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It is shown that the essential singularity in finite quantum electrodynamics can be located by considering only
those diagrams with a large number of photons exchanged in the single-fermion loop, without photons emitted
and absorbed on a fermion line.

I. INTRODUCTION

The short-distance behavior of quantum electro-
dynamics (QED)' led to the program of Johnson,
Baker, and Willey. " In this program QED is
finite if the coefficient of the logarithmically di-
vergent part of the single-fermion-loop contrib-
ution to the vacuum polarization vanishes, i.e.,

F,(y)l, =, =0, (l)

where n, is the unrenormalized coupling constant.
It was pointed out by Adler' that the above eigen-

value equation may hold for the renormalized cou-
pling constant a, and that the zero of I', is of in-
finite order,

—0 (k) 0).
~=a

therefore F, has an essential singularity at a.'
The most straightforward way to find out wheth-

er F, has an essential singularity at all, and if
it has whether it is at a or at eo)a, ' is to cal-
culate F,. However, I', is an infinite power
series in the coupling constant y (Fig. 1), and
one is faced with the task of studying a series,
the jth term of which is yet unknown.

I, is known up to sixth order, '

the simplicity of Eq. (2) has not led to much in-
sight regarding higher-order terms. Other at-
tempts at calculating F, have been by summing
a large class of diagrams' and by using a con-
formally invariant formalism of the five-dimen-
sional hypersphere. '

Denoting by q' the photon momentum, and by
m the fermion mass, the sum of single-fermion-
loop contributions to the vacuum polarization is
given at high q2 by'

w, , (q', m, y) =G, (y) +F,(y)ln(-q /m') . (4)

From the scaling property of m, , we see that it
is enough to discuss F, in massless QED (m = 0).
From Eq. (2) it was shown' that the 2n-photon
amplitude vanishes in massless QED, and that
T„which is the single-fermion-loop contribution
to the above amplitude, vanished separately, i.e.,

where q,. are the (virtual or real) photon momenta.
From Eq. (5), by contracting n —1 photon pairs in
all possible ways, Eq. (2) is obtained. '

It was shown' that by contracting z —1 photon
pairs in less than all possible ways, Eq. (2)
simplifies to

F (y)= —+ ——— — + ~ ~ ~ .
3 2m 4 2m'

=0 (ko-0),
y=u

(6)
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FIG. 1. Topologically distinct diagrams in E&, the y (coupling constant) dependence is shown, and each diagram is
labeled by its type. The zeroth-order diagram was omitted (it does not contribute to ydPi/dy).
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In Sec. V a linear combination of series is formed
and its jth term for large j is found. Finally in
Sec. VI conclusions are presented.

FIG. 2. The jth term in S& for large j. It includes all
diagrams with photons exchanged between the sides of
the loop, without any curved photons.

S, = a, y'
&=0

its radius of convergence is given by

a =lim /a, f

"";
~ ao

a more useful expression may be
a)

cv = lim
Qf+

(6)

(9)

if the limit exists.
The jth term is a sum over permutations of j

internal photon lines in the fermion loop. For the
series F, or even for the simpler series H, there
are many topologically distinct diagrams in the

jth order, and the location of the essential sin-
gularity seems extremely difficult. The main re-
sult of the present paper is that there exists a
series with a much simpler jth term for large j
and with an essential singularity at n. The jth
term of this series includes, for large j, only
those j I diagrams with j photons exchanged be-
tween the lower and the upper parts of the loop
(Fig. 2}; no diagrams with photons emitted and
absorbed on the same fermion line of the loop are
included. This multiperipheral-like term brings
some hope for locating the essential singularity
of F„ if it exists.

In Sec. II Adler's results' are briefly summa-
rized, and some terms used in the following sec-
tions are defined. In Sec. III the results of Ref.
10 are briefly summarized. In Sec. DI we con-
sider a series obtained from contractions of T,
orthogonal to those that were used to form 8, .

where H, includes all the diagrams with at least
one photon exchanged in the loop. It was also
pointed out" that a more meaningful simplification
would not follow without additional input.

In the present paper we do not simplify the
eigenvalue equation, but a series is found such
that its large-order term is much simpler than
the corresponding terms in the eigenvalue func-
tions discussed so far.

The fact that o (see Ref. 6) is an essential sin-
gularity of a function S, means that it can be lo-
cated from the j—~ behavior of the jth term in
the perturbation expansion for the series. Indeed,
if the series is convergent around y =0 (see Ref.
11) then if we write

II. A SERIES FORMED FROM ALL CONTRACTIONS OF T,

Let us briefly summarize Adler's proof of Eq.
(2).' Contract n —1 external photon pairs in T,
(the single-fermion-loop contribution to the 2n-

photon amplitude) in all possible ways, thus ob-
taining rr, ~(q'; m, y} which has the same Lorentz
structure as v, , (q', m, y) (the single-fermion-
loop contribution to the photon proper self-energy).
By counting all the diagrams in each order (by
"order" we always mean the number of internal
photons) in w, ~ and in m, , Adler obtained"

2" ' {j +n —1) t &+n 1 2

(2 1)( t 1 c (q 1 7

= v
~ .~ (q'; m, m '), (10)

where m~, and n', ~ are defined through

w, , (q';m, y) -w, , (q', m', y}

g y' v', , (q', m, m '), (ll)

v|.~(q'm, y) -vl ~(q';m', y}

= g y' v', ~ (q', m, m ') . (l2)
f =0

The subtraction is needed to make the logarithmic
divergence finite, and is also present in the con-
traction of T, Multiplyi. ng Eq. (10) by y~, summing
from j =0 to j=~, and then letting m, m'-0 with
m/m' fixed, Eq. (2) (with k =n —1) follows from
the vanishing of T, at zero fermion mass [Eq. (5)].
The topologically distinct diagrams in F, are
shown in Fig. 1.

Let us define the following:
Straight photons: photons exchanged between

the two fermion lines in the loop.
Curved photons: photons that are emitted and

absorbed on the same fermion line in the loop.
Type A diagrams (Fig. 1): diagrams with self-

energy insertions only.
Type B diagrams (Fig. 1): diagrams with

straight photons only.
Type C diagrams {Fig. 1): diagrams with at

least one curved photon and one straight photon.
Good contractions of T,: contractions of 2(n —1)

photons such that the zeroth order of Ty is trans-
formed into diagrams of types B and C.

Bad contractions of T,: contractions of 2(n —1)
photons such that the zeroth order of T, is
transformed into diagrams of type A.

The diagrams used to calculate F, are of types
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A, B, and C and are obtained from all possible
contractions (good and bad) of T, .

III. A SERIES FORMED FROM THE GOOD CONTRACTIONS

OF T

by y and summing from j =0 to j=~ Eq. (6)
(k =n -2) is obtained after letting m, m'- 0 with
fixed m jm'. If, is the coefficient of the logarith-
mically divergent part of P, , where

P, , (q', m, y) P, -, (q'; m ', y)

In this section we summarize, as an introduction
for the next section, the results of Ref. 10. It
was shown that by contracting 2(n —1) photons in

T, in all possible good contractions one obtains
an object denoted by P, ~ which is defined through
its series expansion

P, »(q', m, y) P, ,„-(q'; m ', y)

P', , (q', m, m ') = g v', ',' (q'; m, m ') . (14)

Therefore, P', , includes all diagrams of types B
and C while all diagrams of type A are included in
n'' and1,c

f~l, c ~ 1,c
i=o

After some combinatorial manipulations [similar
but more complicated to those leading to Eq. (10)]
it was found that

( j+n —1)! pf+n- 1/g r ~ x. h)+„1P1,c kg m m
(J +8 —1)g.

= P y'P', » (q'; m, m') . (l3)
j=o

P1 2n is a sum over diagrams with j +pg —1 internal
photons (n —1 from each contraction, and j in-
ternal in T,). From the definition of a good con-
traction it is clear the P~1 ~ contains only dia-
grams of types B and C. It was futhermore shown
that all diagrams of types B and C are included in

P, ~. Denoting by m, ',' the contribution to n', ,
[see Eq. (11)]from all the diagrams with i straight
photons we define

= P y~ 'k&P '„(q'; mm'). (17)
J=1

IV. A SERIES FORMED FROM THE BAD CONTRACTIONS

OF T,

. Let P, ~ denote the object formed from all
possible bad contractions of T, . It is defined
through

1, 2n (I m y} P1, 2n (q m y}

= Q y'~', (q';m, m'), (16)
0

where P, ~ is a sum over diagrams with j+n —1
internal photons; from the definition of a bad con-
traction only diagrams of types A and C are in-
cluded in P', » (there should be at least one curved
photon).

It is straightforward to prove that all diagrams
of types A and C are included in P1 2 To this
end define three numerical coefficients:

b„, i. the number of diagrams with i straight
photons inP', » (examples: b. . .=6, b, 2, =78).
cn: the number of diagrams in P', ,n such

that m curved photons are on one side of the fer-
mion loop, and let us call this side (arbitrarily)
"up" (exa,mples: c, , = 2, c, , = 9).

d„& ~;.. the number of diagrams in P, ,„as
contributed from a specific P, ,„with m curved
photons up, such that among the j photon lines
there are i straight photons and 0 curved photons
up (examples: d. . . , , =30, d. . . , , =5).

These coefficients are related through

n 1 j-1
=P', » (q', m, m') . (16)

For the exact form" of g„and hg 1 which are
not needed here see Ref. 10. Multiplying Eq. (16)

bn. J, i P P n. mdn, w. J 0

fn=0 P»0

One can exactly repeat the proof presented in
lemma 2 of Ref. 10 (just set s =0) giving

(19)

n (2m)! (2n —2 —2m)!
2" ' m! (n —1 -m)!

d
(2m + 1)» (2n —2m —1)»,&»(2m + 2k 1+&(2}n + 2j —2m —2k —2f —I)&

n, nt, J, k, i 2& 'k! (j i-k)!i!-
with Pochhammer's symbol defined as

(z)0 = 1, (z), = z(z + 1)~ ~ ~ (z + I —1) . (22)

Thus both c„w0 and d„& ~; w 0 for all possible
values of the indices, which completes the proof.

In analogy with Eq. (14}we define

(23)
1

P', , (q;m, m') = P z', ', (q';m, m');
i=O

P', , includes all diagrams of types A and C. We
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n g (2/ —1)!!(2n —3 —2l)!! (24)

bad contractions of T, . Now since there are

now find the number of diagrams in'', ~ and in
P', , which will enable us to arrive at an equation
similar to Eqs. (10) and (16).

P, ~: There are"

Thus both H, and yH, (see Fig. 3) have an infinite-
order zero at a.

V. A LINEAR COMBINATION OF SERIES AND ITS
LARGE-PHOTON-NUMBER LIMIT

Let us define the linear combination

(2j+2n -1)!
8j!(2n —1)t (25)

dF,
dy

(34)

diagrams of order j in T, there are

(2j+ y)
(27)

diagrams in n j. .. j t of which belong to type B.
Therefore, there are

(2j + 1)! —(j!)'2'
2jj t

2' j!(2n —1)!
'

n ~ (2l —1)!!(2n —3 —2l)!! (26)

diagrams in P', ~.
P', ,: There are

in other words, 8, is the coefficient of the log-
arithmically divergent part of

d" ~
y - -y~i c-

dy
(36)

In this section it is shown that the jth order term
of S, includes, for large j, all diagrams of type
B and no diagrams of other types.

First it is clear, from Eqs. (2) and (32), that
S, vanishes with an essential singularity at y = n;
note that S, is not identically zero since ydF, /dy
and yH, have a different series representation.
%e now write

diagrams in P', ,
From Eqs. (26) and (28) we get

y
' = g y'j(A;+H, +C,),

dy
(36)

" (j+n —1)j!
=P', ~(q', m, m'), (29)

yH, = g y'h, (A, +C,),

where

2" 'nZ, 0(2l —1)!!(2n —3 —2l)!!
(2 -1)! (30)

where Aj, 8;, and Cj denote the contributions of
diagrams of types A, B, and C, respectively.
The series representation of S, is

j +pg —1
~j+n-1 1 —[(j+n —1}!]'2' '/(2j+2n —1)!

Again multiplying Eq. (29) by y', summing on j,
and letting m, m'-0 with fixed m/m' gives

S, = p y [(j h, )A, +-jB, +(j h, )C,]. -
j= 1

From Eq. (31) we find

j -h, -0 (j-~),
which gives" with Eq. (38)

(38)

(39}

(32)

= Q y' 'h, P', , (q', m, ).m(33)
j= 1

d H =0 (k)0)
dy 3=a

(k =n —2}; H, is the coefficient of the logarith-
mically divergent part of P, , where

P, , (q'; m, y) P, , ( qm2', )-y

jth term of S,- jB, (j-~). (40}

Equation (40) is the main result of this paper. We
conclude from it that the essential singularity of
F, can be located by considering only those dia-
grams in which all internal photons are straight
(see Fig. 2}. There are all together j! such dia-
grams, although not all of them are topologically
distinct.

yh
2

+ y h + ~ ~ ~

FIG. 3. Topologically distinct diagrams in yH&, hj are defined in Eq. |31).
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VI. CONCLUSIONS

It was shown that if F„ the coefficient of the
logarithmically divergent part of the single-
fermion -loop vacuum -polarization diagrams,
vanishes with an infinite-order zero at e, the e
can be located by considering a simple set of dia-
grams. It is enough to calculate (in any gauge
chosen) only those diagrams with a large number
of photons exchanged between the parts of the loop
(Fig. 2). Diagrams with curved photons (self-
energy insertions, vertex corrections, etc.) are
not needed.

A calculation of these diagrams is highly de-
sirable since it will either prove or disprove the
conjectured finiteness of QED, ' and if Adler's
loopwise summation4 holds one may have the extra
bonus of having calculated e.

It is interesting that the set of diagrams consid-
ered is very similar to multiperipheral diagrams,
assumed to be dominant in high-energy scattering.
Such diagrams have in fact been discussed, "how-
ever, only in the limit appropriate for high-energy
two-body fixed -angle scattering.

Note added in Proof. Bad and good contractions
are operations on T, if finite QED is free for
m —0.' We thank R. Roskies for correspondence
regarding this point.
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