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We investigate how close to one a Pomeron pole can be before the decoupling mechanisms make the total
pion-pion cross section too s~a1& to be consistent with that deduced from experiment by means of
factorization. Our method employs energy-momentum sum rules for singly and doubly inclusive cross sections.

By assuming pion pole dominance in the forward duection we are able to e»rrlirt~te the triple-Pomeron
coupling, which leaves an inequality involving only the Pomeron-pole location and the pion-Pomeron coupling.
From this we are able to conclude that the decoupling mechanism is exceedingly weak.

I. INTRODUCTION

The simplest concept of the Pomeron is that of a
simple pole with a~(0) &1.' This would provide
an immediate explanation for the observed factor-
izability of high-energy processes. It wnpld also
simplify theoretical discussions by suppressing
cut contributions Of .course, if nr(0)&1, then the
total cross section must ultimately fall at high
energy as o~ (s/s, ) ~&" '. Such a picture is at
odds with current experimental data which show
the total cross section rising gently with energy.
To pursue the idea of a Pomeron less than one,
it is necessary to assume that the observed rise
in cross sections is due to transient subdominant
effects coming from lower-lying Regge singulari-
ties. However disagreeable such an assumption
might seem, a Pomeron below one, in addition to
giving a rationale for factorizability and cut sup-
pression, also appears to possess a philosophical
advantage: One can imagine a theoretical explana-
tion for the value of ar(0) coming from, say, self-
consistency arguments in which various effects
add and subtract giving nr(0) less than, but close
to, unity. ' Other approaches which give a Pomeron
that saturates the Froissart bound or that give the
Pomeron singularity at exactly one —whether poles
or cuts —do not give a real explanation of the loca-
tion of ar(0). In these approaches, some assump-
tion must be made ab initio about an "unperturbed"
Pomeron which is usually assumed to either be at
one or greater than one.

Given these advantages it seems sensible to keep
alive the picture of Pomeron with or(0) &1 at least
until it is conclusively ruled out either by better
theoretical models or by experiment. What we
show in this paper is that general theoretical con-
siderations such as unitarity enforced in a fairly
model-independent way by means of the energy-
momentum sum rules do not in fact rule out a
Pomeron less than one. More detailed models
which make additional assumptions could possibly

be in conflict with current experiments if nr(0) & 1.
We know that if op(0) is close enough to one we

must necessarily get a contradiction, for general
principles show that the Pomeron must decouple
from total cross sections when ar(0) =1. The
essential point of this paper is to examine how

close to one nr(0} must be before these decoupling
mechanisms limit the size of cross sections to a
point where they are in contradiction with present
experiments. We shall see that the decoupling
mechanism is exceedingly weak and that no direct
contradiction with experiment arises unless
1 ~ (0)g Le-2100

Our approach is to employ the energy-momentum
sum rules for singly and doubly inclusive cross
sections for pion-pion scattering. By using these
two sum rules in the form of inequalities, and
also making the assumption of pion pole dominance
in the forward direction, we can eliminate the
triple-Pomeron coupling from these relations.
This yields an upper bound on y„r(0), the pion-
pion-Pomeron coupling, in terms of o~(0) We.
then estimate y, „~(0}from experiments to deter-
mine an upper bound on or(0).

This paper modifies and corrects some of the
conclusions reached in a report circulated about
a year ago by J. B. Bronzan and C. E. Jones.

In a subsequent paper we shall investigate the
constraints on the Pomeron couplings for nr(0) &1
arising from a new set of cross-section inequal-
ities deduced by Brower, Mueller, Ben, and
Weis. Preliminary analysis shows that such in-
equalities yield stronger results than those dis-
cussed here, but they do not appear to rule out
the possibility of the Pomeron pole being below
one.

II. UPPER BOUND ON THE POMERON POLE INTERCEPT

The two energy-momentum sum rules we use
are discussed in Ref. 4, to which we refer the
reader for background and notation. These sum
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rules are used to develop inequalities (i) between
the total and single-particle inclusive cross sec-
tions and (ii) between the single-particle inclusive
and two-particle inclusive cross sections. We use
these inequalities in the high-energy triple-Regge
region where we assume that a simple Pomeron
pole with a~(0) close to one dominates over sec-
ondary cut terms. In inequality (ii) we take all
external particles to be pions. In our calculation
we integrate over only the region of phase space
where Pomeron-Pomeron and pion-Pomeron cuts
are subordinant to the Pomeron and pion Regge
poles, respectively, and where the pion particle
pole term can be assumed to dominate.

The pion-pion total cross section is given in our
notation by

where we take so-1 GeV' and y„„p is the pion-
pion-Pomeron-Regge coupling. The two-Pomeron
cut at 2m~(0) —1, which is the next correction to
(1), is down by a factor R (assuming pole and cut
strengths to be comparable) where

p(0) 1

s, ln(s/s, } ' (2)

As s -~, the cut contribution can be made arbi-
trarily small.

We now write down an inequality between the cou-
pling y„~(0) and the triple-Pomeron coupling
I'»~(0, 0, 0) which follows from the sum rule re-
lating the total and single-particle inclusive cross
sections (see Sec. III of Ref. 4):

cut, we find

ln— (5}

From (6) we note that the decoupling theorem"
for I'»~(0, 0, 0) is recovered as o~(0)-1. We see
that the decoupling of the triple-Pomeron vertex
holds even in the presence of cuts. As we have
formulated it here this is because the cut is sup-
pressed by a logarithmic factor and the pole is
thus distinguishable because it dominates. Of
course, the logarithmic suppression is not present
in all models when n~(0) =1,' but is always present
for n~(0}&1, where the pole and cuts are sepa-
rated. '

In order to get an inequality on y, „p directly we
need to eliminate F~»(0, 0, 0) from (6). To do this
we employ the sum rule which relates the double-
and single-particle inclusive cross sections in the
triple-Pomeron limit. In this limit an inequality
is achieved for I'ppp by relating it to an integral
over the Mueller discontinuity of the eight-point
function shown in Fig. 1. The Regge nz(t) is that
of the pion. General Steinmann requirements show
that the asymptotic formula corresponding to Fig.
1 consists of several terms. However, only one
of them contains the pion pole at t = g' (see Fig.

Since e &I it follows that In(1/e) &I/r and (4) shows
that the inequality (2) is only strengthened by set-
ting In(l/e} =1/r, so we have the following inequal-
ity expressed as a restriction on the triple-Pom-
eron coupling:

(0 Q Q)
4 apl(0)(2r)

vy„~[-Ei(-[I —nj, (0)]/r})(1—r)

r (0, 0, 0)y„,'(0)
2 2 np'(0)(2 wP

x f-Ei(-[I —n~(0)j In(1/e }))(1 —r),

where
oo e-Q

-Ei(-z) = du
Q

The small number e in (2) represents the cutoff
in the phase-space integral over the triple-Regge
region of the variable 1 -x, where x is the stan-
dard Feynman variable for the observed particle.
The number r represents the magnitude of the
fractional error made in neglecting subdominant
terms in the triple-Regge region. Estimating &

from the leading subdominant correction, which
comes from the iteration of a Pomeron pole and FIG. 1. Eight-point function.
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where M'=(p, + p, —p,)'. The variable y is a
Feynman (x-type) variable for the final-state pion
in the pion-Pomeron inclusive process. Here,
as before, e is a small number specifying the cut-
off in the variable 1 —p and r is the fractional
error. To estimate & we take the ratio of the
leading to the subdominant term (which is now the
pion trajectory iterated with the pion-Pomeron
cut) which gives

ln— (9)

The extra factor of (n„'y2) ' as compared with (5)
comes from the fact that the pion-Pomeron cut
does not have the pion pole. This further sup-
presses the cut and

MG. 2. Eight-point function near pion pole.

2). The region near t =0, where we shall assume
that the pion pole dominates, is the only one that
will be included in the sum rule inequality. Thus
we focus our attention on Fig. 2.

Using the normalization given by (1), we can
write the contribution of Fig. 2 to the two-particle
inclusive cross section near t =0 as'

We call attention to the next-to-last factor in

(8) which was absent in the report of a previous
version of this work. The presence of such a
factor and its importance have been stressed by
Moen, Parry, and Zakrzewski. ' For t near zero
in the physical region, this factor has the form

der 1 1 Q' ~(' y
dp, dp, (2w)' s s, (t —p2)2

M2s„p, 2 —t t —2(tt) 2cosru
+

SSO SO SO

+(higher powers of t), (Io)

(7)

where

M'=(P. P. -P.-P,)',
s =(p, + p, )',
Sod (PC+ Pd)

In (7) we have kept not only the pole behavior in
t but also the exponential Regge behavior. We
also note that there are no cuts in overlapping
channel invariants in (7) as required by Stein-
mann.

The resulting inequality which follows from (4.9)
of Ref. 4 at t =0 is

where co is the relevant Toiler angle for the
Pomeron-Reggeon-particle vertex in Fig. 1. For
finite energies, t cannot vanish in the physical
region. However, once the sum rules are for-
mulated and the external energy dependence can-
cels from each side of the inequality, we can take
t=0

The resulting factor of [(p,
' —t )/s, ]"""'"){""

in (8) serves to suppress the pion pole. One might
wonder whether the suppression invalidates the
assumption of pion pole dominance. Careful analy-
sis of the Regge pole expansion of the eight-point
function in this asymptotic region, including sig-
nature factors and Steinmann requirements, shows
that other terms are down by a factor of at least

2S)( i ~ )
( )2 &22P ( )

(1 y)(x{{)) 2R){{t)
dt dy

1-&

(
M'

X " (1 —2),
SSO

(8)

{1—[n (O) —n„(t)]]=1 —n (O) or (){,' —t)'.

[The basic pole dominance we discuss is equiva-
lent to that occurring in the five-point function and
can be understood from Eq. (8) of Brower and
Weis. )2] Similar reasoning justifies the factor
(n„'t),2) ' in (9).

Performing the y integration in (8) gives
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3

~ajar( ~0~ }
(

~s "a
2 2F) So

l
Of&+(xp(0)20+(t)

x
, 2 1+ o.p(0) —2o„(f )

2 fP(o&-&- f)f~(t)3
x " (1 y)

So

to an accuracy of at least 50% we can take o«
= y«~2(0)/so. Using factorization, we can esti-
mate o„from the observed high-energy total
cross sections for nucleon-nucleon and pion-
nucleon scattering as

o„=o,„'/o„„=16mb,

or (14)

where a shall be picked to ensure pion pole domi-
nance. All factors in the integrand of (11)vary
slowly with t snd ae(t ) is approximately zero over
the integration range. Therefore, we have

3

4 2w) so

y„,'(0) = 40,

if we take s, =1 (GeV}'. Using (14) we can in-
vestigate the constraint placed on n~(0) by in-
equality (13). We can replace 1/e in (13) by
e" "&+" as discussed earlier. Taking 1/r= 1/x=2,
n~=-', (GeV} ', ns=-', (GeV} ', a =2, we arrive at
the result

x ay'(1 —F), (12)
(0)) 1e-2LOO (15)

where we have taken n(0) =1.
Combining (12) with (6) we can eliminate I'»~ to

derive an inequality on y„p alone:

16 s,'n~(0)(2 w)'

v' a p.'{-Ei([1 —n (0)]/r})

1+&p t0) 1
Y (1 —r}(1—F}

' (13}

We note in (13) that as ap(0)-1, the right side of
the inequality vanishes due to a divergence of the
denominator and thus y, „p =0 which corresponds
to the Brower-Weis decoupling theorem" for the
Pomeron. We shall now use (13}to deduce an

approximate upper limit on np(0). To do this we
first must estimate y„,p. At currently available
high energies, assuming 1 —op(0) & 0.1, the factor
(s/s, )"&"' ' in Eq. (1) is never smaller than —,

' or
as great as unity. The expression for R in (2) rep-
resents the fractional correction to (1) due to the
next term which is the two-Pomeron cut. From
(2) we can see that it is possible to make R &-,'
no matter how closely o.~(0) approaches one. Thus

The question arises as to how good the inequality
(15) is. We note that in arriving at (13) we have
neglected contributions from the pionization and
fragmentation regions and assumed pion pole
dominance in the forward directions. Unless these
effects imply that the right side of (13) is as great
as several hundred times the left side, there will
be no qualitative change in our result, which is
that the Pomeron can be immeasurably close to
one without violating the decoupling theorems.
Experimental analyses usually proceed by as-
suming o~(0) =1 and the data indicate that high-
energy processes factorize. The theoretical pic-
ture given here could provide a rationale for this.
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