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We demonstrate that the arbitrary-spin Bhabha fields with mi»»al electromagnetic coupling are causal in

both the c-number and q-number theories. We first obtain the Klein-Gordon (KG) divisors in closed form in

terms of the elementary symmetric functions. c-number causality is easily demonstrated for half-integer spin
with the Velo-Zwanziger method and for integer spin by using Wightman's suggestion involving the KG
divisors. For the q-number demonstration we set up an indefinite-metric second-quantized forrnal~»sm, and use

the above KG divisors to show causality in closed form for arbitrary spin. In both the c-number and q-
number theories a special handling of the integer-spin subsidiary components is necessary. Our discussion
focuses on the Bhabha indefinite metric and on the connection between the number of derivatives in a theory
and the occurrence or nonoccurrence of causality.

I. INTRODUCTION

In this series of papers'"' we have been investi-
gating the properties of the Bhabha first-order
wave equations for arbitrary spin' '

(s n+x)g=o,

where the Bhabha matrices e„ for representations
up to maximum spin 8 are defined by the equations

[lo'g & 1 &zl=~ 5 i —~.5 u (1.2)

Q (n„—n0= 0, (1 3)

with unity I added by hand for integer-spin repre-
sentations. ' That is, the e„correspond to the J»
generators of the algebra so(5)P"~ It should be
observed that in two papers obscured by World
War II, Lubinski actually preceded Bhabha in in-
vestigating the so(5) Eqs. (1.1)-(1.3). Also, work
by Madhavarao at least partially did the same.
(See Ref. 9 for details. )

As before, our a„matrices will be self-adjoint,
we will use the metric 5„„relating four-vector
quantities x„=(x, iso), p = 1, 2, 3, 4, S ' a =

&~a „, and

e4 will be diagonal with eigenvalues + 8 to -S. For
the volume-element integration in Sec. IV we will
use d'x= dz, dz, dz, Ch, to conform to standard us-
age.

Paper I (Ref. 1) discussed the C, P, and T
transformations of these equations, paper II (Ref.
2) discussed the mass and spin compositions, the
Hamiltonians, and the general Sakata-Taketani re-
ductions of the equations, and in paper IH (Ref. 3)
the Poincarb generators were investigated.

At the end of paper HI (Ref. 3) we reemphasized
a point made by Jauch and Rohrlich' for the Dirac
field Poincarb generators. Given that the uncou-
pled generators satisfy the associated Lie algebra,
they observed that, since the interaction Lagran-

gian ie+PP contains no derivatives, simply by
showing that the commutation relations of the sec-
ond-quantized minimally coupled fields are pre-
served, one has also shown that the interacting
field Poincare generators satisfy the associated
Lie algebra.

In principle this observation should go through
for minimally coupled high-spin fields, such as
the Bhabha field where we have already shown'
that the free Bhabha generators in Eqs. (IH1.5)-
(III1.9) satisfy the associated Lie algebra. How-
ever, in practice deep problems have arisen, es-
sentially from the constraint derivatives inherent
in most high-spin equations. Johnson and Sudar-
shan" focused on the problem by showing that the
spin-& Rarita-Schwinger (RS) field" no longer
obeys the proper equal-time field anticommutation
relation (zero at spacelike points) when it is min-
imally coupled to an external electromagnetic field
using the standard canonically conjugate formal-
ism. Johnson and Sudarshan also demonstrated
the same effect for a mixed spin-& and spin-&
field invented by Bhabha. " However, as has been
emphasized, ' "this field is not one of the fields
we are talking about in this paper, it is another
field. In fact, for the spin-& piece the Lorentz-
group content of this special field is that of the
RS field.

The results of Johnson and Sudarshan were
placed on a new foundation by the important dis-
covery of Velo and Zwanziger' '" that the prob-
lem could be traced even to the c-number theory.
By using the method of characteristics to study
the form of the hyperbolic differential equations
involved, they were able to determine the propa-
gation properties of a number of interacting field
theories. In particular, they found that when min-
imal electromagnetic coupling is introduced into
the RS spin-& and the tensor spin-2 theories, they
become noncausal. That is, the propagation goes

13



BHABHA FIRST-ORDER WAVE EQUATIONS. IV. CAUSALITY. . .

outside the forward light cone, no matter how
small the interaction. The same was found to be
the case for the spin-1 Proca field with electric
quadrupole coupling.

Given this background a large literature has
grown on the causality problem, and we cite a
number of examples. "" These references con-
tain discussions on arbitrary- or multiple-spin
fields, " "as well as on specific spin-1 fields,
spin-& fields, ' ~' and spin-2 fields, "'"among
which there are a few disagreements. "'4 ~ ' We
also specifically refer the reader to the general
discussions of Wightman on causality and other
problems in constructing interacting field theo-

As of yet, no universally accepted demonstra-
tion has been given that there exists an interacting
high-spin (~ ~) field theory devoid of all problems.
In fact one of the motivations of this series of pa-
pers has been to see how devoid of problems the
Bhabha system is. It is the specific purpose of
this paper to demonstrate that noncausality from
minimal electromagnetic interaction is not a prob-
lem it has.

We begin in Sec. II by using the theory of sym-
metric functions, " discussed in the Appendix,
to obtain general closed expressions for the Klein-
Gordon (KG) divisors of arbitrary-spin Bhabha
fields. We will use these closed expressions for
the divisors to help us in both our c-number and
q-number demonstrations of causality.

Section III gives the easier c-number demonstra-
tion. We first review the prescriptions for deter-
mining causality or noncausality given for nonsin-
gular field equation matrices by Velo and Zwan-
ziger""'" and by Wightman, "and then for sin-
gular field equation matrices as discussed by
Wightman~ for Duffin-Kemmer-Petiau (DKP)
fields, based on the work of Hormander. "'" We
then simplify the calculations of Nagpal"' and
others" on causality for the Bhabha c-number
theory with minimal electromagnetic interaction.
Nagpal's first calculation" actually only showed
causality for the half-integer-spin case since he
was assuming a nonsingular n4. To show caus-
ality for the integer-spin case, where a4 is sin-
gular, involves what is a special handling of the
subsidiary components, something that will also
be necessary in the q-number theory. Recently
Nagpal" realized, as we did independently, "that
his previous c-number calculation did not apply
to the integer-spin case because a4 is singular.
He then used a manipulation of the multimass Klein-
Gordon (KG) equation to explain how the integer-
spin c-number fields are causal. " This method
is essentially the method we will use. , i.e., that
discussed by Wightman. ' '" However, our demon-

stration will be simpler, being based on the closed
form for the KG divisors given in Sec. II, and the
properties of the e„matrices we have previously
discussed in this series. We will conclude this
section with calculations on nonminimal coupling,
renormalization, and a method of determining if
there is causality in the case of constant coeffi-
cients. ~

The causality of the minimally coupled spin-&
Bhabha q-number field was first shown by Bai-
sya. '""Nagpal later extended these results by
an iteration method to show how the calculation
goes through for arbitrary half-integer-spin Bha-
bha fields, but he also came to the conclusion that
the integer-spin q-number fields were noncausal. "
However, recently Nagpal' changed his previous
conclusions" about the integer-spin fields being
noncausal and, by case-by-case analyses of the
systems of q-number equations, came to the caus-
ality conclusions we have independently~ arrived
at. The advantage of our method is that we will
use a proper indefinite-metric quantization and
will be able to do the general calculations in sim-
ple closed form for arbitrary spin by using the
theory of symmetric functions' "reviewed in the
Appendix.

In Secs. IV and V we will present our demonstra-
tion that arbitrary-spin Bhabha fields with minimal
electromagnetic coupling are causal in the q-num-
ber theory. Section IV presents the formalism.
In this discussion we mill emphasize a physically
important variation of our method from that of
Baisya and Nagpal. We will perform an indefinite-
metric second quantization with an interaction
Hamiltonian that is metric-(pseudo-)Hermitian
(which, as discussed in Sec. II of paper III,' it
properly should be). We also do this because one
should come squarely face to face with the fact
that there is a built-in indefinite metric""" in the
Bhabha system.

Having presented the formalism, we then demon-
strate in Sec. V that the coupled Heisenberg fields
have the same form as the free auxiliary fields
for the half-integer-spin case, and hence show
that the field anticommutation relations are pre-
served. For the integer-spin case we will show
that although the coupled Heisenberg fields con-
tain new pieces, these new pieces are multiplied
by the projection operators onto the subsidiary
components 8,(S) defined in Eq. (II8.8). Thus, the
physical particle-components fields have their
commutation relations preserved and so are also
causal. (This extra piece is well known to exist
in the DKP case.)

In Sec. VI we will review our results and com-
ment on a number of points. These include the
connection of the extra subsidiary-components
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terms in the integer-spin q-number theory both
to the c-number integer-spin subtlety and also to
the effects of extra derivatives in couplings. We
will also discuss the significance of the indefinite
metric to the physical interpretation and mathe-
matical consistency of the Bhabha theory. In paper
V of this series" we will discuss the indefinite metric
in more detail, and calculate the generalized Foldy-
Wouthuysen transformations for Bhabha fields.

A. Half-integer spin

For the half-integer-spin case the Klein-Gordon
divisors 5)(8, 3= n+ —,}are the solutions to the
equations

D(8, S=n+ —,)A—= S(8, 3=n+ —)(8 o+X)

3+1 /2

= Q [&-x'/(j - l)']
j~l

3+1 /2

A=O

( I )8+1/2 «P«(x2)Stl /2W

X Q3„/, «(l(3„/«t), (2.1)

where the elementary symmetric functions $31/2
of the (S+ 3) quantities

1
(& —3)' (2 2)

are described in the Appendix. For the reasons
given in the next paragraph, we can write the KG
divisors in the form

g~ 2

&(8, S=s+3)= X""[I—(8 o.)/X]
$0

x '&e (2.3)

where the c,&, i» j, remain to be determined.
The factor [1 —(8 n)/X] in Eq. (2.3) comes about

II. I{'LEIN~RDON DIVISORS

The Klein-Gordon divisors for general Bhabha
fields were discussed in principle by Umezawa
and Visconti" (but see Glass" concerning errors
with the Harish-Chandra" "algebra). Special
cases were calculated by Umezawa and Visconti, "
Baisya, '"~ and Nagpal, "who also gave a compli-
cated expression for general integer spin. " In
this section we will derive general, closed-form
expressions for the KG divisors in terms of the
elementary symmetric functions. These explicit
expressions, to our knowledge, have never been
given before. We will discuss the half-integer-
and integer-spin cases separately, and then pro-
ceed in Secs. III and IV to perform the causality
calculations.

because, since

x[1 —(8 ' &)/x]A = [x' —(8 ' &)'] (2.4)

and the right-hand side of Eq. (2.4) is a factor in
the characteristic KG equation for the +„, only
then will one have the proper even powers of g on
the left-hand side of Eq. (2.1). In particular, re-
writing (2.1) as

0-1 /2

g X'3' "[X'—(8 a)']g g' '(8 o.}'/c„

$+1/2
= g (-1}"'"'& (x ) " '4~1/2 «( iStl/2)}

k=O

(2.5)

(2.5)c =(-1) ' 'y... ,(I).
Next taking the X'3 ' term in Eq. (2.5), one has
the equation

Oc„+ (8 'o)«c„—(8'a)'c =(-1)3 '/30/~, /, .,(I),
(2 'I)

which yields the solution

C11 — 00

C,o = (-1) ' 'y3, /3(I).
(2.3)

Similarly proceeding to the p'~~ and p'3 ' terms
yields the solutions

C33 —C33 —Cll —
COO

—( 1) 4 3+1 /3 (l)&i

C33 —C«$ —CQO ( 1) Q$~g/3 $(l),

C3, =C«O= (-1) '
$3,X/3 3(l),

c„=(-1) ' ' P3„/, ,(I),

(2.9}

suggesting that the general solution for the c,&
is

C,/ = (-1)" ' "
P3+~/3, +/(I&3 ~/3&). (2.10)

The solution (2.10) can be demonstrated by induc-
tion. From Eq. (2.9), Eq. (2.10) is true for (i,j)
=0, 1, 2, 3. Now assume that Eq. (2.10) is true for
n=i ~j Then by c.onsidering the case (n+ 1)=i ~j
one finds that Eq. (2.10) still holds for (S ——,)
~ (n+1). Finally, by inspection the solution holds
for the y' term.

Thus, the KG divisors for half-integer-spin
Bhabha fields are

one has just the powers X, X', . . . , X~".
Also, the second sum on the left-hand side of (2.5)

is the sum of all the possible products CI' /(8 a)3/

such that each term of the outside sum has the proper
dimension (mass)'3". Our problem is now reduced
to finding the quantities c,z.

Starting with the X
3" term in Eq. (2.5) one sees

by inspection that
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X)(8, S=n+ s)= X
' 1 — g &* '(8 a)"(- )"'""'(t)~, /s ( j( {s.(/2))s

X
(2.11)

'-i(l)&i(2)& ~ &i (j )=I

ls —= 1/(k ——,')'.
Special cases are

(l((()l((s) l((/))

(2.12a)

(2.12b)

(2.12c)

u(8, S= —,') = -4X 1—(8 a)
X

s ('a} ~ .o+ —,X 1 [(8 a) —„(:{],

(2.13)

(2.14)

~(8 S= —)=-—'X' 1 — (1~ X s[(8 a)2 —35']+ X4[(8.a)4 35(8 a)2 +259[ PD
(8 a) (2.16)

Equation (2.13) is the Dirac equation KG divisor,
only in the Bhabha normalization instead of the
usual y-matrix normalization. Equation (2.14) for
8= 2 agrees with the Baisya"'" and Nagpal" cal-
culations, and Eq. (2.15) agrees" with Nagpal's"
calculation. Also, one can easily demonstrate
that the KG divisors in Eqs. (2.13)-(2.15}satisfy
the original defining equation (2.1).

B. Integer spin

For the integer-spin case the Klein-Gordon di-
visors S(8, S = n) are the solutions to the equations

40= &

4/" (&(s)}=
- i (I )&i(2 )& ~ &i(g)=I

(2.19)

(2.20a)

(((1 ((s) ((i)}

(2.20b)

(2.20c)
5)(8, S = n)A —= K)(8, S = n)(8 a + X}

= II ({:{- x'/'j')
J=I

'(x')' "(-1)""' g (& ) (2.16)

The second form in Eq. (2.18) comes by taking the
characteristic equation (1.3) for a„multiplying it
by (8,)~" and then transforming it to an arbitrary
system, yielding

(2.17)

where now we are dealing with the elementary
symmetric functions (t}~ ~ of the 8 quantities

1g =—
(8'a) +As/ ——0. (2.21)

(2.18a}

—i-0
1- X" " 'QA, / +X '+As/,

/=0 &=0

(2.18b)

The solution proceeds in the same manner as for
the half-integer-spin case, and one finds that

Q
$)(8 S —n) 1 X2(s-()-( () A ij

X jM

The extra factor (8'a), of course, comes from
the subsidiary components (the 0 eigenvalues of

a,), and is not accounted for in the KG operator
of Eq. (2.16). This will cause $(8, 8=n) to yield
extra pieces in the integer-spin Heisenberg inter-
acting fields, as we will see in Sec. V.

Special cases of Eq. (2.18) are

&(8, S=1)=X'[(8 a)(X —8 a)+(&-X')1, (2.22)

&(8, S = 2) = -'X 1 — (X'+ [-6{:{+(8 'a)'])+ ~ X '[4(:j' —6(:{(8' a)'+ (8 ' a)'1
X

(2.23}
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a~ x' ~~, xS(8, 8=3)=—Xs 1 — +—1- [14Cl —(6 ~ a)2]+—1 — [-49CP+140(8 a) —(8'a) ]36 ~ 36 g 36

X+—[36D' —49C32(s a)'+ 140(8 'a) —(6 'a)'].
36 (2.24)

Equation (2.22) is the DKP Klein-Gordon divisor.
The special cases (2.23) and (2.24) agree with the
calculations of Nagpal, "aswell as the q = 0, n = 2, 3
special cases of Wightman's" Eq. (2.35) general-
ized Harish-Chandra" "KG divisors. Again one
can easily demonstrate that the special cases
(2.22}-(2.24) satisfy the defining Eq. (2.16).

0= DetA

qfd5(s, s )-a(p) 30a(p) (S .y2c(g)—8'+pl
g=(I /2g 1)

(3.7)

where the a(j}are the dimensionalities of the j
eigenvalue block of o.„and the dimensionality of
the matrices of an arbitrary Bhabha algebra (8, S) is

A(S, X, 6)4= (S 'a+ X+ S)4=0, (3.1)

III. CAUSALITY OF THE c-NUMBER THEORY

The method used by Velo and Zwanziger"" to
discuss causality in the c-number theory consists
of first writing the wave equation in the form

d, (8, S) = s~(28+ 3)(2S+ 1)

x [(8+1)(8+2) S(S+ 1)]

=-a(0)+ P 2a(j).
g~(i /2, j.)

(3.8)

(3.9)

8)(.
=- ~)t —i'~, p~

=—P ~
—eA (3.3)

the interaction -i'~ enters into the matrix ele-
ments of A only as 8~. Thus, the determinant of
the highest derivatives will have only the highest
products of 8~ without any A.~ involved, so that

DetA(in„ ) =Det(in a) =0. (3.4)

To rule out timelike n~ one can show a contradic-
tion. (At this stage it is an assumption that such
solutions do or do not exist. ) Suppose that a time-
like n~ existed as a solution to Eq. (3.4). Then one
could perform a Lorentz transformation to a
frame where

0 = DetA = Det(in, a,) (3.5)

But then taking the diagonal representation for a4
in the notation of paper II,

a, = block diagonal[88((, (8 —1)8~ „.. . ,

-(8 —1)8 „-88 ], (3.6)

one would have

where 6 is a matrix describing the interaction,
and then solving the determinant equation

DetA(s„-in„, X, 6(&(,-in, ))=0 (3.2)

for n„, where X is that matrix piece of A which
will yield the highest powers of ~~ in the deter-
minant. The n~ are the normals to the character-
istic surfaces, so for the propagation to be causal
one wants solutions of n„ from (3.2) which are nev-
er timelike. This method is applicable if the ma-

A

trix A is nonsingular.
For Bhabha fields, with the minimal substitution

[s-„,6-„]= ieF„„- (3.11)

So, the maximum power of ~„ in E comes from
that piece involving a single commutation relation
of the type (3.11). Since the maximum power of S„
in the half-integer-spin KG divisor (2.11) is (28),
the product of S(S ) with A(S ) will yield a maxi-
mum power of S„of (28+ 1). Therefore, the maxi-

For half-integer-spin representations, there is
no a(0), so (3.7) implies the contradiction n, =0,
ruling out timelike solutions. (The same argu-
ment can be used to rule out spacelike solutions
for the n„. In fact, the solutions are lightlike;
i.e., the propagation is bounded by the light cone. )

Because of the factor 0'"' in Eqs. (3.7) for integer-
spin Bhabha fields (the a„are singular), the above
method is not applicable there. Then one has to
use the method Wightman' '"&' attributed to
Svensson' and discussed in Ref. 50 for Dirac and
DKP fields. This method states that given the KG
divisor, if one can show that

s&(s-, s((((s-( = Q (s- s- s'i('( + ((, (s .(o)
g=(j. /2, Z)

where K is a matrix whose principal part involves
derivatives of order less than those in the KG mul-
timass operator on the right of (3.10); i.e., less
than order (28+ 1) for half-integer spin and less
than order (28) for integer spin, then the fields
are causal whether or not the n„matrices are
singular.

From the general closed forms for the KG di-
visors given in Sec. II, this can easily be shown.

First one realizes that the term K is nonzero
only because the &~ do not commute,
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mum derivative in K will be of order (28 —1), two
orders less than that in the KG operator on the
right of (3.11), implying causality.

For integer-spin fields, one should start with
the form of the KG divisor given in Eq. (2.18b).
Then, in a similar manner, the KG divisor is of
order (28), meaning the product SA will have de-
rivatives of order (28+ 1), so that the maximum

power derivative in the matrix K will be of order
(28 —1). This is one order less than the (28) maxi-
mum power in the KG operator on the right of
(3.10), so one has shown causality for Bhabha
minimally coupled integer- spin fields.

For reference, using the standard notation in-
stead of the Bhabha notation, the Dirac and DKP
explicit results are

~(a- 8= —,')A(a }=(a-~ a m ')—+eF. „[y,.y.]/(4i), (3.12)

g(a-, 8=1}A(a-)=(a- a- m')-+ ' [(a- p)F„„p„p +F,„p„(a- p)p„+aF„„p„p„p„-a-„F„„p„-F„„a-„p„].

(3.13)

Finally we mention a method for investigating
causality which is potentially extremely powerful,
but for now is limited to interaction matrices with
constant coefficients. Wightman" used this method
to show noncausality for certain higher-multipole
interactions in the DKP spin-0 and spin-1 so(5)
representations (1,0) and (1, 1). Specifically,
Wightman found noncausality for the couplings
F„„[P„P„]and G„„[g„,P„]+—,'5„„P P] in the spin-0
case [F„„(G„„)is antisymmetric (symmetric) in

Wv], and noncausality for the electric quadrupole
coupling a„F„„(5+2P P)P~P„t}„in the spin-1 case.
This last agrees with the Velo-Zwanziger" Proca
field result, and lends further interest to the
calculation of Peaslee" that (owing to the higher
order of the algebra and the associated deriva-
tives) the spin-1 DKP current has new dipole and
quadrupole moment divergences in second order
beyond the usual first-order charge and mass re-
normalizations. "" these divergences do not
exist in the DKP spin-0 case, and perhaps em-
phasize the fact that, since [P„,P„] is a spin op-
erator, it would be curious to have such a coupling
for a spin-0 particle, even if it were causal. )

This method"'" states that the principal part
of the determinant of the entire matrix A will test

causality, versus the determinant of the principal
part A, as in Eq. (3.2}. Thus, it is only necessary
that A be nonsingular, even if A is not. The prob-
lem is that this method has so far only been shown
to be a theorem for constant coefficients"'" [6 in
Eq. (3.1) is a matrix of constant coefficients. ]
However, it still has two useful applications for
us. The first comes from observing that if we
were to assume this method is valid for noncon-
stant coefficients, we would, exactly as in Eqs.
(3.2)-(3.9), come to the same conclusion of the
causality of Bhabha fields with minimal interac-
tion. This is a further"" indication that this
method may be able to be shown to hold for non-
constant coefficients, which would be a very im-
portant result, indeed.

The second application is in demonstrating the
difference between the Dirac and DKP cases for
F„„coupling. Assume constant E„„and A„ in p„.
Further, note that since both E„„and A„are con-
stant: (i) They should not be considered to be
mathematically related as in Eq. (3.11) but rather
both taken as fundamental fields; (ii) in taking the
determinant below, all matrix elements commute.
Then we have for Dirac and spin-0 DKP

(3.14a)DetA =Det(ip y+m —~F„„[y„,y„]/4i)

= [(p.)' - (p )' - m']'

+ p(8p, p (E x B)+4[(E p )'+ (B p )'] —2[(p,)'+ (p )'](E'+ B') + 2m'(E' —B'}+(E' —B )'+ 4(E ~ B) }
(3.14b)

DetA " =Det(ip p+m —W,„[p„,p„]/i)

= (-mmmm'[(Po)' —(p~)' —m'+ 8(E2 —B')]

(3.15a)

+ ~'[2p$ '(E x B)+ (E 'p )'+ (B'p )'+ (E B)' —(po)'B' —(p )'E']].
For Dirac the principal part being zero means

(3.15b)
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0 = P(DetAv}

which implies causal solutions for these constant interaction fields. However, for DKP

0 = P(DetAo "~)

= -m(m2(P 2 —pm)+ ««2[2P~ 'E x B+ (E 'p)2+ (B p)2 -P02B2 —p2E2]].,

(3.16)

(3.17}

(3.18)

which implies noncausal propagation for nonzero spin-0 DKP coupling of the form E„„[P„,P„]. For exam-
ple, take B parallel to p. Then Eq. (3.15}means

0= Q,' —p')(1 —«PB'/m'),

which allows noncausal propagation in a frame where

1 = ««B2/m2. (3.19)

This is the same type of mathematical solution that Velo and Zwanziger«7 found in their Eq. (2.17) for
minimally coupled RS fields.

IV. q-NUMBER FORMALISM

In this section we will perform an indefinite-metric second quantization of the Bhabha fields. (For ref-
erence we list a few"'" ~ of the standard works which describe second-quantized formalisms. ) Our
method is similar in procedure to the positive-norm multimass method of Baisya"' and Nagpal, "which
in turn is a generalization of the single-mass techniques of Katayama, ' Takahashi, """and Umezawa. ~ "
(The clear second-quantized calculations of Akhiezer and Berestetskii'0 for minimally coupled Dirac and
DKP fields are also very useful to consult. } Besides properly taking account of the indefinite metric, we
will also discuss the renormalizations involved in interacting second-quantized field theories. Ultimately,
this section is devoted to deriving the critical Eq. (4.53), which will be evaluated in Sec. V to show caus-
ality.

A. Free fields

The second-quantized Bhabha free fields and adjoint fields can be written as

3

P(x) = g J) ~«, [a(p, j, s)u(p, j, s)e'~ *+bt(p, j', s)v(p, j,s)e ««""],«2 r (4.1)

0( )=0'( )&.
3

» «2[at(p, j, s)u(p, j, s)e «~'+ b(p, j, s)v(p, j, s)e«~ "],2') (4.2)

where anticommutation relations

[a, at] =(a, a j=aat+ata (4.4a)

wh re g4 is the adjoint operator defined in Eq.
(I3.47}, and a(p, j, s) and a~gi, j, s) ( b(p, j, s) and
bt(p, j, s)) are the annihilation and creation oper-
ators for particles (antiparticles) of momentum p,
mass state &/j, and spin state s.

The annihilation and creation operators satisfy
the relations

[a(p, j, s), at(p', j', s')],= [b(p, j,s), bt(p', j', s')],
= r««~««&..~'(p —p'), (4.3a)

[a, a],=[b, b],=[a, bt],

(all other relations) ' ' ' = 0,
(4.3b)

are to be used for half-integer-spin fields, and
commutation relations

a, a —= a, a~ =—aa —a a (4.4b)

are to be used for integer-spin fields. (We will
always take the upper sign for half-integer-spin
fields, and the lower sign for integer-spin fields. )
If one accepts the standard arguments about the
connection of spin and statistics, ""along with
the requirement of a positive-definite metric and
energy density, then one desires

v'««, -7'&«, =—5««, (standard requirements) (4.5).
However, because of their indefinite metric, "~
Eq. (4.5) will not hold for the general Bhabha
fields, as we will explicitly show.
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Proceeding with the formalism, Eqs. (4.1)-(4.3)
imply that

" d3[|j.(x), 48(x'}].= Z '

(2,)3 [F'8(» x' p j)
+ F s(x, x', p, j)],

(4.6)
Thus, since

m

x[4'(x x', m)+4 (x x', m)].

(4.16)

F' s(x, x', P, j) —= 7'qq Q u, (P, j,s) (
2

0 ~ h(x —x', X/j) =0, (4.17)

x u&(p, j, s)e'~'* ' ',. (4.7)

F,(x, x', p, j) -=r„g v„(p,j, s)

where

&(x- »', X!j)= n (x x', Xli-)+ n (x x', &-i),

(4.18)

v'ty ——1,

F;8(x, x', p, —,') = ——~,s(ip, g &yelp (x-x')
2/

(4.9)

(4.10)

F-„,(x, x, p, —.') =+ x.,(-ip, 8 = .')e-'&'"—

(4.11)

x .(p, i, s)e *"" '. (4 6)

For the well-known Dirac case (2X= m, 2a, = y„),

then from the form &(&, 8=1) given in Eq. (2.22)
combined with Eq. (4.16) we obtain

[g,(x), gs(x')] " = -ia, s(&, 8=1)4(x-x', m).

(4.19)
In obtaining the results (4.12}and (4.19) for the

Dirac and DKP cases, the crucial signs come out
correctly because of the normalizations for the
quantities

Q u(p, s)y,u(p, s) = Qu (p, s)u(p, s)

with S s(&, 8 = —') given by Eq. (2.13), so that

(g, (x), gs(x')jv = is) s(&-, 8 = —,')[4'(x —x', 2g)

+ d (x —x', 2lt)]

=-im, (&, 8=-.')&(x-x', 2'),
(4.12)

where &(x —x', g/j) is the single-particle invari-
ant 4 function of mass g/j. For the DKP case,"
one ha. s (k=m, o!„=iI„)

=+1

P v(p, s)y,v(p, s) = gv (p, s)v(p, s)

for Dirac, and

u(p) P,u(p) = u (p)q, P, u(pg

=+1

v(p)P. v(p) = v'(I )&,P.v(p}

(4.20)

(4.21)

(4.22)

(4.13)

F'z(x, x', p, 1) = E (ip 'p —m)e'~'* "', (4.14)

F s(x, x', p, 1)= E (ip*p+m)e '~' ~', (4.15)

so that

=-1 (4.23)
for DKP. These signs are due to the general Bha-
bha metric

M=& ~ (4.24)

which, from the defining equations (IA18) for p,
and the characteristic equation (I2.31) for a, with

a, diagonal, has the form

M(8 = n+ —,) = block diagonal[+ 88s, -(8 —1)83 „+(8 —2)8~„.. . , (-1)s ' ~2—,'8+, &„

(-1}s '~'28, g„.. . , -(8 —1)8s „+88s], (4.25)

M(8 =n) =block diagonal[+88s, -(8 —1)8S „+(8 —2)8s~, . . . , (-1)~"8;,08, -(-1)~"8,, . . . , + (8 —1)8s „-88s].
(4.26)

The 8&(8) are the mass state +g/j projection op-
erators and 8O(8) is the subsidiary- components pro-
jection operator discussed in Secs. IIIB and IIIC
of paper II (Ref. 2) and also in Eqs. (5.10)-(5.22)

below. [The matrix M in (4.24) is also the X=4
case of the matrices $„=g~a„(no sum) defined by
Madhavarao, Thiruvenkatachar, and Venkatacha-
liegar. "]
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r~~S,~(ip)

e y2)

+&aS.s (-ip)p .(p, j, ) (p, i, )=
z~e ySJ

(4.28}

(4.29)

, =- ll ("'-„"').

Putting these into Eqs. (4.V) and (4.8}we see that

(4.30)

For half-integer spin, Eq. (4.25) shows that the
particle and antiparticle ground states +}i/8 have
positive norms, the first excited states +}t/(8 —1)
have negative norms, and so on. The simplest
case (8= &) is the Dirac equation which has on-
ly positive-norm states. For integer spin, Eq.
(4.26), there is an extra minus sign. From Eq.
(IA18) this is due to the extra minus sign in 0,
caused by the extra subsidiary-components block
projected by 80.

Thus, for DKP where 8=1, although the particle
state has a positive norm, the antiparticle state
has a negative norm [this being the origin of the
sign difference between Eqs. (4.21}and (4.23)].
The standard resolution of this most simple nega-
tive norm is the Pauli-Weisskopf' device of say-
ing this is a charge probability density instead of
the particle probability density for the Dirac case.
But for S&1, such a resolution is no longer pos-
sible for either integer or half-integer spin, since
the first excited state of a particle necessarily has
the opposite norm, oscillating back and forth with
each further excitation, with an added minus sign
for the antiparticle normalization of integer-spin
particles.

Going back to Eq. (4.3a), we can now see that &g~,

is just the sign of the metric (except for zero in
the integer-spin subsidiary-components block}, or,
as a matrix,

&= sign (M)

=block diagonal[+83, -g~ „+g3.„.. . ,

+83 „+83 „&~]. (4.27)

What Eqs. (4.3a) and (4.27) tell us is that we are
quantizing the Bhabha fields with a metric similar
to the Dirac" indefinite metric used by Gupta, "'"
Bleuler, ' '"' and Heitler' ' for the photon field in
quantum electrodynamics, but without the fortunate
happenstance of quantum electrodynamics that the
negative-normed states are eliminated by a cer-
tain subset of the positive-normed states. At this
stage the negative-normed states remain in the
Bhabha theory, but we can proceed with the gen-
eral quantization.

Returning to Eqs. (4.7) and (4.8), the normaliza-
tion methods of Takahashi" and Baisyai', 22 now
straightforwardly lead to

x (-ie'~" + ie '~'")

4(» —x', g/j)

)(2 k2
&(1/2 1)

k~j

iS -q(s, 8)&3(x —x'), (4.31)

which is to be combined with the other free-field
commutation relations

[g,(x), g (x')],=[/, (x), g (»')], =0 (4.32)

A crucial point to be emphasized is that if we
had not used the indefinite-metric quantization
procedure in Eq. (4.3), then the second equality
in Eq. (4.30) would have had an alternating minus
sign within the sum, i.e., a &&&. Such a propaga-
tor,

v')qb (x —x', g/j)
b,q(»-x' =

(}t2/j2 k2/jP2)
@Ax /2, z)

aug

(4.33}

as we shall see in Sec. V, would not yield causal
fields with minimal coupling. The extra sign is
important.

We note that Baisya"'" and Nagpal (at least at
first") avoided 4~ in another way. They kept the
ordinary positive-normed quantization, but then
considered not the fields g and P, but rather g and

$, $ being

0 -=4&(i), (4.34)

where a(j) was an undefined signed quantity, which
turns out to be our &&&. However, with this method
the Hamiltonian is not metric-(pseudo-)Hermitian.
We prefer to have the Hamiltonian metric-Hermi-
tian and use the indefinite-metric quantization pro-
cedure. We feel this is the correct method. Ob-
serve, however, that in his recent paper" Nagpal
considered the commutators [g(x), P(x'}],without
stating that he had used an indefinite-metric sec-
ond quantization instead of the positive-normed
quantization of his" and Baisya's"" previous
works. Strictly speaking, Nagpal's' use of Eq.
(4.31) is only proper if, unstated, he were using
our indefinite-metric quantization. [Of course he
could still use the fields g and $ with positive-normed
quantization to obtain the invariant function
h~(x —x') and not dt(» —x').] Once 43(x —x') is ob-
tained, though, the calculation proceeds as fol-
laws.

the &&& quantities are all squared, so that Eq. (4.6)
will read

d3p
[Pm ( )9 4( )L OB( ) Q (2 )32E Q(8 )
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B. 1nteracting fields

Having the free-field commutation relations
(4.31) and (4.32), we can now proceed to the in-
teracting-field case. Here we are dealing with
the coupled field equations

One also defines associated auxiliary fields as a
function of a spacelike surface 0,

8„(x,a) =Z,'~'8„(x)„+ d4x'D(x-x') j„(x'),
e' mOO

(4.43)
OA, (x) =+ ie@(X)n„e(x)=- -j„(x),
A(S, X, .)@(x)=(S n+X, ,)@(x)

(4.35)
p(x, o) =Z,'~p(x)„—

~

d'x'S(x —x') j(x'). (4.44)
& moo

= ieA„(x)n „%(x)=j(x)—, (4.36)

lim (a~j (x)~b) = 0, (4.39)

allowing necessary integrals to converge in the
Kallen ' and Yang and Feldman' ' discussion of

the Heisenberg field operators which will follow.
In our case, since both j(x) and j (x) involve no

derivatives and are linear functions. ls of 4(x), it
will turn out that the existence of a ~X+0 will have

no bearing on the resulting final form of the Heis-
enberg field commutation relations for 4'(x).
Therefore we will take

~x=-~X= o,

(4.40)Xb~~= Xob, = X,

j(z) = j(z),
with the knowledge that in our final results Eqs.
(5.12) and (5.20) below, one could resubstitute
j (x) for j(x), etc. , and still obtain the same caus-
al physics.

Continuing with the Kallen- Yang-Feldman pro-
cedure, one defines the Heisenberg photon and
Bhabha fields as

A„(x) = Z~ 8„(x)&,

where A„(x) and @(x) denote the interacting Heisen-
berg photon and Bhabha fields.

Following, as we do in this subsection, the dis-
cussion of Chap. 8 of Ref. 88, X„~,refers to the
fact that with the standard mass renormalization,
Eq. (4.36) with its bare mass should be changed to

A(8, X, ,+6X)4(z) =A(S, X,„)4(x)
= [(&X)4'(x)+ieA„n„@(x)]
-=j(x), (4.37)

where with our simple first-order equation, 6X
= &X. Equation (4.37) (one hopes }allows the relation

(0~ j(x)~one-particle sta.te) =0 (4.38)

to be satisfied so that in turn one can have

In the above, Z, and ~, are the usual charge and
wave-function renormalization constants. The
auxiliary fields 8„(x,o) and g(x, o) are photon and
Bhabha fields which satisfy the free wave equa-
tions and commutation relations, and which be-
come the renormalized in fields as cr- -~. The
propagator Green's functions are

D(x x') =A—(x —x', m =0),

D""'(x-x') =e(x, —x,')D(x-x'),
(4.45)

(4.46)

+ d'x'e'(x, —x', )D'(x —x') j„(z'),
mOO

(4.49}

4(x«) =Z,'"0(x)&.

d'x'6f'(x, —x,')S'(x —x') j(x'),
aOO

(4.50)
where the superscripts o's mean that x is under-
stood to be on o in the a.rgument. [We will now

drop these superscripts since the restriction (x/a)
in the integrands will not affect the rest of the cal-
culation. ] Equations (4.41) and (4.49) trivially im-
ply, as in ordinary Dirac quantum electrodynam-
ics, that

A„(x) =8„(x/o),

so that the photon commutation relations

[A, (x),A„(x')] = i6„+(x x')-
(4.51)

(4.52)

are preserved. Equations (4.42) and (4.50) yield
r~

4(x) = g(x/o)+ d'x'[e(x, —x,'), X)(&,8)]

S(x —z') =B(&, S)A~(x -x'), (4.47)

S""'(x-x')=S(&, g)e(x, —x,')A, (x-x'), (4.48)

where e(x) is the usual unit step function.
Denoting by (x/o) when x is on the surface o,

Eqs. (4.43) and (4.44) yield

8„(x/o) =Z, 'i28„(x)„

r 00

+ d'x'D'""(x —x')j (x')
aOO

(4.41)
xA3(x x )j(x )

4'(x) =Z,' 'P(x),„— d'x'S'""(x -x') j(x').
moo

(4.42)

a oo

= g(x/o) + —,', d'x'[e(x, —x,'), S(&,S)]

"As(z- x') j(x'), (4.53)
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where

s(x) =e(x) —e(-x). (4.54)

Equation (4.53) is the critical one. We want to
show that

4'(x) - (j((x/o) (4.55)

so that the Bhabha free-field commutation rela-
tions (4.31) and (4.32) are preserved, meaning the
Bhabha minimally coupled fields are causal.

V. CAUSALITY OF THE q-NUMBER THEORY

A. Half-integer spin

From Eq. (4.53), the quantity we need to calculate is

Y-=-,'[e(xo —x,'), S)(8, S)]&,(x -x') (5.1)

S-l /2
= g (X, ")g (-1)" ' "(f(s„&o &,g(lis, i~nl)n c(xo —xo), 1 — 0' '(8'a)" g ~ 3

(5.2)

where in (5.2) we have used Eqs. (2.11), (4.30), and (4.31). To evaluate the commutator in (5.2) we recall
the Katayama""~ result

'[e(xo —xo), 8»(, )8»(, ) 8»(r)]~(»- x', m)

~ ~»(n&»(((n1)»(r&
qaQ

cyclic

"I,«')'-
2

[1+(-1)']+[1-(-1)'] " .„. I6'(x-x'),

(5.3)

where n is a timelike unit vector and the super-
script s signifies the space part, i.e.,

n„=(o, o, o, f), (5.4)

8» = 8„+n„(n ~ 8), (5.5}

and cyclic means all interchanges of the type

Since in the commutator of (5.2) 0' ~(8 'a)'~ is
a sum of products of an even number of deriva-
tives, take r to be even in (5.3). The first two
terms in the sum of (5.3) (q =0 and q =1) are zero.
The factor in heavy parentheses of the q = 2 term
is just [-(0—m')], which cancels the factor in

large parentheses in front of the sum. The factor
in heavy parentheses of the q = 3 term is
[-(8 'n)(Q —m )]. In general the q = 2n = (even)
factors in the heavy parentheses are of the form

[(n, 8)nn (~ m&)n]

so that the -I/(0 —m'} is cancelled, the power
series in (m') goes to (m')" ", and the highest
power occurs when 2n = x. The next term, q = 2n+ 1
= (odd), has a factor of the form

(n ~ 8)[(n ~ 8)'" (d m')"], (5.7)

so it has the same powers of (m') a.s Eq. (5.6).
Now consider the second term in the commutator

of (5.2), the one which contains the [-(8 'o. )/lf] in
front of the 2' ~(8 'o()". In the relation (5.3) this
would add to any particular q=2n=(even) heavy
parentheses factor, like (5.6), a fa.ctor of the form
(5.7), and to any q =2n+ 1= (odd) heavy parentheses
factor, like (5.7), a factor of the form (5.6}with
n- (n+ 1). Further, the highest-power term would

be when q = r+ 1 = (odd), so that one would have the
same highest power of (m'), i.e., a, factor like

= [( 8,')" —(~ m')"]
(n a'i

[(n ~ 8)" (~ m')" ']
x

(5.8)

= (O- m') g (-8,')"-'-"

(5.6)

Putting all these factors together means that in
(5.2) the commutator times an individual particle
propagator 4(x, -x', }f/k) can be written as [re-
member, 0 in (5.2) is a derivative to the second

power]
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2 v

e(x —xp), 1 — Ol ~(8 n)2' h(x —x', X/k)= QK(n, a, 8, i,j,n) g (-842) ' "g (-1)"

(5.9)

The matrices K(n, a, 8, i,j, n) can be explicitly determined from (5.2), (5.3), and (5.9). However, except
for one case in Sec. VB, it will not be necessary for us to calculate the K's. All that is necessary for us
is to know that they are not functions of the mass (X/k}. Putting (5.9) into (5.1) gives

3-i /2
Y= Q (X '}Q(-1) ' '

Psv, /2 &vy(l(s„g2i}
jap g=p

n-1 ll 8 2 k2 v

X+K(22 a 8 i '
22)Q (-8 ')" ' vg ( 1)"

vvp vvp vvp Val( 2 h (X2/k2 X2/P)
l~l. /2

lA
(5.10)

Hut the square-bracket terms in (5.10) are just
the homogeneous symmetric functions h, of Eqs.
(A3) and (A4), which here reduce to

since 0 ~ v ~ u ~ n —1- i —1 - S —2. (5.11)

Therefore, Eq. (5.1) for Y is zero, meaning that
the second term on the right in (4.53) is zero.
Thus,

4'(x) = g(x/a), S a half-integer, (5.12)

which in turn yields the desired result that the
field anticommutation relations are preserved for
the minimally coupled half-integer- spin Bhabha
fields, and so they are causal. (The well-known

Dirac field is, of course„a special case of our
result. )

Two final points: If we had not used the indefi-
nite-metric quantization, meaning that instead of
the propagator hs(x -x') we would have had the
propagator Zks(x-x') of (4.33), the term in square
brackets in (5.10}would have had the extra factor

Then the quantities in the square brackets
would not have been the homogeneous symmetric
functions, so (5.12) would not have held, and non-
causality would have ensued. The indefinite met-
ric is necessary for causality. Also, because
(5.12) does hold, our result would have been the
same if we had used the renormalized masses in
the KG divisors and the propagators and also had

A
used the renormalized current j of (4.37) in the
second term on the right-hand side of (4.53).

B. Integer spin

For integer spin Y is of the form

Y= -'[e(», —x,'), 5)(8, S)]a ( — ') (5.13)

$ 8 'ls2(sf) l P( 1)s ivy (g )l ( /) 1 gj g(8 )2$ g ( PX ) (5.14)

where this time Eqs. (2.18), (4, 30), and (4.31) have been used. The discussion proceeds exactly as for
half-integer spin, up to the point where one has obtained

Y= X2&s l& l P(-1)s l+j~ (g
mp

&& Q K(n, a, 8, i, j, 22) p (-8 ') ' "p (-1)" rV g ' 84(x —x').

J~l
l88k

(5.15)
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But now the square brackets contain the homogene-
ous symmetric functions

((x') 't~~

(5.16)
~

~

0 for all 0 - v - u - n —1 ~ i —1 & S —1,

. 1 for v=u=n-1=i —1=8—1,

so that we have one piece remaining in Y,

Thus, (5.19) and (5.20} mean that

Y= -X '8, (S)64(x- x'),

which from (4.53} means that

@(x)= 4(x/o) —9.(S)X ' j(x)

(5.22)

(5.23)

(5.24)

F= X
' Q (-1)~pq(R)s) }K(n,a, 9, S, j, S)

gaP

x ( 1)' '6'(x x') (5.17)

Now we need to evaluate K(n, a, S, S, j, S). Ob-
serving that K(n, a, &, S, j, S) comes from the &0
term in the KG divisor of Eq. (2.18), we use the
second form, Eq. (2.18b), which eliminates the
term in the commutator (5.14) containing the
(-9 'a/X} in front of &~~(S 'a)~. Then using Eq.
(5.3), one can see that

K(n, o., 6, 8, j, S) = (-I}'~(n n)~ ~(n ' a )~

= g(x/o) —)I,(S)X '[fe&,(x)n, 4'(x) ]. (5.25)

It is an informative and simple exercise to ex-
plicitly verify Eq. (5.25) for the cases S= 1 and
8 = 2. One combines the KG divisors for 8 = 1 and
S= 2 given in Eqs. (3.22) and (3.23) with the S =1
and S = 2 invariant functions n~(x —x') of Eq. (4.31),
and then uses the corrected'~'"' special case
commutation formulas for up to four derivatives
of Katayama" and Takahashi" to end up with the
result (5.25) with the correct projection operators
of Eq. (II3.11),

(5.26)

(5.18)

This result obtains because, since [in the notation
of (5.3)] q =r =2S, only (n„)'s and no (s'„}'s are
obtained on the right in (5.3). Of these (n„)'s,
(S —j) pairs of them are dotted into one another
because of the (S —j) powers of 0 in the commuta-
tor. The 2j remaining (n„)'s are dotted into n's
because the remaining original derivatives in the
commutator were.

Thus, putting (5.18) into (5.17) we have

(5.19)

But from (Al) or (2.16) the quantity in the square
brackets of (5.19) can be written as

-=)I,(S). (5.20)

The 8,(S) are exactly the projection operators onto
the subsidiary components for arbitrary integer
spin defined in (II3.8); i.e., they are the general-
izations of the special DKP case operator

What (5.25) tells us is that the commutation re-
lations of the physical particle components of the
fields,

(1 —8,}4'(x)= (1 —8,)g(x/(r), (5.27)

are preserved. That is, the physical fields are
causal. The extra piece in the subsidiary-compo-
nents equation,

)I.(S)+(x) = @.(S)4(x/o) —~.(S)X ' j(x), (5.28)

is the q-number analog of the 0'"' factor obtained
in Eq. (3.7) if one tries to do the c-number prob-
lem for integer spin using the Velo-Zwanziger
method.

These two apparent noncausality problems are
resolved when one realizes that it is only the non-
physical subsidiary components that are involved,
and then handles the calculation accordingly.

Finally, the comments made at the end of Sec.
VA pertain here, too. The calculation needs the
indefinite-metric quantization of Eq. (4.3a) to suc-
ceed. Also, if the renormalized mass X,„,had
been used, Eq. (5.24) would still have been ob-
tained, only with j(x) - j(x}, meaning the same
causal physics for the particle-components fields
would have resulted.

@.(I) -=(I -~), (5.21)

which Sakata and Taketani' ' '" first used for the
8 = 1 DKP system to decouple the particle-compo-
nents fields and Hamiltonian from the subsidiary
components quantities. They have the idempotent
properties necessary for projection operators

VI. DISCUSSION

In this paper we have demonstrated, in a simple
closed form, the causality of both the c-number
and the q-number arbitrary-spin Bhabha fields
with minimal electromagnetic coupling. The c-
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number demonstration was done with the Wight-
man" modification of the Velo-Zwanziger""
method, as this modification allows the integer-
spin subsidiary components to be handled without
further complications in the calculations.

The q-number demonstration was done starting
with an indefinite-metric second-quantization
technique, necessary because the entire Bhabha
system has negative normed states built into it.
Then, with the aid of the symmetric functions to
keep track of the many terms, causality could be
demonstrated in closed form for arbitrary-spin
Bhabha fields. For integer spin there is an extra
piece in the Heisenberg fields which at first glance
can appear to imply noncausality. But this extra
piece turns out to be entirely composed of sub-
sidiary components, so that the physical-particle-
components fields are causal.

In both the c-number and the q-number causality
demonstrations, the subsidiary components re-
quired a slightly special handling. (This, of
course, has been true in the calculations through-
out this series of papers. ) Here the need for spe-
cial handling can be technically traced to the ex-
tra derivative in the integer-spin defining algebra.

For half-integer spin both the KG operator of
(3.1) and the defining Bhahha algebra [see the
characteristic equation (1.3) and its relation to
the entire "half- integer- spin KG equation" (12.35)]
are of order (28+1). This means that the KG di-
visor (3.11) has terms with derivatives up to a,

maximum power of (28) = (odd). This number is
one less than the number of physical mass states.

For integer spin, the KG operator of (2.16) used
to obtain the KG divisor is only of order 28, even
though the defining Bhabha algebra [see (1.3) and
now the entire "integer-spin KG equation" (I2.34)]
is still of order (28+ 1). Thus in the KG divisor
(2.18b) there appear extra nonzero terms with de-
rivatives of maximum order not of (28 —1), but of
order (28) = (even). This number is now equal to
the number of physical mass states. These terms
are the 0 ~(& 'n)2~ in the A, &, and are the terms
which lead to the additional pieces in the subsid-
iary components of the Heisenberg fields. The ef-
fects of the relative extra derivative were limited
here to the subsidiary-components Heisenberg
fields because those were the ones where the ex-
tra derivative came from to begin with [the extra
derivative in (I2.34) vs the KG equation (2.16)].

However, one can thus technically, as well as
physically, see what higher derivatives will do;
they will eventually lead to noncausality. For ex-
ample, one could find in place of Eqs. (5.11) and
(5.16), homogeneous symmetric functions of the
type h,~ 4 (0, 1). Another example is in the stan-
dard discussion" of the RS (Ref. 12) spin--, field,

where noncausality is ultimately due to the im-
position of external constraint conditions which
involve derivatives. " A related example, as we
mentioned in Sec. III, is Wightman's" demonstra-
tion for the DKP 8 = 1 case that [P„,P„]F„„coupling
introduces noncausality in the spin-0 representa-
tion. Here the problem is involved with the order
and eigenvalues of the algebra.

Given all this, it is the minimal derivative na-
ture (first-order wave equation with no external
derivative constraints) and the particular algebra
of the Bhabha system which leads to causality with
minimal electromagnetic interactions.

Thus, so far we have seen that the Bhabha sys-
tem is CPT and Lorentz invariant with a well-de-
fined multimass and multispin spectrum, and is
causal with minimal electromagnetic interaction.
However, at this point, as was discussed around
Eq. (4.24), one has an indefinite metric. Since
(for convenience in our representation of the o.,
matrices) the different normed states are coupled
by o matrices, this metric implies that the stan-
dard quantum-mechanical probability (or charge)
density interpretation is in doubt, for in principle
unitarity can be violated by a nonconservation of
probability (or charge). This is despite the con-
served-current condition

S„j,= s„[zero.'„Q]= 0, (6 1)

which trivially follows from the free-field and ad-
joint-field equations (12.24) and (12.45).

We will discuss this further in paper V, where
we will concentrate on the indefinite metric and
its meaning, as well as its relation to generalized
Foldy-Wouthuysen transformations"' " for vari-
ous-spin fields, "4 "' and the Bhabha system in
particular.
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For a) 0, these functions equal the "homoge-
neous symmetric functions" hi, i

of Littlewood, "
so we call the entire set (A3) and (A4} this name.
(Louck and Biedenharn~ denote these h, by P„a
notation we avoid, so as not to confuse them with
the DKP matrices P1.)

The result quoted in Eq. (4.31) for the form of
the multimass invariant b, function comes from
considering a special case of Eqs. (A3) and (A4),

h „, (y(, )) =0

n+1

(As)

APPENDIX: SYMMETRIC FUNCTIONS

(Al)

(A2a)

y,m(x). ))

The elementary symmetric functions (t&„(x)„)}of
the n quantities xj are well known. "~ They can
be obtained from the product formula

n n

0=II(A —x) =-gA'(-1)
j-"1 k=0

and thus are given by

go=1,

Separate the (n+ 1)st term in the sum, to give

j&k

Now let y„„=-p' and y&2„„-—X2/j2, and you have

ho=1,

h, =p„
h2 =h, P, —h(&(t&2,

(A4)

n 1

Ix((»x;(2& "x;(,&1 .
f(i)&f(2)&".&a(r)=x

That is, the function (t&„"is the sum of the ("„)

products of r different quantities" x;."
We also deal with the functions h„where a can

be a positive or negative integer, or zero. These
functions are defined by

h, „„(y(„))= P (A3)
~1 II(y -y.)k j

jAk

and have the properties"
h ),i—- 0,

1
Q

1

69'+ x'/i') "-' 9 '+ x'/k') fI(x'/k' —x'ii ')
j&k

(Ai)

But (p2+ X'/k'} ' is just the momentum-space rep-
resentation of the standard invariant (X(x- x', X/k)
function for a single mass x/k, and the left-hand
side of Eq. (AV) is the momentum-space represen-
tation of the multimass invariant 4 function.
Thus, integrating around the appropriate contour"
yields the desired expression for 62(x-x') in Eq.
(4.31),

( ) g (X(x —x', x/k)

2=(1/2, 1& II (x /k —x /J )
j=(j./2, 1)

j&k

(AS)
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