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The field-theoretic description of multiparticle production processes is cast in a form analogous to ordinary
transport theory. Inclusive differential cross sections are shown to be given by integrals of covariant phase-

space distributions. The single-particle distribution function F(p, R) is defined as the Fourier transform of a
suitable correlation function in analogy with the nonrelativistic (Wigner) phase-space distribution function. Its
transform F(p, q) is observed to be essentially the discontinuity of a multiparticle scattering amplitude.
External-field problems are studied to exhibit the physical content of the formalism. When q = 0 one recovers
the single-particle distribution exactly. The equation of motion for F(p, R) generates an infinite hierarchy of
coupled equations for various distribution functions. In the Hartree approximation one obtains nonlinear
integral equations analogous to the Vlasov equation in plasma physics. Such equations are convenient for
exhibiting collective motions; in particular it appears that a collective mode exists in a $' theory for a uniform
infinite medium. It is speculated that such collective modes could provide a theoretical basis for clustering
effects in multiparticle production.

I. INTRODUCTION

The covariant transport equation approach' to
multiparticle production allows the unification
of many features of contemporary field-theoretic
and statistical-hydrodynamic models. Moreover,
the basic objects of the theory (the covariant
Boltzmann distribution functions} are defined for
both configuration-space and momentum coordin-
ates, allowing a fuller use of classical intuition
than is usual.

The present work is the outgrowth of efforts
to study under what circumstances the Landau
hydrodynamical model might be true in a field-
theoretic context. ' As in classical fluid mechanics
one looks for a microscopic transport theory from
which hydrodynamics can be derived for averaged
macroscopic observables such as density, fluid
velocity, etc. The hydrodynamic equations of
motion are quite insensitive to the detailed struc-
ture of matter and to the interparticle forces,
provided these are of short range. (For example,
the collision term of the Boltzmann equation drops
out completely in the deduction of the hydrody-
namic equations by virtue of energy-momentum
conservation. ) Therefore, to the extent that such
a description is true one expects to learn little
about the microscopic laws of nature from the
study of such bulk properties as the one- and two-
particle inclusive differential cross sections. At
the same time one might expect to achieve partial
success even in the absence of a detailed micro-
scopic theory.

It is immediately clear that the transport theory

is free of many of the limitations of the statistical-
hydrodynamical approach. In particular, local
thermodynamic equilibrium is not assumed, but
rather can be derived when appropriate to the
physics of the problem. In addition. the scattering
boundary conditions are exactly incorporated. Not
so obvious is the result that the distributions
F(P, R}, F(P,R„P,R,}, etc. , are directly related
to observable single, double, etc. , inclusive dif-
ferential cross sections. The inclusive distribu-
tions then result from solving a set of coupled
transport equations. As in the usual transport
theory of gases there is an infinite hierarchy of
coupl. ed equations for certain distribution func-
tions. This infinite hierarchy gives an exact
formulation of the multiparticle production process.
Unfortunately, to close the hierarchy it is neces-
sary to introduce auxiliary distribution functions
not directly related to observable inclusive cross
sections. Although we obtain a formally exact
theory, the practical necessity of truncating the
hierarchy introduces approximations whose va-
lidity is presently very difficult to assess.

The transport equations lead automatically to
a natural description of collective motions in-
duced by interactions among the produced par-
ticles. This is a decisive conceptual improve-
ment over the multiperipheral model, which com-
pletely neglects the final-state interactions among
the produced particles despite the fact that these
particles surely overlap geometrically during
the production process. The cost of all these
good features is having to deal. with a highly in-
tractable nonlinear set of integro-differential
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equations, even after compromising approxima-
tions (e.g. , Hartree) have been made.

The transport approach, in addition to readily
exhibiting the collective motion of the entire me-
dium (hydrodynamics), gives internal collective
motions in a natural way. The most familiar
prototype of this sort of behavior is the Vlasov
equation for a plasma and the plasmon collective
excitation. In fact, our whole approach is closely
patterned after the Vlasov theory in which a given
particle moves in the time-dependent self-con-
sistent potential due to all the other particles. '
Appl. ication of this method to an infinite uniform
system of mesons interacting via a P' interaction
leads to a massive collective excitation for non-
zero temperature (Sec. V). We point out that this
sort of effect could provide a theoretical basis
for the existence of clusters in many-hadron final
states. 4'

The basic object of the theory is the covariant
field-theoretic analog of the Wigner phase-space
distribution function. ' The latter is in turn the
quantum-mechanical substitute for the single-
particle Boltzmann distribution function. In a
nonrelativistic second-quantized theory we may
write

d'Pf p, R, t)= nR, t), (1.2)

where n(K, f) =g*g(R, t) and (A) =TrpA. Expand-
ing ((', in terms of the destruction operator a (p, f )
according to

( (t}}(=f „,8"'
(p, t }

allows one to rewrite (1.1) in the form

d q -,. q Rf(p, R, f)= '

(2„)
&
"' '

&(a'(p+-'q, f)u(p--. q, t)& (1 4)

Integration over space now gives

JI
d'R f (p, 0, t ) =( n(p, t )) . (1.5)

d'r
f(p, R, &)= —,e '~''Trp

(2~)'

xg*(R ——,'r, t)g(R+-,'r, t),
where we work in the Heisenberg picture; p is
a (fixed) density matrix. For a pure normalized
scattering state p =~ (,„)(g,.J and the trace re-
duces to the usual expectation value. Throughout
the present work we shall use this special density
matrix. The construction (1.1) clearly obeys

Hence as t-~ (1.5) is the differential cross sec-
tion do/d~P times a flux factor, when the initial
wave packets are taken to be sharply peaked in
momentum space.

To calculate the cross section one solves the
equation of motion for f (which for potential scat-
tering is almost the same as the usual collision-
less Boltzmann equation) and extracts the flux
factor from (1.5). Details of this procedure are
given in the second reference of footnote 1.

The utility of the phase-space distribution tech-
nique in scattering problems does not seem to be
widely appreciated, although the possibility was
noted about twenty years ago."The method has
been revived independently (for nuclear reaction
theory) by Remler and Sathe. ' The use of

f(p, R, t) permits one to use classical intuition
as to the joint behavior in p and R while maintain-
ing the quantum integrity of the conjugacy of the
variables p and K. The advantages of this tech-
nique are clearly exhibited in applications to
quantum transport theory. '

The extension of the foregoing ideas to the rel-
ativistic domain is straightforward, although the
physical meaning of the position coordinate is
less direct than in the case of nonrelativistic
quantum mechanics. In addition, covariance re-
quires the use of two time coordinates in the basic
correlation function. One can invent relativistic
versions of the phase-space distribution function
based on single-particle wave functions, "but
since we are especially interested in inclusive
reactions we make our definitions in a manner
suggested by the reduction formula expression
for cross sections (Sec. II). In particular, the
obscurity of the notion of the space localization
of bosons is no impediment to the construction
of a consistent theory.

This paper is organized as follows. In Sec. II
the method is outlined and appl. ied to some ex-
amples involving c-number external. potentials.
A generalization (and interpretation of) Mueller's
result" on the relation of the inclusive cross
sections to certain "absorptive parts" of multi-
particle amplitudes is discovered. More pre-
cisely, it is found that the Fourier transform
E(P, q) of the Boltzmann function coincides, when
the external legs are amputated and q is set equal
to zero, with the single-particle inclusive dif-
ferential cross section. Generalizations to more
particles are straightforward. In this manner
the evaluation of the absorptive parts entering
into the inclusive cross section is seen to be ac-
complished by the solution of various transport
equations.

In Sec. III we work out appropriate definitions
for relativistic multiparticle phase-space dis-



952 P. CARRUTHERS AND F. ZACHARIASEN

tributions, define correlation functions in {P,R}
coordinates, and exhibit the connection with the
conventional integrated correlation functions.
Section IV is concerned with the "pairing approxi-
mation" by means of which the hierarchy of equa-
tions is truncated. At present the only justification
for this ad hoc procedure is the precedent of suc-
cess in ordinary many-body problems. In Sec. V
we il.lustrate how the method may be used to find
coll.ective modes in the case of the (It)4 theory with
an external-source coupling of the form V(P'. We
find a collective massive excitation for finite
temperature and illustrate how it enhances the
mass distribution in the double-differential cross
section, thereby suggesting a dynamical. mech-
anism for clustering effects.

II. TRANSPORT THEORY ASPECTS OF MULTIPARTICLE
PRODUCTION

We define the covariant one-particle distribution
function F(P, R) by

«((, )))= jd're"'((l((R —«)((Re *'e)l(). -

(2.1)

Here ((i)) is a normalized Heisenberg "in" state,
and Q is the Heisenberg field operator for the
particle under discussion. No mass-shell re-
striction on the four-vector P is implied.

The choice of (i)& depends on the problem to be
solved. For example, if the subject is particle
production by some space-dependent source, then
1(j'& is the vacuum state. If the subject is particle
production in collisions, then ((j)& will be an "in"
state describing the two incident particles in the
collision. Note, however, that we will, in gen-
eral, have to describe these particl. es by wave
packets, because if (l(& is a momentum eigenstate,
then translation invariance leads F(P, R) to be-
come independent of A. Spatial localization of the
incident particles is essential to a transport des-
cription of the collision process. Only after the
collision is over, and when one wishes to extract
from the distribution function a physical observ-
able, such as an inclusive cross section, it is
possible to take a sharp (in momentum space)
packet limit.

In classical physics, integrating the Boltzmann
distribution function over space produces the num-
ber density in momentum, and vice versa. Its
covariant analog E(P, R) has a similar property.
The number density in momentum is

write this as

2(o, =, d'x, td'x, exp[ip (x, -x,)]
dN

x&(C li (x&)i (x.)I (j &,

(2.3)

where j (x) =—(Cl+p')(j)(x}. The right-hand side may
be expressed in terms of E:

2(u, =, d RF(P, R)d'p (2v)' p2= jf2
(2.4)

In particular, if ((i)& describes the two incident
particles in a collision process, 2(d dN/dsp is
simply the one-particle inclusive cross section,
times a flux factor.

It will be convenient to define an auxiliary func-
tion E(P, R) by

(2.6)

and similarly for P. We evidently have

F(p, (I}=[(p+2e)' u'][(p —'q)' —u']—F-(p, q),

(2 'I)

so that (2.4) can be rewritten as

dN 1=
(2„).F(p, q)l. =. (2.8}

An equation of motion which parallels the clas-
sical Boltzmann equation can be readily obtained
for the function F(P, R}. Subtracting the e(lua-
tions of motion

(I:Ii+u') &4(xi)4 (x.)) =&i (xi)4'(x~)&

and

(a, +q')&4(x, )y(x, )& =&y(x, )i(x, ))

and recognizing the identity

where

P(p, ee)= Je'ee"'((l)()) —«)j ()(+-*e)l();

(2 6)

This is the same as E(P, R) but with the "external
legs" taken off. It will also frequently be con-
venient to work with the Fourier transform of
the distribution function and of F:

(2.2)

Use of the reduction formula permits one to re-

Xg + XQ

2
X2 ~ Xy

yields the result
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&p(x) = y.,„(x)— ', d' ' x(dxx') j(x') (2.10)

[where &(x) is the retarded Green's function with
& '(p) =p' —g'] is an explicit solution. We com-

2ip —F(p, R) = d'r e" ' "(j (R —,'r)p—(R+,'r)-
BR

—Q(R —,'r)—j(R+ —,'r)).

(2 9)

The operator p e/BR =po(8/Bt +p/p, V) is evident-
ly the covariant analog of the conventional 6/st
+v V of the nonrelativistic transport equation.
The right-hand side depends on the interaction,
and is the analog of the usual collision term.

The form of the operator j(x) is determined by
the interaction Lagrangian, and in general is such
that the right-hand side of (2.9) cannot be re-ex-
pressed solely in terms of the one-particle dis-
tribution function F(p, R}, but will involve higher
distribution functions (as well as other types of
objects). Thus (2.9) becomes the first of an in-
finite set of coupled transport equations, con-
necting multiparticle distribution functions to each
other. Obviously one does not avoid the infinite
number of degrees of freedom in field theory
simply by adopting the language of transport the-
ory.

We shall launch into a full discussion of the
hierarchy of transport equations presently, but
for the remainder of this section let us illustrate
the use of the transport language with two ex-
amples, in which Eq. (2.9) does close.

The simplest possible case invol. ves a Lorentz
scalar source V(x) coupled linearly to the meson
field, i.e. , 2,.„,(x) = V(x}Q(x). In this case the
current j(x) = V(x) and the formal solution to the
equation of motion

n+ —,o

pute particle production from the vacuum by the
action of V(x) by substituting (2.10) into (2.9) and

solving by Fourier transformation on R. The
result is expressible as

F( p, q) = V( p+ —,'q) V*(p ——,'q), (2.11)

so that the number distribution is, according to
(2.8), the usual result

I V(p)l'
d'p 2(u(2v)'

' (2.12)

The problem posed by Z. , = —,
' VQ' is just a rel-

ativistic Schrodinger problem (of course, for
the field P, not the state of the system). This
example is easily analyzed in perturbation series
and gives a detailed illustration of the principles
involved in the transport approach to particle
production. The transport equation is

FIG. 1. The discontinuity (represented by the vertical
dashed line) of the scattering amplitude for meson p
—&q going to meson p + 2q in the presence of the poten-
tial V is indicated to second order. When the external
legs are amputated this quantity corresponds to ~2(P, q).

2ip, R
F( p, R) = j[ d'r e '~ ' "

[ V(R —,'r) —V(R—+,—'r }]( p(R —,'r) p(R + ,'r))——
d4 '

d r 4e'~ ' F P R V R-zr —V B+'r
(2v)'

(2.13)

The resemblance to the conventional nonrelativistic equation should be noticed. A slowly varying V per-
mits one to obtain the transport equation for a particle moving in an external field,

d BV sF(pR)
BR ' BR Bp

(2.14)

The exact equation following from (2.13) is more conveniently written when Fourier transformed on R:

g

2P qF(P, q)=,V(q') [F( P+ ,'q', q -P'}—F(P ——,'q-', q —q')]. (2.15)

Again consider particle production by V from an initial vacuum. The unperturbed distribution F, is

F.(p, q) =(2v)'6 (p'-t ')6(q), (2.16)
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where the minus subscript signifies that only the p, &0 root is taken and 5(q) reflects the spatial homo-
geneity of the initial condition. Equation (2.15) suggests an iterative scheme; to second order we find

&(P, q) = (2v)'5 (P' —
l ')5(q)

5 ((p+2q) —i( ) 5 ((p —2q) —g ) d'q' V(q')V(q —q')

(P —'q)'--u' (P+ 'q)'--u' (»)' (P+P'+kq)'-l '

2lr d p' 2 2

[(P+-'q)'- l '] [(P- -'q)'- u'] (2 )' (2.17)

Inspection of these contributions (and higher-order terms) immediately shows that (2.17) represents the
sum of the discontinuities of a scattering amplitude of mesons of initial and final momenta P + &q on a
potential V (Fig. 1). 5'(P, q) corresponds to including discontinuities of internal lines only and amputating
external legs. In the present problem the lowest-order contribution to I" is

d' '
P(p, q) = 2v .V(p') V(q -P')~ ((P+P' - 2q)' - I '),

(2x)' (2.18)

and the number distribution of produced particles is

dN/d'p =, d'q'l V(p+q')l '5+((q')' —))'). (2.19)

F(P, q) is the absorptive part of a scattering amplitude whose perturbation expansion leads directly to
the graphical. structure exhibited in Fig. 1.

III. N-PARTICLE DISTRIBUTION FUNCTIONS AND INCLUSIVE REACTIONS

As we remarked earlier, in any real field theory, the transport equation for the one-particle distribution
function cannot be written in terms of the one-particle distribution function only, but of necessity involves
expectation values of products of more than two fields. For example, if we take as an interaction I a-
grangian Z, = 4&Q', the transport equation (2.9) reads

2P' g )()', )()=& Jd+'"'(('(& —~N(&+'") —0()( lr)( ()( -lr)), *

so that we are forced to deal with expectations of four fields. We must therefore turn next to a discussion
of multiparticle distribution functions.

Consider the reaction

~1+~2+ ' ' +p„+X, (3.1)

where q is a normalized incoming state (assumed to contain no particles of the field Q) and X represents
other possibl. e products in addition to the n particl. es having momentum P„P„.. . , P„. The S matrix for
reaction (3.1) is

S„.=& X.„,I s.„,(P, ) n.„,(p.)l q'
&

d'x, f,* (x,. )IIK„&X.. „,l .T(p(x, ) (p(x„)l q. ),

where f~(x) = exp(-ip x)/[2(d(2v)3]' 2 and K„=C3„+l(2.
The inclusive probability is

(3.2)

P(4 P, + +P„+anything) =P l S&;l

II '; ';fg,.(;)f,. ( )II~.. .,. & I 0(,) ''q( .) q( )'''0(. )l~ ~ ~ ~ ~ ~
~

(3.3)

The time-ordered product in (3.3) could be replaced by a multiple retarded commutator. From Eq.
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(3.2) we see that this expression is simply the (normal-ordered) outgoing differential number distribution
for the initial state 4',.„:

Q I~g;I =(4';„I:s...(p, )'''&...(p.): I@ ), (3.4)

and as such is equal to the inclusive differential cross section do/d'P, d'P„ times a flux factor in the
limit that 4',.„represents a two-particle state sharply peaked in momentum space.

Alternatively, one can begin directly from (3.4), the latter considered as the fundamental physical quan-
tity. (The normal ordering removes inconvenient disconnected parts. ) Explicitly we have (leaving 212

tacit)

2, ( ... tp)&= 2, . fd'ed'2 *pt t' t) -*1]R.R„(p(*)p(y )&,
1

2,2,(: ...(p ) ...(p l:l =, fd d '2, '*d, y'e*py't p, (y, —*,)] *ptp, '(y, —,)]
1

(3.5)

xK, K„K, K, (T p(x(, )(t)(x, )T(p(y, )(t)(y, )),

and so forth.
We now define a hierarchy of phase-space distribution functions analogous to the Boltzmann functions

by isolating from (3.5) the Fourier transform of the correlation functions (Ttp(x„) (p(x„)Tpp(y, } . (p(y„))
with respect to the relative coordinates y, —x, =—r„y, —x, =r„—y,. —x,. = r, —Writing R, = —,(x, +y,.), we define

P((,R, l-=f d', *p(P, ,)(ptR, ', lp(R, ~ -*'-,-l&,

F(p,R„pg, )= d r, d r, exp(ip, r, +ipse. rR)(T21)(R, —'r, )dtp(—RR —zrR}Tdt)(R, +Rr, )p(R + ,'rR)), —

(3.6}

and so forth.
As we have seen in Sec. II, it is useful to further Fourier transform on the coordinate R giving

F,(P„q,) = dR, dr, exp(iq, R, +iP, r )((P2(R, ——,'r, ) P(R(, + ,'r,))-
=

J dx, dy, exp[i(P, +z q) y, —i(P, ——,'q, ) ~ x2)((P(x2)(P(y„)),
(3.7)

n

F„(P,q„. . . , P„q„)= ]I d x, d y, exp[i(P, + ,'q, ) y, —i(P-, ——,'q, ) ~ x, ](Tq)(x ) ~ ~ 2P(x„)T2ty(y ) ~ ~ ~ (P(y„)).

The functions F„, exhibited in various forms in Eqs. (3.6) and (3.7}, are covariant analogs of the usual
nonrelativistic distribution functions. These functions differ from the quantities appearing in the number
distributions (3.3) or (3.5) by the Klein-Gordon operators +g'. Therefore, as before, we define an
auxiliary set of functions F„(p,R„, . . . , p„R„) in exact analogy with (3.6) but with the inclusion of
II", ,K„.K, . in the integrand. Then we can write

2(d;(:PP(P,}. P((P„):}=
) „]QdR,F„(P,R„.. . , P„R„) (3.8)

The Fourier transforms of the two sets of functions are related by

F.[p; q; )=g [(p; + 'q;)' -V'] [(p; - -Rq; }'—] ']F.(p( q;) . (3.S)

As a consequence of these definitions we can write the number distributions (3.8) in the form

II2";(:II"...( 2;)) = (,)..R.(2; 2; ) I.,=.
i

(3.10)
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Pictorially we represent F„IP, q, }as a sort of scattering amplitude (but with eccentric boundary con-
ditions) exhibited for n =3 in Fig. 2. To obtain the quantity 5'„we have to amputate the external legs of
F„[cf.Eq. (3.9)]; going to the limit of zero momentum transfer then gives the physical quantity (3.10).

In order to show the direct connection of our distribution functions I „ to the conventional correlations
we exhibit the fol.lowing equations:

d'P, &s...(p)}=&»=
2 . d'P6. (P2 ~')E, (p, q)E
1

22' a=O

Jl
d'p, dip, (:n,„,(p, )n,„,(p2):}=& N(N —1}) (3.11)

1=
(2 )2

d'P, d'P2~. (P,' —u')6, (P2' —u') E(2p, q„p 2q)2
1t J ~qj =02=0

4

&N(N-1) (N n+ I)-) =
Jl ] ', 226, (P,2 —l12)F„[P,q, }

l=l q =0

Here 5, (p' —p,') is as usual e(p, )6(p' —g ).
Now it is obvious how one defines a set of correlation functions of f„(p,R) which integrate to the usual

correlations f„. Corresponding to the two-particle correlation function

f,(P,R„P2R,) =E.(p R„PP2) -El(plR1)»(P2R2)

we have the corresponding equation

f2(pl li PP2) 2(pl li PP2) 1(P1 1} 1(P2 2}i

and the Fourier-transformed quantities f,(p,q„p,q, ) and f,(p,q„p,q, ).
For q,. -0 we have the relation

(3.12)

(3.13)

2&v, 2&ll2[&n(p, )n(P2) —6(pl-p2)n(p, )} -&n(p, )}&n(P2})]=
( },f2(p, q„p2q2)~, (3.14}

from which foll.ows

1 dpi dp~
(2,). 2

'
2

' f2(P, ql, P.q2)
1 2 Qy= 02= 0

(3.15)

The construction of f, follows the usual semi-invariant structure:

f (P,R„P R, P R, ) =F,(P,R„P R„P R ) -F,(P,R, )F (P R, P R,)

—F,(P2R, )F2(P,R„P,R, ) —F,(P2R, )E2(P,R„P2R,)+2E,(P,R, )F,(P2R, )E,(P,R,). (3.16)

This can also be surmised from the connection of E, with (da/d2P, d2P2d2P2)/o. and the integral relation
~n(n —1)(n-2)o„/g,.„=f,'+3f,f, +f, .

The integrated correlation function is

1 d px d P~ d p, -.= („). , ',.',„'f,(p, q„p.q. , p.q.)
j. 2 3 e;=0

=&N2} —3(N }(N) +2&N)2.

In &th order we have

(3.17)

f =I li 2
'2'~. (p —.w'b'. (Ae;)

e;=0
(3.18)

The distribution functions E„, or the correlation functions f„, provide a detailed local description of
the inclusive reactions. It would be attractive if the F„sufficed to give a complete dynamical description
of all the inclusive processes. This turns out not to be the case except in certain approximations. The
origin of this situation is seen to arise from the disposition of the T products in Eq. (3.7). If we calculate
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the equation of motion of F,(P.R) we are led to a hierarchy of correlation functions without any time order-
ing since no T product occurs in F„. There is nothing intrinsically wrongwith this since we can certainly
construct the E„given the set of all products of field operators. Alternatively, we can simply use "Green's
functions, " the simplest of which involves (TP(x, )g(y, )& in place of (&p(x, )P(y, )& in Eq. (3.6). Now the hi-
erarchy is essentially the usual. one cast in transport form, from which one can also reconstruct the
"physical" phase-space distributions F„. Another feature of the F„'s is shown if we compute, for ex-
ample, the equation of motion for F, in a theory with (I) coupling. Here one encounters expectation values
of the form (TQ, Q, Q, y, T@,Q, }which also lie outside the set of quantities F„. Hence although the quan-
tities E„defined above have a rather direct physical significance, it appears essential, in an exact treat-
ment, to compute them by detouring to the set of all Green's functions or the set of all products.

IV. THE PAIRING APPROXIMATION;i'm COUPLING

Let us now return to the example with 2, =-,~@', mentioned briefly in Sec. III, and use this theory as
an illustration of how one might employ the machinery we have set up. The transport equation for the
one-particle distribution is

2ip —E(p, R) =w d're'~ "(Q'(R —,'r)p(R—+,'r) —&p—(R—,'r)Q~—(R+~r)&.
4

(4.1)

We may also write the transport equation obeyed by F,:

2p, q. F =A d'x. d'y, exp i Pt+~ ~ ~

a=1 s=1

x [(T@~(x,)&p(x, )T4(y, )g(y, ) —Tp(x, )P(x2)TQ'(y, )g(y2)& +(1—2)]

—2i6( p, —20, + p2 —202)G (p, + zC„p, + 2q, + 2i6( p, + 2q, +p, + zq, )G( p, —29„p, —29,), (4.2)

where we define

(4.3)

The last two terms here arise from the action of the ~ operators on the time-ordering symbols in F,.
The expectation value on the right-hand side of (4.1) is, as we have noted above, not expressible exactly
in terms of the set of F„'s. We are, however, not going to attempt to solve the field theory exactly, but

wil. l instead invoke the analog of the conventional Hartree, or random-phase, approximation which is
commonly exployed in nonrelativistic transport theory. We shall not attempt to justify this approximation
here, other than to remark that it is based on the idea that correlations are weak and that this in fact
seems to be the case experimentally in high-multiplicity high-energy collisions.

The approximation consists of writing the expectation value of a product of fields as the sum of the ex-
pectation values of all possible pairings. Thus, in Eq. (4.1), we write

(@ (R 2r)4(R+ 2r) —@(R —2r)@'(R + 2r)& = 3 [(0'(R —~2r)& -( p'(R +kr)&](4(R —ar)@(R+kr)&. (4.4)

With this replacement, the transport equation closes. Expressed in terms of the Fourier transform of
the distribution function, we find

"d'p' " d'4'
2p' VE(pe) =» 2„). (2 ), E(p'e')[E(p —zV', q q') E(p+2q', -~- ~')]-- (4.5)

In writing the pairing approximation for E„ it is
convenient to modify our notation, let P=P ——,q,
P' =P+ &q and write F as a function of P and P' .
Thus P and P' are the initial. and final momenta
in the scattering process of which F is the ab-
sorptive part. Then, in the pairing approximation,
we find from the definition of F, that

F2(P,P~, P,'P2) = F(P,P,')F(P2P~)

+E(P,P2)E(P,P,')

+ G(P,P, )G*(P,'P2) (4.6)

(the Bose symmetry, by which E2 is symmetric
in either P, and P, or P,' and P,', is retained by
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FIG. 2. Graphical representation of the distribution
function F3(p&@&, p, q, , psych).

the approximation), and it may be directly veri-
fied that this form is consistent with the trans-
port equation, Eq. (4.2). Thus the approximation
is a consistent one.

V. COLLECTIVE MODES AND CLUSTERS

The next question, if we accept the pairing, or
Hartree, or random-phase, approximation and

thereby Eq. (4.5), is what can we use it for? In

this section we shall describe an interesting ap-
plication.

First let us modify Eq. (4.5) by adding to the
interaction Lagrangian a term 2 VQ', so that
&1 = 2 VQ'+ 2(1$ . Then (4.5) is modified to read

happen from Eq. (5.1) if we assume the disturb-
ance to be weak, and the unperturbed plasma to
be spatially large compared to the perturbing
source V. (Neither of these is a plausible as-
sumption for a real high-energy collision, so
the calculation we are about to describe is to be
taken as an illustration, and not necessarily as
a description of nature. )

We thus want to solve (5.1) in a power series
in V, where the zeroth-order term F is of
the form F('l( p, q) =F(2)(22)25'(q) reflecting the
large space-time extent of the undisturbed plas-
ma. To first order in V, the equation reads

where

X(P, q) V(q) X(p, q}V(q)
1 —Al [ d'p/(22)']X( p, q} D(q)

(5.3)

d'p'
qp qp"'tp q)= q(q)~,p'"()', q))(22)'

x [F")(~+-.q) -F"'(P - -, q)], (5.2)

whose solution is

q

qp qp(pq)= f dq' q(q') ~ qq d '(pp' 'pq
F"'(P+ 'q) —F"'(P-—'q)-

(P+ 2q)' —(P 2q)'— (5.4)

x[F(p ——,'q, q —q') —F( Jp+ —,'q, q —q')],

(5.1)

where we use the shorthand Jdfp' for J(f p' j(22) .
We may think of this Lagrangian as an approxi-
mation to an interaction Z, = &gggP'+4~/', in

which the field T|j}g is treated like an external. clas-
sical source. One could, for example, choose
V to imitate the two incident particles in a col-
lision process. The picture would then be one
in which two sources (the two incident particles}
travel. along spewing out particles, which inter-
act among themselves with a ~Q~ coupling as well
as back on the sources, and eventually radiate
giving rise to inclusive cross sections. Equation
(5.1) is reminiscent of the classical Vlasov equa-
tion for an electron plasma, so the terminology
of a plasma of particles being created by the
sources, and then radiating, is appropriate. Once
one thinks of a plasma analog, it is natural to
search for collective modes among the produced
particles in the collision. That E(I. (5.1) in fact
contains such modes is readily apparent. To ex-
hibit them, let us imagine that a plasma with
distribution function F has been created around
each of the two sources separately. The other
source then travels through this plasma, disturbs
it, and causes it to radiate particles. We can
calculate the inclusive cross section for this to

The condition that a collective mode exists in

the absence of an external stimulus V(q) is clearly
the vanishing of D, which occurs if

d p F (p+ —,'q) —F (P ——,'q)
- (»)' (P+ 'q}' (P 'q}-'---

We note that classical stability considerations
require the constant ~ to be negative.

To check for the existence of a collective mode
and to examine its nature we must specify the
unperturbed distribution function. As an example,
take F'"(p) to be that appropriate to a system
of free bosons in thermal equilibrium" (remem-
bering to subtract out the vacuum expectation
value):

p'"(p)=q q((p-q') ' -q( p))-exp(Pp, ) —1

(5.6)

Here e(p, ) is +1 or 1 according to whether P,
is &0 or &0. Evaluation of the integral (5.5) now
leads to the eigenvalue condition

8m 1 " dx
A. g ~

8

[
1 q2 11q 2 + q(p(2 l12)i /2] 2 22q 2

[ —q2 —
q

2 q(x2 l12)1 /2] 2 22q 2 q

(5.V}



RE LATIVISTIC QUANTUM TRANSPORT THEORY APPROACH. . . 959

p+q/2 p+q12 where the function f(T) is

f(T}=—[ d x(x' (-')'"l( e'"-1), (5.9)

(a) (b)

FIG. 3. Diagrams representing F
&
(a ) and F

&
(b ) with

the double lines standing for the "propagator" D ~ (q)
of the collective mode.

where here q means I qI.
We now examine solutions q, =q, (q} of Eq. (5.7).

It is simplest to study the long-wavelength (q-0)
and the low-temperature (lip, »1) limits. (It is
not necessary to take these limits simultaneously. )
In either case the quantity q(x' —)12)' ' in the log-
arithm is small so that one can expand the log-
arithm. For finite q it is not difficult to solve
(5.7) for large p(1 since the contributing values
of x are close to g. The solution is

qO' =q + —,'(4l12 f(T) +([4l—12 —f(T)]'+16t12q )' 2),

(5.8)

and vanishes exponentially as T-0. As q be-
comes large qo=q. The sound velocity SqO/eq

is less than unity, but approaches unity for large
q. In the long-wavelength limit (q-0) for arbi-
trary P it is easy to see that no root exists for
q, &2g; the q, 2p. root agrees with the expression
(5.8).

The example system, infinite in extent and at
constant temperature T, does not accurately imi-
tate the initial state in a multiparticle production
process. Nor does the model Lagrangian repre-
sent the real world. However, the existence of
collective excitations is evidently possible in the
real world. It is tempting to speculate that such
excitations are at the root of the phenomenon of
clustering.

To explore this possibility let us carry the cal-
culation of E to second order in V, the lowest
order in which there is a contribution to the in-
clusive cross section. The equation for I" ", the
quantity of physical interest, is

p).)(p ) Jpp, ()p„p, ) ppp), )(p )
I(p .pl* —p')((p ——.p)' —p*f

4 [(P+ 2q)'- u'] —[(P —2q)' -u']

X [F")(p - Oq', q q') F"'(P-+ 2q'-, q - q')]

Using the expression (5.3}for F(", this can be simplified to

(5.10)

F"'(P, q) =
( dq', , F'"(P+q' Oq)2v5(p+-q' —2q)2 u')—

D(q') D(q-q') (5.11)

Graphically, F ' can be represented as in Fig. 3.
The inclusive cross section is proportional to F("(P, q =0) evaluated for P on mass shell,

dg I~, Vq' '
(0 2

oo
I dq', F(0)(P+q')225(q" +2p q'}.d'P & D(q') (5.12}

The presence of the function D, which contains the collective mode, obviously influences the cross section,
but one cannot directly see the connection between the collective mode and correlations until one l.ooks at
the function F, Within the p.airing approximation, F, is given by Eq. (4.6). The term of interest in con-
nection with clustering is the last one, G(P, ——,q„P, ——,q, )G*(P, +-,q„P, + 2q2), since this term couples
together the two initial. and the two final particles in the scattering process. Its contribution to the two-
particle inclusive cross section will be proportional to

(P,' u')'(P, ' - u')'I -G(P,P, )l '.
~l ~2

(5.13)

Now G is not F, because of the time-ordering symbol in its definition, Eq. (4.3), so we cannot directly
use our solution (5.11). But we can express G in terms of F, through

( )
. pp. p((l(p. p*) p.), p, p )-(.( 'P- .(,.p),2")p-))pp

2 ( P10 P20) + PO 2 ( P10 P20} PO

= -'[F(-'(P, P.), P +P, )+F( '(P, -P, ), P, +P, )]. -- (5.14)
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Thus, approximately,

"I&(2(p, p. )-, p, +p.) I'
Pl P2

I
2

,
)

H+"'(p, +q')2v5((p, +q')' u'-)+I'"(p, +q')2@5((p'+q')~ —g2)]D P1+P2 q

(5.15)

Thus there is an enhancement of the two-particle
inclusive cross section for values of (p, +p, )2

near twice the mass of the collective mode, and
hence it does indeed suggest the existence of
clustering.

VI. DISCUSSION

The present paper has been concerned with
setting up the formal transport theory and explor-
ing its physical content in simplified models in-
volving external potentials. In addition we have
considered possible collective behavior in uniform
systems of large spatial extent. The real problem,
the collision of two structured particles interacting
via local field interactions, was not addressed
except in outline. (In the first reference of foot-
note 1 we gave, but did not solve, a pair of cou-
pled integral equations describing the production
of particles in the collision of two"scalar pro-
tons. ") The principal problems are to extract
the geometrical information about the collision,

both the structure of the colliding particles and
the "trajectory" information contained in the in-
itial wave packets. From a classical point of view
the physical content of the approach is rather
simple, although mathematically very difficult
even for a system of charged particles interacting
and radiating through the electromagnetic field.
The field radiated away by the col. l.iding particles
is determined by the acceleration of the sources.
The latter in turn depends on the energy-momen-
turn lost to the radiated field. In the particle-
physics case we have the additional complications
that the radiated fields are strongly self-inter-
acting, and that sources are structured.

Clearly, considerable effort is required to ad-
dress such basic phenomena as leading-particle
effects, bounded transverse momentum, etc. The
dynamical complexity of the problem at hand seems
to preclude an elementary solution. Further re-
search on this problem will be reported else-
where.
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