitting effects by expanding
about a symmetric mass.

Though fermion masses and scalar tadpoles
enter linearly into the theory, only even total
powers occur in the expansion of II,, about x;=0.
This follows straightforwardly from the fact that
the trace of an odd number of y, matrices van-
ishes. (We are restricting ourselves to theories
with currents bilinear in spin-3 and spin-0 fields
and with no dimensional coupling constants in the
symmetric limit. Strongly interacting vector
mesons are assumed to be singlets with respect
to the quantum numbers carried by the currents.)

J

(L, g, {x.}) =T, (4, 8, 0)+ 3 )X, (D%, (¢) ox ox, EO,2(), {x:p
Jk

92
J

If we take a linear combination, EaC"l'Ig, such that

doce=0

a

and (12)
92
C? ) _%,()%, (1) —— 11 =0,
uz ; F0x,0%, P | (xe0

this combination vanishes asymptotically as
exp[- 2¢{(1 +y*)]. Therefore, if y°> -3,

fdpzz Cope(p?)=0. (13)

This bound on y” is obeyed in asymptotically free
theories. If, in fact, y*>0, the next moment also
superconverges:

[app? Y consp?)-o0. (14)

The linear combinations obeying (12) can be
divided into two general classes. The first class
obeys (12) independent of the value of the X;; that
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Returning to Eq. (6), we can write

(¢, g, {x;}) = "™, g) + O(x*).
Let y* denote lim, . y(g({,g)). Then,
7~ (|92 )7
If y° >0, the difference between any pair of in-

variant II, functions vanishes faster than (1/p?)
and we have the superconvergence relation

S a* [o2(6) - R3] =0, (10)

which is the first Weinberg spectral sum rule.

For scalar particles in a theory with positive
metric, y,=0 follows from the Killén-Lehmann
representation of the two-point function. There
is no similar bound for anomalous dimensions of
mass terms.

In asymptotically free theories, the anomalous
dimensions approach zero as 1/In| p?|. The sign
of the coefficient of the logarithmic term deter-
mines the validity of (10).2! A superconvergence
relation which depends on the sign of logarithmic
terms presumably will converge too slowly to be
of practical use in low-mass saturation approxi-
mations.

If there are no boson mass terms to be con-
sidered, we can expand the invariant function:

| +O(FInT?). (11)
{x;}=0
—
is,
ce &
— 115 =0 for all j,k.
aZ axfaxk 2 x%3=0 7

Such relations depend only on the group represen-
tation content of the currents and the x;. A typical
example is the SU(3) X SU(3) chiral algebra of cur-
rents belonging to (1, 8)+ (8, 1) with symmetry
breaking due to quark mass terms belonging to
(3,3)+(3,3). The combination of current propa-
gators belonging to (1, 27) + (27, 1) does not couple
to the second -order quark mass spurions.

The second class of linear combinations obeying
(12) depends explicitly on the values of the x,(¢),
at least on their relative size or ratios. A typical
example is the original Weinberg sum rule for
vector and axial-vector isospin currents, which
is valid in a model with quark mass splitting with
mg=V2my.

In the intermediate renormalization procedure
used here the ratio of ¥,(¢)/%,(¢) is the same as
that of the bare masses m$/mj. The multiplica-
tive renormalization factors are defined for mass
vertex insertions in the completely symmetric
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theory and are the same for all quark masses. So gree of divergence D=2+ E,n,di.
are the respective anomalous dimensions. For soft symmetry breaking, d;=-1and D=1.
A finite invariant function is defined by

. XAL- N SUM RULES
[II. SECOND SPECTRAL-FUNCTION SUM H‘f(pz,g,{xl})=ﬂ‘l‘(p2;gu, {m,M, 1)} o Az)u

Superconvergence relations for II, are called

second spectral -function sum rules. The proce- - AT(- 1% g, ,{m, M, v}, A7),
dure in establishing them is analogous to that for rra . .
II,. First we establish the counterterms needed +@° (= % g,, A%, (15)
to define a finite renormalized invariant function where
when the symmetry is broken. .

In the symmetric case, II, is quadratically di- AT (= p2%5 +++), = T5(= 1% g, ,{m, M, v}, A?),

vergent but Ward identities guarantee that the

a 2. 2
single subtraction which renders II, finite also - T5(= 1% ,,,{0}, A%, -

renormalizes II,. Graphs with »; symmetry - The renormalization-group equation satisfied by
breaking insertions of type ¢ have superficial de- I, is

<“ st Peg Z’f’”fa -5 nMygy aM 32wy )““- -4"C(e)+ KD (g, 1D, (16)
where

D (g,{xi})" zAna (pZ, u

PR=-pu2e

Defining II9 = ¢?f* and changing variables as before, one obtains

[%"Ba?g Z A +y)x 9% :l o, g {x)) =C(g) - e7'D%(g, {x;}), a7

with the solution
t t
o, g ) =4t g, ), {xi(t, g, x)P + fo C(g(t'Nat' - e fo e!'D*(g(t"),{x, "} dt’. (18)

With the usual assumption, >~ 1, it is easy to see that the leading asymptotic term is the symmetric
limit. However, simple differences I1% - I} do not vanish asymptotically in general. Such differences will
obey once-subtracted dispersion relations regardless of the value of y* unless second-order symmetry-
breaking effects cancel. In the latter case, the following discussion applies.

If the propagator can be expanded to second order in powers of the symmetry breaking, then it is suf-
ficient to include in the symmetry-breaking subtraction term just the second-order symmetry-breaking
effects. That is,

Ani(— “2; g7{ml}: Az)u=% Zmlmk——_—ﬂa( ')
jk

om om, mg=0 (19)
and
D*(g,{x} = ; %%, (D (&) (20)
Then
°t, g, {xP=rt5,0+2 2 % (R0 552 0,84, 8), {xb im0
+e"f‘e‘ > % ()% (D5 (Z(t))dt’ + O(Z(1)*InZ) . (21)

0 ik
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If we take linear combinations of invariant func-
tions as before such that both the symmetric and
the quadratic symmetry-breaking terms cancel,
this combination behaves asymptotically as

|7 (%))~ |7 |~ 2+27 ™).

Therefore, if y° >~ %, such a combination obeys
an unsubtracted dispersion relation, but we re-

quire ¥” >0 for the second spectral sum rule to

hold,

[ar 3 i) =o. (22)

This condition is obeyed when the only symmetry
breaking is due to scalar fields with nonvanishing
vacuum expectation values in a positive-metric
theory. In asymptotically free gauge theories the
second Weinberg sum rule depends on the lowest-
order contributions to the anomalous dimensions
of the fermion mass terms.

IV. THIRD SPECTRAL-FUNCTION SUM RULES

Instead of the tensor decomposition of (1), we
can write

ne,= (g,,u-ﬁ;é’ﬂ) IO(p%) + pp, (1), (23)

The absorptive parts of Il, and I, come from
states of total angular momentum 0 and 1, respec-
tively. Obviously

Oo=I, +11,/p%. (24)

Spectral sum rules for the spin-0 weight function
are known as third spectral-function sum rules.
They can be derived by straightforward applica-
tion of the preceding technique. Since II, is a lin-
ear combination of II, and II,, it is not surprising
that these sum rules turn out to be just linear com-
binations of those previously derived in Secs. II
and III.

When y* >0, there is an interesting result for
the linear combinations which cancel second-order
symmetry-breaking effects. The superconver-
gence relations for the first moment of p, [Eq.
(13)] and the zeroth moment of p, [Eq. (22)] can be
added to give

[ar T oo, (25)

Since p*p"II,, = (p*)*I(p?) is essentially the
propagator for the divergence of the current, we
can obtain sum rules for the two-point functions
of a“Ju in the same way. This analysis also deter-
mines the number of subtractions in the spectral
representation for such a propagator. Two are
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required, but one is determined since the propa-
gator vanishes at p?=0. The second depends on
our arbitrary renormalization condition for II,.
If 1°( %) denotes the propagator for akgy,

© _a 2
| ————K‘§°(_"p),dn2]. (26)

() = 2 [+ 2

V. DISCUSSION

As mentioned at the beginning, the results of
this paper largely reproduce Wilson’s spurion
analysis in the context of renormalized Lagran-
gian field theory. However, this method does
clarify the role of infrared singularities in limit-
ing the order to which the spurion expansion can
be carried.

In contrast with the case of deep-inelastic lepton
scattering, the study of the asymptotic behavior
of two-point functions in field theory does not re-
quire use of Wilson’s operator expansion. This
is obvious if one remembers the date of the orig-
inal paper in this field.?® However, the technical
tools to incorporate symmetry breaking including
mass effects into the analysis have been developed
only recently.

These methods allow us to define and implement
precisely the notion of asymptotic symmetrywhich
has been used heuristically and intuitively to justi-
fy spectral-function sum rules in the past.

The property of conserved and partially con-
served currents which is crucial to this analysis
is the absence of anomalous dimensions for such
operators. This allows us to relate the number
of subtractions in the spectral representation to
the number of counterterms required in pertur-
bation theory (with the assumption y*° > -1). To
extend this analysis to propagators for arbitrary
composite operators we would have to introduce
extra assumptions about their asymptotic dimen-
sions, which could at best be justified from order-
by-order power counting in perturbation theory
using Weinberg’s theorem.?

Saturation of such sum rules, which converge
only logarithmically, by known low-mass states
cannot be expected to be a good approximation,
Such sum rules may occur especially in asymp-
totically free gauge theories and depend for their
validity on the lowest-order nontrivial contribu-
tions of perturbation theory to the anomalous di-
mensions of the symmetry-breaking operators.
Though not of direct practical use in low-mass
saturation approximations, the existence of such
marginal superconvergent relations may be im-
portant in the theoretical applications of the sum
rules. Consider, for example, the pion electro-
magnetic mass difference calculations, where
the Weinberg sum rules are required to get a fi-
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nite expression.?® This is to be a model-depen-
dent question, and further investigations of this
type of behavior and possible applications are
being carried out.
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