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An expansion of the type
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is derived, where x;=[1,c;] are labels for infinite-dimensional symmetric tensor repre-
sentations of the Euclidean conformal group O'@2% +1, 1), X;=[1, —¢c;], the constants C (x;)
are real, and Qy and wy have the properties of vacuum expectation values of field products.
The starting point is an infinite set of coupled nonlinear integral equations for Euclidean
Green’s functions in 2k space-time dimensions of the type written some 15 years ago by
Fradkin and Symanzik. The Green’s functions of the corresponding Gell-Mann—Low limit
theory are expanded in conformal partial waves. The dynamical equations imply the exis-
tence of poles and factorization of residues in the partial waves as functions of the repre-
sentation parameters. In proving the validity of the expansion we use some differential
relations between partially equivalent exceptional representations of Ot 2k +1,1),
established in an earlier paper. This work completes the group-theoretical deriva-

tion of the vacuum operator-product expansion undertaken by Mack in 1973.

INTRODUCTION

An effort was made in the last few years to ex-
ploit the conformal invariance of the Gell-Mann—
Low limit theory for some Yukawa-type interac-
tions in order to obtain nonperturbative informa-
tion for Green’s functions and operator products
at short distances (see, e.g., Refs. 1-19). In par-
ticular, Mack!® showed for a model of a self-in-
teracting scalar field that the conformal partial-
wave expansion of Euclidean Green’s functions
allows one to diagonalize and solve the set of re-

normalized dynamical equations®’:2* for that model.

It was noted™°:1° that the so-called bootstrap eq-
uations for the 3-point functions imply the exis-
tence of real poles in the conformal partial waves
as functions of the dimension. The remaining in-
tegral equations of the model lead to some factor-
ization properties for the residues at these poles.!®
The aim of the present paper is to derive a dis-
crete expansion for Euclidean Green’s functions
and Wightman functions which corresponds to a
vacuum operator-product expansion in the term-
inology of Ref. 17 [i.e., an expansion of the vector

13

distribution ¢(x,)¢(x,)|0)]. The derivation is based
on the above results on conformal partial-wave
analysis and on our previous study*! of the Clebsch-
Gordan expansion for the pseudo-orthogonal group.
This approach always involves a conjecture about
the analyticity (and the asymptotic behavior) of
conformal partial waves, which is partly justified
by the analysis of the skeleton diagram expansion.?
The identities among Clebsch-Gordan kernels at
exceptional integer points in the representation
space, which were derived in Ref. 11, are crucial
for cancelling fake singularities coming from ki-
nematical factors (Sec. IIB3). As a by-product

we verify a positivity condition for the 4-point
Wightman function, which was established in a
different manner in Ref. 13.

We attempt to make the exposition reasonably
self-contained and review (chiefly in Sec.1) a num-
ber of results of Refs. 10 and 11. This introduc-
tory material also contains some new points: One
example is the discussion of the (¢*¢)? model in
Secs. IA4 and IIA1. We mention also the explicit
expression for a general “basic field” which enters
the operator-product expansion of a pair of free

887
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fields (Sec. IIA 3). The main new results are con-
tained in Sec. II B (and the related Appendix B).
We would like to stress the role of recently esta-
blished relations between partially equivalent rep-
resentations of the Euclidean conformal group**® **(®
in the derivation of the vacuum expansion. Sec.
IIC contains a discussion—but no ultimate solu-
tion—of the rather difficult problem of incorpora-
ting crossing symmetry in the present scheme. It
closes by a general summary of results (Sec. II C
3).

I. DYNAMICAL EQUATIONS AND CONFORMAL PARTIAL-
WAVE EXPANSION FOR EUCLIDEAN GREEN’S FUNCTIONS

A. Renormalizable models of self-interacting scalar fields

1. A six-dimensional model. Euclidean Green’s functions.
Generating functionals

The simplest model of a renormalizable self-
interacting field ¢(x) is given by the interaction
Lagrangian L,(x) = - (g/3!): ¢3(x): in six space-
time dimensions. Although this model is un-
realistic (since the corresponding classical
Hamiltonian is not positive definite) it can

J

(and does) serve as a testing ground for various
quantum field-theoretic techniques (apart from its
role in the work®':'° which we are going to review,
it presents the simplest example of a theory with
asymptotic freedom—see, e.g., Ref. 22). We shall
indicate at the end of this section how one might
modify the model, in order to eliminate its obvious
deficiency.

Having in mind models in different numbers of
dimensions, we shall work in a general frame-
work of 2k-dimensional space-time (22=2,3,4,...).

In what follows we shall mostly deal with Eucli-
dean Green’s functions (also called Schwinger func-
tions; cf. Ref. 23):

X0, =T(l0.X,,...,i0,X,), (1.1)

where 7(x,,. .., %) =(To(x)* ** o(x,)), (¢ is the
interacting Heisenberg field).

One can define connected, one-particle irreduci-
ble (1PI), etc., Green’s functions without recourse
to perturbation theory. The most compact way to
do that is in terms of generating functionals (see,
e.g., Refs. 21 and 24).

Let J(x) be s scalar external source and let $(J)
be the generating functional for the s functions

s(X0,,...

8(J)=1+Z:-1:‘—!f---fdxlﬂ-dx,,s(xl,...,x,,)J(xl)--'J(x,,)

s<exp[ f J(x)qb(;nr)dx:])J (dx =d?*x) (1.2)
[¢(x) is by definition the Euclidean field]. The generating functional §(J) of the connected (Euclidean)
Green’s functions G(x,, ... ,x,) is defined by
8(J)=e5¢), (1.3)
The source J(x) is associated with a classical (Euclidean) field ¢,(x) by
=98 _o-1p_08
o.(x) = 573 $-1(J) 570" (1.4)

The generating functional for the 1PI Green’s functions (or proper vertex functions) I'(x,,. ..

by the Legendre transformation®*

T(¢) =8(J) — f dx J (%) (x)

,%,) is given

=i:71!-f---fdxl---dx,,l"(xl,...,x")tpc(xl)"'(pc(xn). (1.5)

To obtain the right-hand side of (1.5) we express J(x) in terms of ¢,(x) from (1.4).

2. Graphical notation. 1PIand 2PI kernels

In order to write down the (renormalized) equations for the model under consideration we shall need
some additional auxiliary notions (cf. Refs. 20, 21, 10, and 18).
We introduce the amputated (connected) Green’s functions

VICHURRPAEY [RTEY [ TR e R PR CAR R IO RETER (1.6)
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G(Xqeeexy) = é:é 6(xq9%p) = é =I
-

A(xqeeexy) = é G—"(xq,xe) = ¢ =‘
(b)

M(xqe0ex) éﬁé
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1 2 1
Api(RqXpi%zee0xy) = %}éﬂi = éﬁ -
3l.\n 3l.
E(x,lxz;x;.x“) =
3/ \u

FIG. 1. Graphical notation for the connected Green’s
function G, the amputated amplitude A, the proper ver-
tex function T', the 1PI-amplitude A ;p;, the BS kernel
B.

where

G™*G(x;, — x,) = f dx G~ (x, — x)G(x — x,) =6(x, = x).
1.7
[We use alternately the notation G(x,, x,) and

G(x, - x,) for the 2-point function; that is legiti-
mate, because of translation invariance.] We have

A(xy, %,) = =T (x;, %)
=G (xy, %),

(1.8)
A(xy, %, %) =T (%, %5, %)

We shall use the graphical notation of Figs. 1(a)—
1(c) for G, A, and I'. The 1PI amplitude for the
channel 12~ 3+++ % (n>4) is defined by

AlPI (xuxz;xsy' . ,x,,)

=A(xy,...,%,)

- f dy, f dyzA(xuxz’y1)G(y1’y2)A(y2, X3yeo o xn))
(1.9)

or graphically by Fig. 1(d).

We define the Bethe-Salpeter (BS) kernel [ see
Fig. 1(e)] as the solution of the (integral) BS equa-
tion in Fig. 2(a). (The factor % in the right-hand
side is necessary because of the symmetry of the
theory of a single neutral scalar field.) Finally,
we introduce the 2-particle irreducible (2PI) ker-
nel for the channel 12— 3+ -+ » (#>5) by induction
in n as shown in Figs. 2(b) and 2(c). The first sum
in the right-hand side of the Equation in Fig. 2(c)
[and in Fig. 2(b)] includes all 2"~3 -1 partitions of
the set of external lines 3 -+ * » into two nonempty
subsets. The second sum involves all splittings
of these lines into 2 nonempty subsets (k=3,...,
n-3).

éiéﬂ - ‘3 ?
>,
(a) 1 2 1 2
1,2 1 2
Azp‘(quz;x3x4x5) = §§ZPI = %ﬂ’l-; ? _Z e
P, 570\

FIG. 2. The BS equation and the 2-particle irreducible kernel for the channel 12— 3+ -n.
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FIG. 3. The dynamical equations for the Green’s
functions. [ External lines are attached to the BS kernel
in the right-hand side of (d).]

3 Dynamical equations. Stress-energy tensor, Ward identities

The dynamical equations can be written either
in terms of the connected Green’s functions G (cf.
Refs. 21 and 10) or in terms of the proper vertex

J

2
Vs)‘G)\p(xu Xp %) =¢Z‘: [o(x

V;‘qu(xl, Xy %g) =i[ 6(x5— xi)viuc_l(% - %) +(1+a)G™ (x, - xz)Viué(xa - x;)]
=

The last (Schwinger) term can be eliminated by
multiplying both sides of each of the equations
(1.11) by (x, - x,), (v# ) and integrating over x,.
After antisymmetrization in (u,v) we find

f dx V)‘Gx[u(xl, %55 %) (%, — x),,] =- X“,,G(x1 - %,),
(1.12a)

f dx VT Atul¥s Xo3 X) () = %)= X, G™Hwy = x),
(1.12b)

where X, is the rotation generator (1.10). This

5= %)V;,G(x, = %) — aG(x, - %)V,,6(x;— x,)],
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functions (cf. Refs. 20 and 18), the two forms be-
ing equivalent. We shall adopt here the latter
form, writing, however, the equation for the 2-
point function inva way suggested in Refs. 6 and 10.

In the Gell-Mann-Low limit (in which the renor-
malization constant Z, =0—see Ref. 25) the dynam-
ical equations for the vertex functions have the
form shown in Fig. 3. In Figs. 3(c) and 3(d) we
have used the notation

wa(x) =(x, Y, — %, v,) f(x). (1.10)

Note that the equation in Fig. 3(c) is equivalent to
that in Fig. 3(d).

The bootstrap form of the equations in Figs.
3(b)-3(d) is peculiar to the Gell-Mann-Low limit
theory. In general (away from that limit), there
is an inhomogeneous term in the right-hand side of
the equation in Fig. 3(b) and all three equations
require subtractions in momentum space or multi-
plication by (x, - x,), in coordinate space. Masses
and coupling constants appear in such an approach
as initial conditions (cf. Ref. 10).

It is convenient to use an alternative form of the
equations in Figs. 3(c) and 3(d) involving the stress-
energy tensor ©,,(x) (see Ref. 6). Let G,,(x;, x,; %)
be the Euclidean region continuation of {(T¢(x,)¢(x,)
x0,,(x,)), and let

Fuv(xlx Xy %) = f dy, f G (2, =3) G H(x, — 3)

X Guu(yl 2325 X3)

be the corresponding vertex function. It is as-
sumed the G, and T, satisfy the following (equiva-
lent between each other) Ward-Takahashi identi-
ties:

(1.11a)

(1.11b)

form of the identity has the advantage of being in-
dependent of the arbitrary constant a.

The set of equations in Fig. 3 is equivalent to the
set obtained when Figs. 3(c) and 3(d) are replaced
by Figs. 4(a) and 4(b) and the Ward identity (1.11)
or (1.12) is assumed to hold. As a consequence we
obtain an infinite set of additional integral equa-
tions for the (n+1)-point functions T’ (xy, . . . , X,3 %)
displayed in Fig. 4(c). They also satisfy Ward
identities of the type (1.11). To be consistent with
the scale invariance of the Gell-Mann-Low limit
theory, we have to require that ©, is traceless,
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so that

T, %3 0) =0=G(x, . . ., Xp5 %),

(1.13)
n=2,3,....

4. A more realistic model

Although the above dynamical equations are de-
rived from a renormalizable Lagrangian in six
space~time dimensions, their final form displayed
in Figs. 3 and 4 and in Eqgs. (1.11) and (1.12) makes
sense for an arbitrary number 2k of dimensions.

Here we shall indicate how one can fit the more
realistic model of a charged (pseudo) scalar field
with a quartic interaction in four space-time di-
mensions,

L(p(x), p*(x))=:V,0*VHop: —%: (p*@)%, (1.14)

into the above framework.

The clue lies in the observation (made, e.g., by
Symanzik) that the model given by (1.14) can equi-
valently be described by the Lagrangian
L), p*(x); B(x))=:V,0*V*p: +3: B*: = VX : 9*@B:

(1.15)
of a system of two fields, ¢ and B, with a cubic

interaction. Indeed, varying £(¢, ¢*; B) with re-
spect to B, we find the algebraic “equation of mo-

O
Q.

r/'“,(xq,x2;x3) = =3 [l
1 2

(a)
G/“(x,],x2;x3) = =

(b)

-2
2P (n33)
1/1An
AhAn
(e)

FIG. 4. Dynamical equations for Green’s functions
involving the stress-energy tensor.

tion” B=vX : o*¢: which reduces (1.15) to (1.14).
In a canonical perturbation theory the propagator
corresponding to the field B would be a 6§ function.
On the other hand, the topological structure of
Feynman diagrams in this model is the same as in
a theory with Yukawa coupling of a charged field ¢
and a neutral scalar field B (which will be repre-
sented graphically by a dashed line).

Without going into the details of the Green’s
function formulation of this model, we notice that
it will involve (a priori) four types of vertex func-
tions shown in Fig. 5. The bootstrap equation for
the charged propagator canbe equivalently obtained®
from the corresponding equation for the current-
field 3-point function

(To(x) 9* (%)4 (x50 o = Gy, %5 X3), (1.16)

which satisfies the Ward identity
VAG,(%,, %55 %9) = eG(x; = %,)[ 8(x; = x3) = 6(x, = x3)]
(1.17)
[ e being the electric charge carried by ¢*(x)].

B. Invariance and invariant solutions of the dynamical equations.
Conformal expansions.

1. Euclidean conformal invariance of the equations
As already noted, all equations of Sec. I A only
relate Green’s functions among themselves. They

involve no parameters (in particular, no dimen-
sional parameters) and are manifestly scale in-

= g,‘V(x,‘,—c 3Xps=C ;XB’-CB)

:(}--

(a)

]
]
Q = SOV(X»] a'CB;xzs'cB;x37'cB)

(v

(c)

= G/(3>(X1 ,x2;x5)

O~
o-

(a)

FIG. 5. The Green’s functions of the (¢, ¢*,B) model.
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variant. Indeed, if we ascribe to the field ¢ in 2k
dimensions a scale dimension d, =k +c (c real),
then the Green’s functions G and I" would have the
following transformation properties under dila-
tion:

G(xy,. -, %) ~p"™9G(px,,...,px,), (1.18a)
T(%,...,%)~p"*9T(px,,...,px,) p>0;
(1.18b)

in particular,
G (%, = %) ==T'(%,, ;) = p2 PG px, - px,).
(1.18¢)

(The canonical dimension for a spinless field ¢ is
obtained for ¢=-1.) The equation in Fig. 3 are
obviously invariant under the substitution (1.18),
The Ward identities (1.11) and (1.17) imply that the
scale dimensions of the stress-energy tensor ©,
and of the conserved current j, are

do=2h, d,=2h-1, (1.19)

respectively. The dimension dy of the field B in
the model, considered in Sec. IA 4, canbeascribed
independently.

It turns out that the dynamical equations are in-
variant under the Euclidean conformal group
02~ +1,1) which can be generated by (Euclidean)
Poincaré transformations, dilations, and the con-
formal inversion.

Rx=- ;’% (K2 =22+ 20 c +3,,7). (1.20)
The transformation law of Green’s functions under
the inversion (1.20) is summarized by the follow-
ing rules for Euclidean fields:

UR)p(x)UR)™ = (x)~*° ¢(Rx), (1.21a)
U(R\J“(x) UR)-*= (xz)"z""lrm,(x)Ju(Rx), (1.21b)

U(R)®,,(x) UR)™" = (x2) 2271 (%) 7,1 (%) 1,1 (),

(1.21¢)
where
7,,(%) = x°V,(Rx), = %ﬁé‘m -0, (1.22)

The so-called special conformal transformations
are given by a translation, sandwiched between
two inversions. The R invariance of the dynamical
equations follows from the covariance law for the
volume element

dRx = (x%)-2" det(r,)dx

=(x2)"2hdy . (1.23)

2. Conformal-invariant 2- and 3-point functions

We shall study in the rest of the paper confor-
mal-invariant solutions of the dynamical equations
for the models described in Sec. IA. If the Gell-
Mann-Low limit is ultraviolet stable (as is usually
assumed in this approach) then the conformal-in-
variant solution would provide the small-distance
behavior of Green’s functions in a more realistic
theory with positive-mass particles.

The invariance property of the solution allows
one to determine the 2- and 3-point functions up
to a constant factor without actually solving the
equations. Before writing down the corresponding
expressions, we shall make a remark about the
freedom in the choice of normalization.

In a canonical field theory the field operators
are normalized in such a way that the residue in
the pole of the 2-point function is one. In a scale-
invariant theory with anomalous dimensions the
2-point function has no pole and there is no unique
choice of field normalization. A multiplicative
change ¢(x) - k@(x) in the field [where k =k(c) is
some function of the dimension] leads to the follow-
ing transformation law for Green’s functions:

G(xy,. ..y %)= K"G(xy,. . ., x,),

T(xyyee s %) =K T (xy,.. . ,4,), (1.24)

Gulx,. .. s X3 X)-

[The normalization of €, is fixed by the Ward
identity (1.11).] Thus we can choose the normali-
zation of the 2-point function of ¢ (and B) accord-
ing to convenience; only the relative normalization
of the 2- and 3-point functions will have a physical
significance.

We shall choose the normalized invariant 2-point
function for a fundamental field ¢ to be

> X3 X) = K"G (%, . . .

G(x, - xz) =(2m)~* Llc+h) ('—2—

htc
T(-0) x122> sy X2 =X — Xp.
(1.25)

With this normalization the Fourier transform of
Gis

6(p)= [ e =G(ax=Gp7r, (1.26)
so that the inverse Green’s function G™*(x,,) is ob-
tained from (2.8) by changing the sign of ¢c. We

shall say that the field ¢ is fundamental if its di-
mension parameter c =c, satisfies the inequalities

(1.27)

For a fundamental field ¢ the 2-point function G
corresponds to a positive-definite Wightman func-
tion

-1<¢,<0.
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w(P) = - 16(?0)[6(.5, - ipo+0) - G(-IS; - ipo = 0)]
= - 26,(p) sinrc($p,)°, (1.28)

where 6, (p) =0(p))0(p,°), by’ =S — (The sub-
script M stands for real Minkowski-space vectors
and scalar products.) If we multiply ¢ by «(c)
=[2°T(- ¢)]*/? we will obtain a positive-definite
Wightman function for all ¢ >~ 1 which coincides
with the 2-point function of a free zero-mass field
for c=-1.

We shall also need in what follows the confor-
mal-invariant 2-point function of an arbitrary
rank-]/ symmetric traceless tensor field
Oy, . .y, (%) of dimension & +c, c=c(l). We shall
use the notation

x=[1c] (1.29)

of Ref. 11 for the corresponding elementary repre-
sentation of the Euclidean conformal group. In or-
der to write down the 2-point function of the field
Ou G shall use the homogeneous polynomial
formahsm (cf. Refs. 11, 26, and 27) in which
every symmetric traceless tensor Su,- - is re-
placed by the generating polynomial

f@=f,.. T PR

on the complex light cone K,,={z&c?*; 2=z,
+o0 o4 2,,2=0}

The convolution of a rank-1 tensor f and a rank-%
tensor g is given by

(k- l)
Rl(h+k-

'U,

(f*2)e) = ), f(D)g(z),

where

(@);=T(a+s)/T(a).

D,=(h—1+2+28)3, 32,4, <8"='z%’ AZ=E‘BHZ>
(1.30a)

i1
is an interior differentiation on the cone K,,, such

J

I (p)II*’(p) =

i; ms(p) =1,

(p+D,)'=*1*(p;2,,D,) =0,
Pz (p ;anz)p *D,=a(l, s)pPIIitLs (p;2,,D,),

1
N-1),

@+ 1) 2r+1-1)"%p-D 1" (p;2,,D,)p 2,=a(l,s)p?N*(p;z,,D,)

r

(if both sides are applied to a homogeneous poly-
nomial of z, of degree [), where

(I-s+1)(2r+1+5-2)

all,8) =" D eh+21-2)

(1.37¢)

y ' (p52, DY (p327, D) =85y 11'(1),

that

[D“,zu]=(h—1+z-8)6w+2w,, Z,=2,8,-2,0,,
(1.30b)

D2=DMD”=0 (=22). (1.30¢)

We shall use the following normalized 2-point
function for the field Oul. . “l(see Ref. 11):

Gx(xu;Zuzz)

) (7;(")),. < xi,z )Mc [= 21,7 (%2)2,, 1, (1.31)

where rw(x) is given by (1.22) and
_T(h+c+)T(r-c-1)
"X) = R CThl-c-1)
(see Ref. 28). With this normalization the momen-

tum-space 2-point function can be written in the
form™!

(1.32)

Gy (1) = (4p7)° ﬁ; 0, (O (5), (1.332)
where
**(p; z, D)
__(s+h- 1),_ pzpD sra .
(2h+28 2)1 s( )(2 P > I (p,z,D),
(1.33b)
1°%(p ;z, D)
_SIr=1),( ,0°2p D\ 4 sy _ p%z+D
(2h-3)2.1< 2 )C’ (1 p-zp-D>

are the SO(2 - 1), projection operators, C% is the
Gegenbauer polynomial, and

R+c-1)

a c)=r—v

T (h-c-1),

The projection operators I1'*(p) are characterized
by the following algebraic properties:

(1.34)

(1.35a)
(1.35Db)
(1.36)

(1.37a)
(1.3)

It follows from (1.33)-(1.35) that the inverse 2-
point function is given by

Gy (xy,) = Gy(x,;) where x=[1,-c] (1.38)
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(for x=[1,¢]).

In order to be able to handle the most general
situation (including the model described in Sec. I
A 4) we shall write down the 3-point functions for
three different spinless fields with dimension pa-
rameters c,, c,, and c;. They are

G(xuxz’xs)=gv(x1;Cx;xzycz;xs’ca), (1.39a)

T(xy, %5, %5) =g V(%,, - C15 %5y = C3 X3, = C3),

(1.39p)
where the function V can be associated with an “in-
fraparticle” triangular diagram (see Refs. 1 and 2)
with scale-invariant propagators (3x;,2)~%*. The
parameters d;, satisfy the conservation of dimen-
sion law in each vertex of the diagram:

dyptdp=d,=h+c,,
(¢,4, k) =permutation(1,2,3) (1.40)
[ cf. Eq. (1.42) below].
We shall also need the 3-point functions for two
scalar (or pseudoscalar) fields of dimension pa-
rameters c, and c,, and a rank-/ tensor field

O(x,z) of dimension k+¢. According to Refs. 8
and 11 they are given by

Gy, %p5 X3,2) =&, V(%y, €15 %, 23 X5, 2, X), (1.41a)

T(xy, %25 %3,2) =8, V(x,, = €15 %, — C25%3,2,X),

where

V(x].’ cl;x2’ cZ;xS? z’ x)

N, 2 =Sy tcy 2 5x+c_< 2 )vsx—c_
= = —_— 1
(2”)h< x122> < %3 ) Xp5” (),

(1.42a)
ci=z(c1x ¢y), 0,=3(h+c—-1), (1.42b)
2
A=v31ni’235=2<i‘1%-ﬁ%%). (1.43)
X13 X13 X23

(We do not consider amputation of the external
line associated with the tensor field 0.) The nor-
malization factor N,=N,(c.,c_;c) is restricted by
the symmetry conditions

V(xl)(n X5Xz2»> X3Xs) = V(xi)ﬁ s XX j» kak) ’ (1.44)
where (i, j, k) is any permutation of the indices
1,2, 3, and

V(%,X15 %2X25 X9 = f AxV(%,X15 %Xz, st)Gis(x_ %g).
(1.45)

It will be determined in Sec. IB 4 by adding an or-
thonormalization property of the V’s.

The 3-point function of the stress-energy tensor
involves no such normalization arbitrariness, be-
cause of the Ward identity (1.11). We have G(x,x,;

(1.41b) %3,2) =0 for ¢, # c, and
)
. _T(r+1) Tk+c+l) [ 2 \°* A=t
O %50 2) =5 Gn @ - DT (= ) x) <x132x232> @) (- 46)

T(h-1) Th+c+l) < 2 >C+1[(2-V1)2— 2

" 2(2m)* (2h-1)I(-¢)

3
X12

R A YTR A PR A [ N
7— 1% V)BT Ve)+ 20V, }(xlszx%z)
(1.46b)
for ¢, =c¢,=c.

With this G the coefficient to the Schwinger term in (1.11) is a= - (c +k)/2k. In verifying (1.11) we have used

the relations

(2r-1)"Y(D- Va)l:(z * V1)2 - —hz__il (2:V )z V,)+(z* V2)2i|f(x13; Xz5)

h+1 h+1
=—[V12<Z’V1—mZ'V2>+V22<Z'V2 _h_tiz'V1>Jf(x13;x23),

- %(277)-"1-‘(}1 - 1)V12(2x1-32 A=l 8(x;4).

3. Skeleton diagram expansion

Having constructed the physical propagator and
(3-point) vertex function one can expand the 7-
point functions I'(x,,...,x,) (n>4) in terms of
skeleton diagrams.?® It is important to know for
the self-consistency of conformal invariance that
the skeleton diagrams, as well as the graphs en-

r
countered in the bootstrap equations in Figs. 3(b),
4(a), and 4(b), have no ultraviolet (or momentum-
independent infrared) divergences. Indeed, such
divergences would have destroyed even the scale
invariance of the Green’s functions. It was demon-
strated in Ref. 2 that for a certain range of the
parameters ¢ the boson-fermion Yukawa interac-
tion in 4 dimensions is divergence-free (for the
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Gell-Mann-Low limit theory under consideration).
The analysis of Ref. 2 is trivially extended to the
2h-dimensional models considered in Sec. 1A.
For the simplest ¢® model the most stringent re-
striction on the scaling parameter c=c, comes
from the requirement that the 3-point functions
G(x;, x,, x5) and I'(x,, x,, x,) are both given by ordi-
nary convergent integrals in momentum space.
That leads to

-3h<c<sh. (1.47)
The 3-point function G, [see (1.46)] can be ex-
pressed in terms of a convergent p-space integral
if ¢<0, i.e., if the field is fundamental [see (1.27)].
However, it can be continued analytically in ¢>0
to cover the range (1.47), only the point ¢ =0 being
excluded.

Coming to the more realistic model envisaged in
Sec. IA 4 we see that the existence of the 3-point
functions in Figs. 5(a) and 5(b) (complete and am-
putated on either leg) as convergent integrals in
momentum space gives

2|c,|+|cgl<h (1.48)

and

~Lh<cy<ih, (1.49)

respectively. The convergence condition for the
skeleton diagram of the ¢¢-scattering amplitude
with a two-B-line exchange leads to

—£<cq,< (1.50)

2 2"
Assuming that ¢ is a fundamental field while B is
a composite one so that ¢, <0, cz>0, we end up
with the following complete set of inequalities

-3h<c,<0,
O<cg<sh, (1.51)
O<cg=-2c,<h,

which guarantee absence of divergences.
The skeleton expansion does not satisfy, how-
ever the dynamical equations for all values of g

f dx, f dx, f dy, f dyzf(f")(xu xz)le(xl ‘yL)ze(xz -yz)r§")(yuyz) <@,

where
X1 = [0’ Cl]: X2 = [0, Cz],

Ff‘")(xpxz):f o f dxge - dx,T(x,. ..

axn)f(x:”- ..

and ¢. It turns out®® that the entire infinite set of
equations presented in Figs. 3 and 4 and in (1.11)
and (1.12) will be satisfied provided that the two
bootstrap equations in Figs. 3(b) and 3(c) [or Figs.
3(b), 4(a), and Eq. (1.12)] are satisfied. Since
both sides of the equation in Figs. 3(b) and 4(a)
are conformal invariant they have to be propor-
tional to the 3-point functions (1.42) with /=0 and
2, respectively. Thus, these bootstrap equations
lead to coordinate-independent transcendental
equations for the two parameters g and ¢ of the
theory. As could have been predicted, these equa-
tions turn out to be equivalent to the Gell-Mann—
Low equation for the coupling constant. That was
verified by the ¢ -expansion method for the ¢°
theory in 6 +¢ dimensions in Ref. 22. Unfortu-
nately, this new version of the self-consistency
equations does not seem any easier to handle.
That is one reason that a new approach tothe whole
problem was attempted in Refs. 10 and 11 and is
going to be pursued in what follows.

4. Conformal partial-wave expansion

The equation in Fig. 3 can be regarded as gener-
alized (off-shell) unitarity equations. It is well
known that in terms of the ordinary partial waves
the (elastic) unitarity condition becomes an alge-
braic equation. It was demonstrated in Ref. 10
that the conformal extension of the partial-wave
analysis allows one to solve the infinite set of
dynamical equations for the ¢* model.

Ordinary partial-wave expansion is nothing else
but the tensor product expansion of two irreduci-
ble (positive-energy) representations of the Poin-
caré group. Conformal partial-wave expansion
is by definition the tensor-product expansion of
two irreducible representations of the Euclidean
conformal group (see Ref. 11).

The proper vertex function I'(x,, x,,. . . , X,)
(n>4) considered as a function of the first two
coordinates and integrated over the remaining
n -2 coordinates with a “nice” test function f sat-
isfies the square integrability condition

(1.52)

s Xn) (1.53)

in any order of the skeleton perturbation theory.? [This is, however, not true for the 1-particle reducible
diagrams, appearing in the right-hand side of the equation in Fig. 1(d).] The integral in (1.52) is nothing
else but the scalar product in the representation space of the tensor product of two irreducible comple-
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mentary series representations x, and y, [as long as —k<c,<k (i=1,2), which is certainly true if either
(1.47) or (1.48)—(1.51) take place]. K we assume in addition that

I+ lepl<t, (1.54)

which is always true if the convergence conditions (1.47)-(1.51) are satisfied, then we can use the tensor-
product expansion formula of Ref. 11 which gives

I"(xl,...,xn)=z fdxfde(xl, — €13 %y = Co3 %, T (%5 X35+ . -, X,), (1.55)

where V is the invariant 3-point function (1.42) and

S [y [ 400, (1.562)

0)= T(+h) T(h-1+ c)T(h-1-c) T(I+h)
P = S an ™! T(c)T(-c) 2(2m)7!

Here dy = p,(c)(dc/2mi) is called the Plancherel measure; for ¢, =c, (c_=0) and T' symmetric with re-
spect to (x, x,) the sum in (1.55) and (1.56) is over even values of /, only. The conformal partial wave I,
is, conversely, expressed in terms of I'(x,,...,x,) by

[(R+ 1=1)%=¢%]= n(x)n(x). (1.56b)

1
Ty (x5 %3, ... ,%,) =3 f dx, f Ax, V(x,, €13 %y Co3 %, YT (%, « 5 %,)- (1.57)

The compatibility of (1.55) and (1.57) implies the following orthonormalization condition for the “Clebsch-
Gordan kernels” V:

fdxl f A2y V{3, = €15 %25 = €23 %, X) V%1, €15 %5 €25 %7, X ') = 6(x = 27)16(x, X )+ Gx'(x—x')a(i,)(’), (1.58)
where
6(x,x") = ( )é(c )8, (1.59)
Py

In writing (1.58) we have assumed that for pure imaginary c (and real ¢, and c,) V satisfies the reality
property

Vixy, = cy3 %, — €23%,X) = V(xy, = €15 %, — C25%,%)

(which puts another restriction on N,). Equation (1.58) along with the symmetry conditions (1.44) and (1.45)
determine the normalization factor N, up to a sign (see Ref. 11):

T(h=06,+c )T (h=0by+c, )T (h=06y—c )T (h-0y+c_) :ll/z (1.60)

Nler,eje) =[ T(h=06y—c,)T(h=-6y-c)T(h— 04— c)T(h-0y+c_)

One can define a unique branch of the square root (1.60) by demanding that it is a single-valued analytic

function in the complex ¢ plane with cuts along the intervals of the real ¢ axis where the expression under

the square root is negative, which takes positive values for |c,|+|c,|<k, |c)|+|c|=k=l<c<h+1=|c,|-]c,l.
In the special case of the 4-point function it follows from conformal invariance that the partial wave

T, (x; %3, x,) is again proportional to V:

rx (x5 x5, x4) = ')’(X) V(xg, - c33 X4y = C43 X, X)- (1.61)

The conformal Fourier transform of the 4-point function y(x) also depends on the dimension parameters c;
of the underlying fields, but not on the x’s.

The entire space-time dependence of T is given by a standard known function of the x’s (the integral in x
of the product of two V’s). Conversely, using (1.57) we can express the conformal partial wave y(x) in
terms of I'. We assume at this point that

C1=Cy= C3—C4=2cC_. (1.62)
According to Sec. 2 of Appendix A the result is
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0 -pgn=caed [ ax, | an( 27

~12 Xy X,
n-1f ___X12¥34
> G <(x122x342)1/2>r(x1’ Hs ¥ %)

(1.63)

where c;, =3(c; + c,) and the factor b, is given by Eq. (A8) of Appendix A.
A similar formula can be obtained by exchanging the roles of (x,, x,) and (x,, x,). The two expressions
are consistent between each other because of the symmetry of I'(x,, x,, x5, x,) With respect to the substitu-

tion (x;, ¢} %o, C5) = (X3, C35 X4, Co)-

The symmetry property (1.45) of the Clebsch-Gordan kernels implies the following relations between

conformal partial waves:

T3 %05 %) = [ dGRx =T33 53y -, 5,

yX)=7).

II. POLE STRUCTURE OF CONFORMAL PARTIAL WAVES.
VACUUM OPERATOR-PRODUCT EXPANSION.

A. Implications of the dynamical equations

1. Poles in the conformal partial waves implied by the vertex
bootstrap equations

We shall start with a brief review of the solu-
tion!® of the BS equation for the simple ¢* model,
and will then extend the results to the more realis-
tic model of Sec. 1A 4.

The 1PI amplitudes A,p; and the BS kernel B
satisfy the same covariance and square integrabi-
lity conditions (with respect to the arguments x,,
%,) as the proper vertex functions I'. We canthere-
fore apply Egs. (1.55) and (1.61) to these functions:

Alpl(xlxz;x3x4)=zfdxa(x)Fx(xl,xz;xs,x4), (2.1)

B(x1x23x3x4)=z fdxb(X)Fx(xuxz;xsyx4) ’ (2.2)
where
Fy(x), %53 %5,%,) = fdx V(x,, = €13%3, - €25 %,X)

XV(%g, = Cg3%qy = C43 %, X)
(2.3)

and a (x), b(x), and Fy also depend on the dimen-
sion parameters c of the fields.* Using the ortho-
normalization condition (1.58), we reduce the BS
equation for the ¢® model of Sec. IA to the simple
algebraic equation

a(x) =b(x) +b(x)a(x) (2.4)

for the conformal partial waves. It implies that
the partial-wave amplitude

_ b
a(x) "T-b(0) (2.5)

has a pole for x =x, for which b(x,;)=1. Using the

(1.64a)
(1.64b)

relation
a(x) =y (x) +a,(x), (2.6)

where a,(x) is the partial wave of the sum of 1-
particle reducible diagrams displayed in Fig. 6,
which has no singularities in the (12) channel, we
conclude that ¥(x) has the same poles as a(x).

On the other hand, the bootstrap equation in Fig.
3(b) for the vertex function (1.39b) and the analytic
continuation to real ¢ of the orthonormality relation
(1.58) imply

gVi(x,, —c;%,,—C3 %5, —C)
=gb(x,)V(x,, - C; %5, — C; X4, — ) for c=c,.
2.7

A similar relation follows from the equation in
Fig. 4(a). Thus,

(2.8a)
(2.8b)

b(X0)=1 for XO=[O,_C] (C =cw)y
b(X2)=1 for X2=[2,h],

so that a(x) and ¥(x) do have poles for x =¥, and
X =Xae

Now we shall demonstrate that the same mech-
anism also works in the more complicated model
of Sec., IA 4.

Let us consider the set of Green’s functions A, p;
with total charge zero in the channel (1,2). We
shall use the following shorthand notation for the
corresponding partial waves:

A p{@@*; 0p*) =a,, =alpe* = pp*;X), (2.9a)
A,p1(BB; 9@*) —~a,z=ap, =a(BB ~ ¢¢*;X), (2.9b)
A, p((BB;BB)~~azp=a(BB ~BB;Y), (2.9¢)
1 2 1 2
3: :4 4: :5

FIG. 6. l-particle reducible diagrams, nonsingular
in the (12) channel.
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and similarly for the BS amplitudes. The BS equa-
tions are reduced to a system of algebraic equa-
tions whose solution is given by

1-b
Ayy = ABB—I’
Apy = bgw s (2.10)
1-b
aBB= A _17
A=A(x)=(1—bBB)(l—bww)—bsz. (2.11)

On the other hand, the bootstrap equations for the
vertex functions in Figs. 5(a) and 5(b) give

&1 =bBw(XB)g0+bww(XB)g1’

&o=bpp(X5)g0 +bB¢(XB)g1-

The condition that the systems (2.12) has a non-
trivial solution with respect to the “coupling con-
stants” g, and g, leads to the equation

A(xg) =0 (2.13)

(2.12)

and thus implies the existence of a pole for x =Xz
of the amplitudes (2.10).
Similarly, starting from the equations for the

3-point functions in Figs. 5(c) and 5(d) which in-
volve the stress-energy tensor, we obtain

Alxy) =0 (2.14)

for x, given by (2.8b). Finally, the bootstrap equa-
tion for the current-field 3-point function (1.16)
and the vanishing of (TB(x,)B(x,)i, (x,)), give

bpo(X) =0, b,,(x)=1=A(x,)=0 (2.15a)
for

X:=[1,r-1]. (2.15b)
2. Pole structure of the n-point partial waves. Expression
for the residues

In this subsection we shall spell out the impli-
cations of the dynamical equations for the simplest
(¢®) model only. The extension of the results to
the (¢, ¢*, B) model of Sec. IA 4 [which uses
(2.10)-(2.15)] is quite straightforward.

First of all we shall demonstrate that the poles
of y(x) [and a (x)], corresponding to the points
(2.8), are also poles of the n-point partial waves
T, (x;%5,...,%,) (1.57) for allz=4. We deduce this
statement in two steps. It is true, if we replace I'y
by the 1PI partial wave

1
A){Pl(x;xaa-'”xn):'éfdxlf dxzv(xucw;x27Cw;xzicw;x;X)Alpl(xbxz;xs;-"’xn)' (2’16)

Indeed, taking the conformal Fourier transform of the equations in Figs. 2(b) and 2(c) we obtain

[1 - b(x)]A,:PI(x;xS, oo e yxn)

= Alpr(¥3 %5, 00, %) 400 3 fdy,fdsz(yucw;yz,cw;x,x)A(yl,xs,---)A(yz,---,xi,,)

+Z;Zf---fdyf"dykA’z‘px(x;yl,---,yk)G(yl-y{)--'G(yk—y,:)A(yiﬂ@,---)“

XA(YL %, .00).

'k
It follows that for each x =x; for which
blxy) =1 (2.18)

[and the right-hand side of (2.17) does not vanish]
the partial wave A¥p; must have a pole. This is
true, in particular, for x=x, and X =X,, because
of (2.8). It remains to show (as a second step) that
the conformal Fourier transforms I'y of the proper
vertex functions also have poles in these points.
That follows from the observation that the differ-
ence between A¥y; and T, is given by a convergent
skeleton diagram, provided that ¢, satisfies (1.47)
(see Sec. IB 3 and Ref. 3).

We shall assume at this point that we are dealing
with simple poles only, so that

(2.17)

_dbx)

=7 0, (2.19)

X=X;

The conformal expansion of the 2PI kernel in the
dynamical equations in Fig. 3(a) leads to the rela-
tion

r(xrxs,--'9xn)=gA)2(%I(x;x3y'°-ax )' (2'20)

Noting the relation between the amputated Green’s
function A and the proper vertex functions I' and
combining (2.17), (2.8a), (2.19), the equation in
Figs. 2(b) and 2(c), and (2.20) we can express the
residue of A%,; (or T,) at the pole x =Y, in terms
of the amputated Green’s function A:
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—gb,ResA¥p (s x5, ...,%,)
X=Xo

=—gbyResTy(X;%5,...,%,) =A®, X5, ... ,%,).
X=Xo

(2.21)

Similarly, the residue of A%, (or T,) at x=x, can
be expressed in terms of the amputated (- 1)-
point function A, (x;x,,...,%,), which involves the

stress-energy tensor ©,,(x).

3. Basic conformal covariant tensor fields. Analyticity
assumption
The preceding argument can be generalized as
follows.
Let O,(x, z) be a conformal covariant rank-I ten-
sor field of dimension % +c¢, for which the 3-point
function

(To(x)o*(x,)0,(x, 2))g~G,(x,,%,5%,2)  (2.22)

does not vanish. [In writing O,(x, z) in Minkowski
space, we can regard z as a real lightlike vector—
cf. Ref. 26.] Then the conformal partial waves
T, (x;%,,...,x,) haveapoleforx=x,=[l,c,]. Thear-
gument is the same as above.

Let ¢(x) be a free zero-mass field; in other
words, let ¢(x) satisfy the D’Alambert equation

Vip(x)=0e(x) =0, (2.23)

and the canonical commutation relations. Consider

J

the bilocal operator
0,(x,,%,; 2)
=k;8'Dy(h = 1,2V 5k = 1, 2 V)*(x,)9(x,),
(2.24a)

where D,(a, a;b,B) is the polynomial (A2) of Appen-
dix A, and «, is a normalization constant (z-V
=2V _7Z- 3). In the simple case at hand (in which
a=b=h-1) D, can be expressed in terms of a
Gegenbauer polynomial:

D,(h-1,a;h-1,B)

=11(a +B)‘P§"'2v"-2><a_‘f>

a+p

(a+prcy(25)

| (h-1), -8
a+B

=UEns),

(2.24b)

[see, e.g., Eqgs. 8.932 and 8.962.4 of Ref. 31; we
have again used the shorthand notation (a), of
(1.34)]. We note that for the physically interesting
case of 4-dimensional space-time 2 -1=2r-3=1
and C!/2 coincides with the Legendre polynomial.
The relevant property of the polynomials D, for
our present purposes is given by the following
differential relations, valid for V,2=0=V,? [which
can be assumed because of (2.23)]:

(Vy D)D,(h=1,2-V3h=1,2-V,)=l(l+h-2)°D, \(h-1,2'V;h-1,2-V,)V,-V,

== (V, D)D)k -1,2-V 3 -1,2-V,),

(2.25)

where D is the interior differentiation (1.30) on the light cone. Equation (2.25) implies that the local oper-

ator

O,(x,z)=:0,(x,x; Z): = lim [Oz(xlaxz; Z) - <Ol(x1yx2; Z»o]

ENE N

is a conserved tensor current:

(D- V)0,(x,2)=0. (2.27)

Moreover, it is a (weakly’) conformal-covariant
basi c tensor (in the sense of Ref. 8). We recall that
for abasic tensor O,(x) the infinitesimal generators
of special conformal transformations vanish at
x =0, This means that the Euclidean counterpart
of O, transforms under an elementary representa-
tion of type X, of ot(2r+1,1). Infact, 0, trans-
forms according to the irreducible part of the
“canonical representation”
X2 =[1,n+1-2]. (2.28)
(It belongs to the space D,_,, in the notation of Ref.
11(b). We caution the reader that the gradient of a
basic tensor is in general not a basic tensor—cf.

(2.26)

Ref. 8.) If ¢(x) is a complex field (¢ # ¢*) then the
3-point function (2.22) does not vanish for any of
the operators (2.26). Choosing the normalization
constant k, =e/(h — 1), where e is the charge carried
by ¢*, we can identify O, with the electromagnetic
current:

0,(x,2)=2"j, (),
(2.29)

i, () =iefo* (@) [V, 0(x)] - ()Y, 0*(x)]}.

If ¢ is a neutral field (¢ =¢*), then the fields O,
(x, z) with I odd vanish. Setting 2#(2k - 1)k,=1 we
obtain as a special case the (traceless) stress-en-
ergy tensor for [ =2:

0,(x,z)=2"2"0,,(x), (2.30a)



900 DOBREV, PETKOVA, PETROVA, AND TODOROV 13

0,,0)=:V,0(x)V,0(x): —=3g,,:V'o(x)V,0(x):

g o Qg V7)),
We shall take the case of a free field as a guide
concerning the set of basic tensor fields coupled to
¢ in general. We shall assume, in particular, in
the case of the (neutral) ¢* model of Sec. IA, that
for each even ! there exists at least one basic
“composite” field O,(x, z) for which the 3-point
function (2.22) with ¢ does not vanish, There is
no reason to believe that for 7 > 4 the dimension
of the field O,—in a nontrivial, interacting theory—
is canonical [i.e., that x, is given by (2.28)]. How-
ever, positivity of the 2-point Wightman function of
0, implies that if x;=[I,c,] is the O' (22 +1,1)-rep-
resentation label for O,, then

(2.30b)

c;>h+l-2 (2.31)

[see Refs. 32, 11(a), and 11(b)].

Thus, the dynamical equations and our assump-
tion about the set of composite basic fields imply
the existence of a denumerable infinity of poles
X=X, in the conformal partial waves, satisfying
(2.31). It is natural to conjecture that these are
the only singularities of I'y in the right half plane
c. More precisely, we shall postulate that y(x)
and I',(x;x,,...,x,) are meromorphic functions of

¢ in the right half plane with simple poles, re-
stricted to the real ¢ axis. We remark that unlike
a similarly sounding ansatz about the singularity
structure of scattering amplitudes in the complex
angular momentum plane, this postulate is not in
conflict with (off-shell) unitarity, since the dynam-
ical equations are taken exactly into account.

B. Derivation of an operator-product expansion for vacuum
expectation values

1. Splitting of conformal partial waves and Clebsch-Gordan
kernels into Q kernels. Asymptotic behavior for Rec— oo

In order to exploit the postulate about the mero-
morphic structure of I'y it would be natural to try
to close the integration path in the representation
(1.55) in the right half plane ¢ and then apply the
residue theorem. In doing that, however, one en-
counters the problem of the asymptotic behavior
in ¢ of the integrand: Both V and Iy increase ex-
ponentially for Rec -~«. In order to circumvent
this difficulty, we shall derive an alternative form
of the conformal expansion formula which exploits
the spectral condition and the symmetry property
(1.45) and (1.64).

As a first step it is convenient to replace the x
integration in (1.55) by integration in p of the cor-
responding Fourier transforms. In other words,
we write

(%), 000,%,)= Z f dxf (dp)VZ‘(xl, %5 = P)Ty( D3 %5y o o« %,), (dD) = (21) 2 a%"p (2.32)
where

Vz(xl,xz; -p) =f V(x,, £0,; %5, £C,5 X X)e P¥3dx . (2.33)
One can show by a direct computation (see Appendix A) that

Vi1, %35 = 9) = e Q¥ 255 - ) = G- )@(r,, x5 - ] (2.34)
where

Qi) =T T e () DSt Tisise = 9a(5) "

xlldu[u(l —u)] /) <%>c-e”"‘"12""2)1“0{[“(1 —u)x, 22 %, (2.35)

D, is the Ith-order differential operator (A2). The integral (2.35) is absolutely convergent for

I+Rec+h>2]|c.|=|ec,-c,). (2.36)

The decomposition (2.34) is reminiscent to the splitting of Legendre functions into two second-kind func-

tions,

P-1/2 n;(z) =%tannv[Q_1,2_,(z) - Q-1/2+ ,,(Z)],

used in Regge theory. It displays, in particular, the symmetry relation
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Vi(x,, %53 0) =Gg(p)V X(x,, X33 0), (2.37)

which follows from (1.45). The function @*(x,, x,; — p, 2) has the following characteristic properties which
will be used in the sequel.

(i) @*(x,,x, —p,2) is an entire analytic function of p [provided that the integral in u converges, which is
certainly true in the range (2.36)]. :

(ii) For Minkowski timelike vectors p, Q* decreases exponentially for Rec —«. [That property, which
will enable us to close the integration path in ¢, follows from the known asymptotic behavior of the Bessel
function J,(x) for v—~_see, e.g., Eq. 8.452.1 of Ref. 31.]

(iii) For small x,,, @* is given by

- h=6y=c+
Qs 5 =, 2) XL Ny - 05 - ) FLe s 1’:)6"’2(72?) e (2.38)
- - 12

[ef. (A6)].
Since the conformal partial wave I', exhibits the same symmetry property (1.64a) as the Clebsch-Gordan
kernel V, it is natural to assume that it can be also decomposed in a similar way:

T3 s+ %) = S ey Q53 e - %) = (DR (P35, ) (2.39)

where Qir satisfies conditions (i) and (ii) above. This assumption can be justified in the framework of the
skeleton perturbation theory from what we already know about the 3-point function. [For n=4, it follows
directly from Eq. (1.61)—see Appendix B.]

2. Another form of the conformal expansion, involving a Minkowski momentum-space integral

Our next step will be to deform the integration path in the complex p,, plane to a contour C around the
negative imaginary semi-axis (see Fig. 7).
To do that, we consider I'(x,,...,x,) in the following domain of Euclidean time components:

0,<0, 0,<0; 0,>0,...,0,>0, (2.40)

where o, = (x,),, [cf. (1.1)] and it is assumed, as usual, that x,#x, for j#%. In this domain the exponential
factor in the right-hand side of Eq. (2.35) decreases for p,,—~ - i», and the same is true for T')(p;%;,...,%,)
because of the spectral condition. Hence, the deformation of the complex-energy integration path indicated
above is indeed legitimate for such x’s, and we are led to the evaluation of the discontinuity

H(Po) [Vi(xu Xoy = 6, ipo— O)FX(ﬁ, —ipo+0;%5,... ’xn) - Vg(xuxz; - ﬁy ipo""o)rx(ﬁa —ipo—=0;%,, ... ’xn)]“
(2.41)

Inserting the decompositions (2.34) and (2.39) and using property (i) of the @ kernel (see Sec. IIB1) we see
that only the 2-point Green’s functions G,(p) and Gy(p) give a nonvanishing contribution to the discontinuity
(2.41). To evaluate the latter, we use the relations

(p2)° = (py°)eTire? @™ for Pan— = iPo0,p,° =p,* - I°, (2.42a)
(5 &,m) = (= D'T(p s E, - k4, 7, - iM20). (2.42b)
According to (1.33) the result is

0(20)[Ges, s 1B, = #Po+0) = Gy e1(By = b0 = 0)] = ZsinT(U ¥ )y, ool P, (2.43)

where (omitting from now on the index M of p)
1
wy(p) =210,(p)EDD) Y A ()I(p), 6,(p)=8(p)6(p?). (2.44)
§=0

That leads to the following expression for the discontinuity (2.41):

-1

m [Qf (xuxz; —P)wx(P)Q‘%-(P; Ky enerXp) = QX(xy, %55 —P)wi(p)Q)l("(P;xas e ,x,,)]. (2.45)
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Since the range of ¢ integration in (2.32) and (1.57) is symmetric with respect to the change ¢~ -¢, we
can drop the second term in (2.45), multiplying the result by 2. Thus, we reduce the conformal partial-
wave expansion of I' to the following form:

1 - -

r(xl; L ,xn) =-2m E fdx m’f(dp)Qf(xv X2 -P)wx(ﬁ)Q§~(Pa X3yeee 7xn); (2-46)

where the Minkowski p-space expression for Q‘f is obtained from (2.35) by replacing the p-dependent part
of the integrand by

eli o (uXjo+ iz)*pﬂ[wl‘(l-“)"z]J“c([u(,l _ u)xlzzpz]llz) (2.47)

and we have used (dp)~ - i(dp,) for py, ~ — ip,.

3. The vacuum operator-product expansion

Now it is legitimate to close the contour of ¢ integration in (2.46) in the right half plane. However, trans-
forming the integral over V* into an intergral over @* (which vanishes for Re ¢ -~ =) we have paid a certain
price: the appearance of the factor [sinm(l +c)]™* which introduces new “kinematical” poles. The main
purpose of this subsection is to demonstrate that these poles are actually canceled out.

First of all, we note that a finite number of poles coming from the sine factor are canceled by the zero
of the Plancherel weight (1.56b) for

c=0,...,h=2,h+l-1. (2.48)

(At this point we assume, for the sake of simplicity, that % is a positive integer, which includes the cases
h=2 and k=3 we are primarily interested in. The argument—and the result—can also be extended to the

case of half odd integer %#.) There remain two (infinite) sequences of “kinematical” poles to be dealt with;

they correspond to the elementary representations [l,c] with labels

c=h-1+l+v, 1=0,1,2,..., v=1,2,... (2.49a)
and
c'=h-1+1, U'=l+v (1=0,1,..., v=1,2,...) (2.49D)
which satisfy
c'+l!'=c+l=h-1+2l+v. (2.50)
The clue to the cancellation problem lies in the partial equivalence of the representations
Xp=llel=[tl,h - 1+1+v]and x;3=[1",c" 1=l +v,h - 1+1] (2.51)

exhibited in Refs. 11(b) and 11(c)]. It leads, in particular, to the following identities among @ kernels and
conformal partial waves (see Appendix B):

. - 1-v -
(ip+2)" Q%W (x x5 — p.2) = sgn[( 3 +c_>!JQ’.‘§V(x1, Xy — P, 2), (2.52)
. - 1- ’_
(-ip- z)"Q’;‘zv(p,z;xS, ceeyXp)= sgn[( 3 v c_> ]Q’.;}v(p, 23 X300y Xy,), (2.53)
where
X' =% =1, —c ). (2.517)
Furthermore, we shall use the relation
[C+1),]%p- Dl)"wx',;(P; 2, D) (p2)’ =(=1)(R+1 - 1), (2R +1 - 2),,wx;v(P; z,D,), (2.54)
which follows from (1.37) and (2.44) [see also Proposition 6.5 of Ref. 11(b)], and the identity
ey _ (r+1-1),
p(X3) =P - 1+l)——mp,(k-— 1+l +v), (2.55)

which is a direct consequence of the definition (1.56b) of the Plancherel weight.
Now we are ready to prove that the sum of the residues in the kinematical poles x}, and x}, vanishes.
Indeed, due to (2.50), for both these poles



13 DYNAMICAL DERIVATION OF VACUUM OPERATOR-PRODUCT... 903

7 Res[ sinm(l +¢)]"* =7 Res[sinw(l’ +¢’)]" = (= 1)F-1+¥ (2.56)
and we have [according to (2.52)-(2.55)]
[ +0) 10 = 1), J20(X"3,)QEi(x 1, %23 = b, Dy ( 15 21, D)QIND, 253 X+ v, %,
= [11 (e = 1),]%p(x},) Q% v(x ), x5 — p,Dl)wx;v(p; 2, D,)Q% (P, 253X 5, 0 o0y Xy)e  (2.57)

This proves the cancellation of the kinematical poles coming from [ sin7(l +¢)]™.
Thus, closing the contour of integration in (2.46) in the right half plane ¢ we obtain a representation of

the proper vertex function as a sum over dynamical poles and poles coming from the normalization factor
of Q% only:

T(x,,...,%)=21 3 Res <—”@— [ @)Q¥x s, 555 - P PP 3oy .. x)) (2.58)

ST x=x, sinm(l +¢)

A similar expansion can be deduced from here for the full Green’s function (see subsection II B4 below).
It can be regarded as the result of inserting a conformal-covariant operator-product expansion (of the type
considered in Refs. 14-16) in the Wightman functions (which is subsequently continued analytically in the
Euclidean region). It is, however, important for our derivation that the operator product ¢(x,)¢(x,) (which
is effectively decomposed) acts directly on the vacuum. [That was used in exploiting the inequalities (2.40)
for the Euclidean time components.] It is indicated in Ref. 17 that the general (global) operator-product
expansion is more complicated. That is why we adopt the term “vacuum expansion” (of Ref. 17) for the
situation envisaged here.

Remark. It follows from (2.52), (1.61), and (2.53) (for n=4) that

1- 1-v
( l/+C.> Y(X3) ={ ——- C-> y(v'3,) (2.59a)
2 14 2 14
as a consequence [according to Eq. (B6) below],
y(xp) = (= D)*r(x';,) for c_#0. (2.59b)

On the other hand, if c_=0 and ¢,(x) = @,(x) =¢(x), then y(x,)=0 for odd I, and if y(x,)# 0 for even! Eq.
(2.59b) cannot hold for odd v. Similarly, the limit of the Clebsch-Gordan kernel V for ¢_—~0 does not com-
mute with the one for x—~x},. The easiest way to treat the case c_=0 is to reintroduce c_(#0) as a regular-
ization parameter, assuming that the poles for g(x) at integer points (as the one for x =[2,%]) are shifted
by an amount of the order of c. (say, X~ X,_= [2,72+0(c.)]), and letting c. go to zero only in the final result
(2.58).

4. Wightman positivity for the 4 point function

The representation (2.58) is particularly convenient in analyzing the positivity properties of the 4-point
Wightman function (cf. Ref. 13). It is, of course, the full 4-point (Wightman or Schwinger) function that ex-
hibits positivity, and not just the proper vertex function I'. So, our first task will be to write down the
counterpart of (2.58) for the Schwinger function

s(xl, Xoy X3y x4) = <¢ 1(x1)¢2(x2)¢ 1(x3)¢z(x 4»0,

where ¢, and ¢, are spinless Euclidean fields with dimension parameters ¢, and ¢, (we can have ¢,=¢, as
a special case).

Let us assume that there is a scalar (Euclidean) field ¢ ,(x) with ¢,<0 such that the 3-point function
(P, (x),(x,)P5(x3)), does not vanish. (For the ¢* model of Sec. IA we would have ¢, =¢,=¢,, ¢,=c,=c;.)
Then, the nonamputated 1PI function G,p;(x,, %,; ¥,,%,) has a “shadow pole”'® for ¢ = - c¢;, which is canceled
by a singularity of the 1-particle reducible Green’s function.’® On the other hand, according to (1.45),
(1.57), and (1.61) the conformal partial wave s,(x) of the disconnected Schwinger function s,,(x, — x3)s,,(x,
-x,) is 1, That gives

S(xy, %5, %3, %4) = 850, = x5)S (05— %)

Y haae) € Res (L1 +00] | (@)@, %3 - PPy x5 2)), (2.60)

sinm(l+¢;) . X

where g(x) is the conformal partial wave of G,p(x,, %,; %5, %,) and the sum is over all poles of
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N2, 0 [1+g0)/[T(8, +1 +¢.)*T(8y +1 — c)?] in the right half plane ¢ except the “shadow singularity” for
x=%=10,-c,]. We note that for a generalized free field [for which g(x)=0] the disconnected Green’s function
S (%, = %5)850(%, = x,) +8,5(%, — %,)S,,(x, - x,) is reproduced by the poles of I'(k - 8, +¢,) coming from the nor-
malization factors in the @’s. It turns out that for interacting fields these poles are canceled by zeros of
1+g(x;c;)=1/[1-b(x,c;)], i.e., by poles of b(x,c;). This is suggested by analysis of ultraviolet diver-

gences in the skeleton expansion of the right-hand side of the equation:

1
b(x;€)V(xs, ca5%4, 045 %, X)=§fdx1fdxzv(xu—cﬁxz,—(:z;x, X)B(Xy, o0 ,%y).

[cf. (1.57) and (1.61)].

Now we are in a position to analyze the implications of the following (special case of) Osterwalder-Schra-
der positivity condition for the 4-point function.,’®* Consider the space §, =8,(R* x R?*) of test functions
flx,,x,) of the Schwartz space $(R*) which vanish with all their derivatives unless ¢,>0, 0,>0 [0;=(x;),,]

and x, #x,. Then, for any f€§,, we have®

f."fdxl"‘dx4f-(9x2, 0x)s (0,00, x)fl0g,%)>0 [6(%,0)=(%, - 0)]. (2.61)

Inserting here s(x,,...,x,) by its expansion (2.60),
we see that this positivity condition is satisfied,
provided that the inequality (2.31) takes place and

pz(cz)
S +cy) a8 )0 (2.62)

for all dynamical poles ¥, of g(x), and finally that
[1+g(x)]ResT(% +c, - 6,) = 0 at the poles of T'(k+c,
- 5,).

C. The problem of crossing symmetry. Concluding remarks
1. Crossing symmetry and duality

The vacuum expansion (2.58) or (2.60) of the
product ¢(x,)¢(x,) which satisfies the dynamical
equations [in the (1,2) channel] is not symmetric
with respect to a permutation of the arguments x,
and x, with any of the arguments x;,...,x,. We
are stuck here with the analog of a familiar prob-
lem of ordinary partial-wave analysis: It simpli-
fies the unitarity equations but complicates the
crossing symmetry condition. Yet, it should be
stressed that the conformal expansion (as pointed
out in Ref, 10) solves an infinite set of coupled
nonlinear (integral) equations, while the problem

FIG. 7. Deformation of the integration path in the
complex energy plane. Original path: the real p,, axis;
deformed path: the contour C.

r

of crossing symmetry can be reduced to a set of
noncoupled (a finite number for each n) linear (in-
tegral) equations for the conformal partial waves.

In order to exhibit these symmetry equations we
shall introduce another bit of graphical notation.

We shall represent the Clebsch-Gordan kernel V
by a shadowed vertex [see Fig. 8(a)] and will write
Egs. (1.55) and (2.32) in the form given in Fig. 8(b).
Then the crossing symmetry condition for the spe-
cial case of the 4-point vertex function is expressed
in Fig. 8(c). In the case of the p¢* ~ @@* vertex
function for the model considered in Sec. IA4 we
would have 7,,(x) =¥.,(x). In the case of the ¢°
model all v;, should be the same:

¥12(%) =713(X) =714(X) = (%) for £,= —%g:(ﬂ“:.
(2.63)

In order to find the crossing-symmetry equation

1N 42
V(x,],-c:,I ;xe,—ce;x,i) = ¥

(a)

<§ - Zfdl%

a7
N g2

B sl
AL 4

1 2 1 2
It 0@ - Lfrn® >0-@<

(e)

FIG. 8. The Clebsch-Gordan kernel and the partial-
wave expansion of the vertex functions.
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z
€
C(Z,l') * = ;
z

FIG. 9. Equation for the crossing kernel.

for y(x) we expand the kernel F,(x,, x3; x,, x,) [(2.3)]
in conformal partial waves:

Fy(x,, %45 %5, %) = Z de'C(X,X')Fx'(x1:x2;x3’x4)-

(2.64)

To determine C(x, x’) we multiply both sides of
(2.64) by V(x,,c,;%,,C5; %, X’'’) and integrate over x,
and x, using (1.59). After replacing x’’ by x’ we
obtain the equation displayed in Fig. 9, From the
involutive property of the crossing operation we
deduce that
3 [ axrexIen, ) =80 x).  (2.65)

Inserting (2.64) into the equation in Fig. 8(c) we
obtain in the symmetric case (2.63) the following
linear integral equation for y(x):

=3 f dx'c(x’, x)v(x"). (2.66)

—J

4 8 16 (h=6)/2
T(x,, x4)=< 7 1) ( 3 ) <
ces 7. 3. 3 —3
’ X13 X2 X127 X23X14 X34

2\c 2\ ¢ £ 0
(B ()™ [ ko

We could have alternatively formulated the
crossing-symmetry condition as a duality property
for the discrete vacuum expansion (2.58) [or (2.60)].
To do that we first need to continue both sides to
Minkowski-space arguments with spacelike sepa-
rations [since the inequalities (2.40) for different
channels contradict each other]. That form of
crossing symmetry makes obvious its relation to
the local commutativity of the underlying fields.

The difficulty in treating the duality relation of
the type displayed in Fig. 8(c) comes from the fact
that an approximation of I' involving only a finite
number of poles in a given channel would not do.
The reason is that the poles of the conformal par-
tial wave in the crossed channel are reflected in
the divergence of the infinite sum over residues
in the direct channel.

2. A crossing-symmetric representation for the 4-point function

If we forget for a moment about the dynamical
equations, it is not difficult to write down a cross-
ing-symmetric representation for the conformal
partial waves., It can be based on the known Mel-
lin-transform representation of conformal-inva-
riant Green’s functions, proposed by Symanzik*
and Mansouri.! For instance, the general confor-
mal-invariant 4-point function, with dimensions
restricted solely by Eq. (1.63), can be written in
the form

) ) )

2 2\ io 2 2\ it
X13 xz4> (xxa Xog >

T3 532 ) »
X2 X3q X14 X23

(2.67)

where c;,=3(c; +c,) as in (1.63). The right-hand side of (2.67) is independent of the real parameter & pro-
vided that K(z,w) is analytic in a strip domain along the real axes which includes the points z=0-i6, w=T
—i(8/2) and that no poles arising from the x-dependent factors prevent us from shifting the integration

path. In the ¢® model under consideration we have

C‘k=cw.

(2.68)

The representation (2.12) can be made manifestly crossing symmetric by setting 5=3%A -%c, and

K(o,7)=f(0,T,-0-17),
where

fla,B,y)=f(B, a,v) = f(a,v, B).

(2.69a)

(2.69Db)

Inserting then (2.67) in Egs. (1.57) and (1.61) and defining ¥(x), we obtain a conformal partial wave [de-
pending on an arbitrary symmetric function f(a, 8, ¥)] which satisfies automatically the crossing-symmetry
equation (2.66). Using the integration formula of Ref. 4 we obtain
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TN Cenn ) ) 2r Lo 2 ) 2r

Ny(cp,, 22 0)2n)* i da fim.d_ﬁ * do fim dr z‘:(— 1)m<l >
- - m

ico 27 m=0

I(-a=Al(@)(—a=B=-0=T=3h—c+D)+5+c, )T(a+0+3(h = 8) + )T (B+3(h = c+1) = c?)

T(Zh+c+D)+c®)T(h = Hc+6=1)+0)T(6 +Cpq =0 =T)T( 31 = 8) = 1y +7)

T(B+T +3(h =06) = c (36 +1=c) =0 = a)[(3(c+6 =) +C)q=T = B+ 1=m)T(3(h = 8) = ¢, +7 +B +m)

T(h=-3c+6-0=cyy+7 +BT(h=3(c+6=D+0+a=m)T(z(c = 1+6)+m=-a=0)[(b+C\y—a=B=0~=T)

xT'(3(c +1+8) =0 = @) K(=i0, =iT).

(1.63")

The difficulty now is to construct an f consistent with the pole structure of y(x) implied by the dynamical

equations. This problem is not yet solved.

3. Summary and discussion

Our aim has been to construct a conformal-invariant quantum field theory satisfying (a) the dynamical
equations in Figs. 3 and 4 (in a given channel), (b) Wightman (or Osterwalder-Schrader) positivity, and

(c) crossing symmetry.

We were able to solve (a) and to incorporate some consequences of (b) by using the vacuum operator-

product expansion, which can be written in the form

02(%) 9, (x,) [0)=s(x, = ;) |0>+ZC(X1) f dx Q¥1(xy, %53 x)Oxl(x) [0), (2.70)
X1

where we have set (for Minkowski-space coordinates with spacelike x,,)

—[Ch =6y~ c,)T(h=bg=c,)T(h=58,—c)T(t =8y +c.)T(h =g =c_)T(h=bg+c.)]/2Q%(x,, x5 %)

9 =85 +cy
=< > Dy(bg+c_,2°Vy;09-c_,2° V)

Xig®

x| (dp)er)(

and

%
p

u

2 \(l+o)/2 1 u c.
——E—) f dulu(1 —u)]"/z'1<——1 ) eiPoux 1y 3, =)
A -

le+c([_u(1 —u) xu2p2)]1/2) (2.71)

/2
Clx,) = <ﬂe,(_c,)_ Res[T'(h - 8y +c, )T =6g+c, )1 +g(x))]>1 ,

sinn(l +c,) X=X

(2.72)

x=[Lecl, 8y=3k+c=-1), x;=[lc;), c.=3(c,2c,) [for o, =9, =9, c_=0, c,=c,};

Ox,(x) are local (Hermitian) tensor fields, whose
2-point functions are given by the Fourier trans-
form of (2.44):

<Ox,(x)®oxl,(x,»o =wx,(x- x')6yy0 6¢,¢,,- (2.73)

In the simplest ¢® model the sum in (2.70) is over
even values of [ only and the first dynamical pole
of g(x) for =2 comes from the stress-energy ten-
sor. The positivity condition implies the inequali-
ty ¢;=h +1-2 (2.31) and the reality of the coeffi-
cients C(y;) (2.72). The sum in (2.70) is over all
poles of the expression in square brackets in the
right-hand side of (2.72) with positive c;, except
for the scalar shadow pole (¢,=-c, in the ¢* mod-
el) which is omitted. We notice that the above con~
struction automatically involves the positivity of

r
the energy spectrum (cf. Ref. 12),

The crossing-symmetry condition implies a set
of uncoupled linear integral equations for the con-
formal partial waves. The simplest of these equa-
tions—for the partial wave y(x) of the 1PI 4-point
function I'(x,,. .., x,)—is given by (2.66). It is
satisfied by the general crossing-symmetric con-
formal-invariant 4-point functions (2.67)~(2.69).
However, the problem of displaying simultaneously
the pole structure, implied by the dynamical equa-
tions, and the permutation symmetry, reflecting
the local commutativity of the underlying fields,
is not solved. We conjecture that in carrying out
a construction which takes into account all three
requirements (a), (b) and (c) one should be able to
discard the ¢® model as inconsistent. The diffi-
culty of this constructive problem should justify
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further study of simple soluble models'”*** from
the point of view of global operator-product ex-
pansions presented here.
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APPENDIX A: PARTIAL FOURIER TRANSFORM
OF V(x,, x,, x3) AND RELATED FORMULAS

1. A differential formula for V. Fourier transform in x 3

To evaluate the Fourier transform of V in the
third argument, it is convenient to replace the
factor (\z)! by a differential operator in x, and
x, (cf. Refs. 10 and 11). To do that we use the
identity

I'(a)T(®) ( 2 >“< 22>be"”‘3dx3

(2m)* X130 X23

VACUUM OPERATOR-PRODUCT... 907

@), (Z=) (Z5) ey

X13 23

=D, (@2 Vb2 V2)<_z_>« ( 2 )", (A1)

X150 X23
where
D, (a,a5 b’B)

1
= ;(},)(a+k),_k (b+l ‘k)k(—a)”;sl-k

o
= (a), (@ +B)'F <a+b+l -1, —l;a;—a—+§>; (A2)
here F (=,F,) is the hypergeometric function and
we are again using the Bateman shorthand nota-
tion (a), (1.34). Equation (Al) is a simple conse-
quence of the differentiation formula

z-v)" <xim§>"= (@) (%)m(z <%0

and of the identity (a), (@+ &), = (a);.

After that the calculation of the Fourier trans-
form of V is reduced to the application of the
following known relations:

b © 2 2
=(21r)"'fo %fo d—ga“ﬁ”f dxaexp<-a-’£-‘§——[3%3— —ip-x3> (A3a)

A

1 w ‘ 2
= f duut=Y(1- u)b-le-ip-[u:l+(1-u)x2] AP h"leyp { -1 [Au(l—u)xmz*rp—} },
(

fow AXA"exp [ -3 (’“"2*‘:—2 )] =2 (gy&(aﬁ)

(see Eq. 3.471.9 of Ref. 31). The result is

X . - . . -
V¥, %550,2)= fV(xucuxz,Cz,xa’X,z)e P¥adx,

(A3Db)

2 h=0 +¢, X2 (<) 2
=2A'(x122> D'(6‘+c"z.vl;6r—c-:z'V2)<—;22—)

X fldu[u(l—u)]"’"'l<

) ] et ('“12“"2)[{“([14(1— “)xnzpz]l/z),
(A4)

1-u

where we have used the equation 2-25,=1 —c and have set

Ny(ey,c-;¢)
106, +l+c )T(6,+1-c_)

Ar=A,(c,ysc50)=

=A,(c,yca;—cC). (A5)

For x,,~ 0 we can evaluate the main term in (A3) exactly. The result depends on the sign of Rec-1.
If VX corresponds to a physical 3-point function then the Wightman positivity condition (2.32)implies thatfor
h>2, c~1 is non-negative. In this case 2K,_.(z)~ I'(c-1)(2/z)°"* for z —~ 0 and the small-distance behavior
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of V* is given by

12

2 \ue ox [ %122 \'°
V¥ (x,,%250,2) RS A, <F Dy(6,+c.,2°V,;0, —C.,2°V)B(h=0,+c.,h—6,—c)e™ 2 —"Lz
x>0

(AS6)
~_LEN(g,c5c) sy 2 \"ER
T Ilc-)T(k—c+1) (h+c—1Dse 2<x12"’> @ %)
2. Derivation of Eq. (1.63) for the conformal partial wave
We shall first derive Eq. (1.63) for y(x) for
Rec=>1 (A7)

and then proceed by analytic continuation.

We start with Eq. (1.57) for n=4, and after insertion of (1.61) integrate both sides with respect to x.
The result is given by (A6) with p=0 and c,~~cg4, c.—~ —c_ on the left-hand side. Noting that [because of
(1.62)]

Negcze) ( I(h=by+ ;)T (k= g+ C1)T(h= 6, + c3 )T (k= 85+ cag) )"’"
Ny(=csy —c-;c) T'(h= 6y ¢;))T (= 63— €, 2)T (2= 0y = C3) T (~~ 85 = Caq)

=b; (012: C3q4; c) [Cu: = %(Cg + c,,)] , (A8)

we obtain

Y02 =301 i) () [y fann () e Tl a5 (49)

Finally, we apply to both sides of (A9) the operator

1 Xy D >'
11— 1),( Xl )’

where D is the interior differentiation (1.30) on the complex light cone, and use

2
l'(h T1k-1), (D) (t+ 2)'=H,®n,£)=(@" Z)’F(% 1- l;2—h ’(nn §§)2>

2
= (- 1),( ) ( VnItz ) (A10)

Noting the normalization condition

cH(1)= ____._L(Zhl ! 2) (Al11)

for the Gegenbauer polynomials we end up with Eq. (1.63).
3. Splitting of Vx(x, ,X3 ;p)into two Q functions

Using the known relation (see e.g., Eq. 8.485 of Ref. 31)

ZKu(z) = _si;:m[[u(z)_]-v(z)]

between modified Bessel functions, we obtain a splitting of VX into two @ functions, which have the prop-
erties (i)—(iii) of Sec. IBI. In order to prove eqs. (2.34) and (2.35), we will establish the following rela-
tion:
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x,.2 )(Hc)/z

2 (4c) /2 1
( ) [—Gx(p;z,D')D,(5§+c_,z’-Vl;bg—c_,z’ovz) } ( pe

x15° 11(r-1),

X f ' dtpc_(t)e-“"‘lzn(’lé[(l‘ £)%,5.p%]'7?)
-1

(1=c)/2 2 \(c=1)/2 p1
= ( 2 2) D;(Gx-{» €.,2°V ;64 ~c.,2 'Vz)(_P—> dtpc-(t)e-”‘xtlc-c(%[(l"tz)xnzpz]l/z);
=3

X1z x5
(A12)
where ¢ is related to the integration variable « in (A4) and (2.35) by t=2u ~ 1, and
0= l( 1+¢ )'-/2-1*-( 1-t )h/“-c- (A13)
pc_ - 92 2 2 ’
1+¢ 1-¢
= T Mt T %2< 300, +%,)= 3%, (A14)

If we assume that (A12) is true, then_multiplying both sides by A, (c, ,c_;c)(2/x,,°)°+*/? and using (A5) we
obtain the counterpart of (2.34) for VX(x,,x,:—p) replaced by V¥(x,,x,;p).

The proof of (A12) is rather tricky, since the equality does not hold for the (¢ —) integrand. We shall only
verify it for the leading terms in both sides for x,,—~ 0. The validity of (A12) for arbitrary x, and x, would
then follow from the covariance of @ under the semigroup S defined in Ref. 12 [S consists of those trans-
formations of O' (2% + 1,1) which leave the sign of the Euclidean time component x,, invariant].

To find the small x,, behavior of each side of (A12) we use the power series expansion

= (3) Srmeen(s)

of the Bessel function and the relations

l 1 .]i£ a=1 1-¢ b-]._ B I‘(a)I‘(b)

3 —[1 dt( 3 ) (——2 ) —B(a,b)—-———r(a+b) , (A15)
L ; 63 . 22\ (h=c=1) (25" ¥ .

Tlc+l+1) D, (63 +c.,2 *V,; 65 —c.,2 Vz)( ) > =(-1) T+ 1) ( 2 ) (2+x,0), (A16)

1 ) , S . _ (=D (p2\( 2p2pxp; \ preamafy LZ% \.
GO P D) 270 =Gy (piz )= Gt (B ) (B2 Y ppae(i B2 ) (ar

2 \k -
D, (6y+c.y2 * Vy;065—Coy2 'Vz)[ (32“- ) et *t] =W+ c= 1), (P + 2) *(= x50 2 e~ "t PEEEXE) + O(x 1,200 50 2)* )
(A18)
af=0y+k-1%fc., k=0,1,...,1.

Here PA%*®)(¢) is the Jacobi polynomial; Eq. (A17) is a consequence of (1.33) (cf. Ref. 11(b)); in deriving
(A18) we used the following relation between the Jacobi polynomials and the hypergeometric function

PleB) ()= (= 1) %I—)‘F(nmﬂh L-n;8+1; %) (A19)

(see Eq. 8.962.1 of Ref. 31). Using further the integration formula (we caution the reader that the corre-
sponding equation 7.391.3 of Ref. 31 contains an error)

- o B+v
%fldt<1—2—t-) <-1—+2—t> PeB)t)=B(a+n+1,8+n+1) for v=n (A20a)
-y

=0 for v=0,...,n-1, (A20b)
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we obtain the following small-x,, expression for the right-hand side of (A12):

I B(6x+l+c_,6x+l—c_)exp(—ip-—x-lﬂz> < 2 5 >(H)/2<—P—f )C i(}a) (r+c=1) <EL'£2.—x12)H(—xm-z)k.

%750 2 X2 2 S Te+k-1+1) p?
(A21)
It follows from (A15)—(A17) and from the identity
' 52) (wm1-f2e)
! C-1,n2) - - - -1 -] =1 22
11P¢ (w)=(c+1 z),F(h+c L-Lie+1-1; = w 1p.zp.x12 (A22)

(see Eq. 8.962.2 of Ref. 31) that the left-hand side of (A12) is also given by (A21) in the small x,, limit.
This completes our proof of the representation (2.34).

APPENDIX B: IDENTITIES BETWEEN Q AND ¥V FUNCTIONS FOR PARTIALLY EQUIVALENT REPRESENTATIONS

Equation (2.52) is equivalent to the relation

- v -
(2 - V)" V(xy, €13 %2, Co3%a)X 1y ) = SEN [ ( 5 +c_),,:] V(X1,€15%2,Co3 %35 Xiw 52) (B1)

established in Ref. 11(c). They both follow from the remark that 6,= ~ 3(v—1)-1 for both x =x;, and x= x;;
and from the identity

1- 1- 1- 1- 1-
D,+,,<2—V—l+c_,a;2—v—l—c_,ﬁ>=( 2” +c >"(a+ﬁ)"D, <TV -l+c_,a; T”—l—c_,ﬁ)

1- 1~
= < —2—5 —l+c_>,+ ,,(a+ﬁ)’+"F(—l ,=l-v; -2—2 -l+c; a%ﬁ)
(B2)
for the polynomials (A2). To see that, we rewrite Eq. (1.42) for the Clebsch-Gordan kernel in terms of
the differential operator D, :

@)V (xy, €15%2, €25 %3, X, 2)

et () e wit ez ow) (25 ) ()] @9

and use the identities 8,+1= (1-v)/2 (for x=x{)")

(6y+€ )y (By =€ )psw =(=1) ’: < 1-v e >v ]2, (B4)

(6y+ ) (6y—c), 2
-y +e ) |= 1—y+c_ (B5)
(575 e[ (552

for the normalization factors. Noting further that the translation invariance of V(x,,x,,x,) allows us to
replace z *V, by —z « (V,+V,) and using

(e ) (5e), =

[ef. (B4)] we complete the proof of (B1). Equation (2.52) then follows by replacing V, by é¢p and c, by —¢,.
Applying the differential operator (z - V)" to both sides of the equation

Ny(G,ci1=h=1~-v) (1-v >2_ (5y+l-c+)1(i(1—V)+CJ.,]"2
Naiyle,cs1-h-1) < 2 “/y _[(6x+l+c+),,(§(1—v)+c_),,

- - 1 -
')’(Xw)V(xa:“Ca§x4,_045x;Xlwz)=Efdxj.fdxzv(xl:cﬂxz;cz;x:xlu:z)r(x1,x2,x31x4) (B7)
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[which is obtained by analytic continuation in ¢ of (1.57) and (1.61)], and using (B1), (1.62), and (B6) we

obtain

( 1;” +c_>uV(Xx_y)= ( 1;_”"6->Y(X1’"-)‘

v

(B8)

Using again (1.61) and the relation (2.39) between Iy(p; x5, %,) and Q¥(p; x5, %)=y (x)Q¥ (x5, x4;p) [where the
last equality is a consequence of (1.61) and (1.64)], we find

(—iPZ)"Q?_”(P,Z;xs,xk sgn[( 1;” —c.)u]Q¥”-(P,Z;xa,x4), (B9)

which coincides with (2.53) for n=4. For arbitrary » Eq. (2.53) can be justified in the framework of the

skeleton perturbation theory.

We note that for c_ =0 the above argument [as well as Egs. (B1) and (B9)] requires a modification since

<1—;‘-’)=0for odd v

v

(B10)

and the sign function in the above formulas is not defined (cf. the remark at the end of Sec. IIB 3).
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