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We introduce the temperature concept of Fermi, Landau, and Hagedorn associated with the energy of an
elementary-particle reaction into the thermodynamics of field theory constructed by Weinberg for external
temperature. For weak and electromagnetic interactions this implies that the phase transitions predicted within
a unified gauge theory of electromagnetic and weak interactions should be looked for in elementary-particle inter-
actions at very high energies (cosmic rays). The experimental observation of these effects which might include,
e.g., conservation of strangeness in weak interactions will constitute one of the most clear-cut confirmations of
the unified gauge theory. We formulate a phenomenological field theory at finite temperature and derive all
the relevant thermodynamical quantities (thermodynamical potential, pressure, entropy, energy, specific heat,
and velocity of sound). We consider two possible types of phase transitions, namely of second order and of
zero order (Hagedorn type). We discuss the implications of phase transitions in strong interactions for the
momentum distribution of secondaries. In the particular case of the cr model we find a phase transition of the
second kind induced by the energy of the reaction and a phonon-like excitation spectrum for the pion cloud
inside the nucleon in the spontaneously-broken-symmetry phase, giving support to the idea that hadronic
matter has superfluid properties. This leads to scaling effects at low excitation energies in scattering reactions
on nucleons. The broken symmetry is restored at a critical temperature T, in agreement with previous phe-
nomenological predictions based on a superfluid approach to strong interactions. Above T, the parton mass-
es vanish, which leads again to scaling, but this time in the high-energy-transfer domain. Conservation of
axial-vector currents is found to hold in both phases. In the T & T, phase we expect chiral multiplets.

I. INTRODUCTION tinuous. In all these cases the partition function

For a long time it has been realized that there
exist formal analogies between spontaneously bro-
ken symmetries and the phenomenon of supercon-
ductivity. " Recently the existence of phase tran-
sitions in gauge models for electromagnetic and
weak interactions has been suggested, ' ' starting
from the analogy between the Landau-Qinsburg
equation for superconductors and the Lagrangian
of the Salam'-Weinberg' model. In a different
context it has been suggested' that hadronic mat-
ter might display superfluid properties and under-
go a phase transition of the second kind.

We define in general a phase transition (ph. t. )
of order n as a transition in which the first n —1
derivatives of the thermodynamic potential f with
respect to temperature T exist and are continuous
while the nth derivative has a discontinuity. In
particular, mostly studied are ph. t. of the first
kind when entropy, pressure, energy, etc. are
discontinuous and ph. t. of the second kind when
the above quantities are continuous but the specific
heat C~, the velocity of sound c„etc.are discon-

(1.2)

(where H is the Hamiltonian of the system and fI
is the volume) are finite in the whole temperature
range, including T, (critical temperature), al-
though Q is not necessarily analytic at T, .

Hagedorn" has suggested the existence of another
type of ph. t. for strong interaction in particle
physics which is characterized by the existence of
a maximum temperature T„beyond which hadronic
matter cannot exist. Since in this theory it is not
possible to go from T &T, to T &T, a proper name
for this kind of phenomenon would be ph. t. of the
zero kind (no transition takes place).

In this new type of transition the partition func-
tion (and hence the thermodyna:nical potential)
diverges at T = T,. The same happens for all the
other thermodynamical observables, including
energy and specific heat, which are defined at
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T = T, by a limiting process (T —T,) from their
expressions at T & T,.

In this paper we construct the thermodynamics
of a renormalizable field theory guided by Lau-
dau's" phenomenological approach to ph. t. of the
second kind and Weinberg's4 field theory at finite
temperature. However, we introduce the tempera-
ture concept in accordance with the statistical ap-
proach to high-energy reactions where it is a mea-
sure of the center of mass of energy of the reac-
tion, in contradistinction to the conventional ap-
proach where T is an external parameter. For
the uninitiated reader this difference might ap-
pear to be of minor importance. That this im-
pression is misleading can be seen from the fact
that new and striking consequences, which could
not have been foreseen previously, become now

an obvious possibility. From a purely theoretical
point of view in this soay high-energy physics be-
comes a field theory at finite temperature rather
than at zero temPerature. This implies that the
phase transitions predicted within a unified gauge
theory of electromagnetic and weak interactions
should not be looked for only in the astrophysical
domain but also in elementary-particle interac-
tions at very high energies. In a unified theory of
weak and electromagnetic interactions we might
expect, e.g. , that in reactions induced by very en-
ergetic neutrinos parity, strangeness, CP, etc.
are conserved. For hadron physics the implica-
tions have presumably already been seen in the
cutoff of transverse momenta. In other words,
the whole discussion of phase transitions in field
theories, which has had so far an academic char-
acter, becomes a subject of immediate experi-
mental interest.

We consider two possible types of transitions,
namely of the second and zero kinds with a critical
temperature T, -m~/v 7, where m, is the mass
of the scalar meson and A. is the four-point coup-
ling constant. We discuss the possible implica-
tions of the discontinuity of C~ for the transverse
momentum distributions of secondaries in strong
interactions. In the particular case of the o model
we find a phase transition of the second kind in-
duced by the energy of the reaction and a phonon-
like excitation spectrum for the pion cloud inside
the nucleon in the spontaneously-broken-symmetry
phase giving support to the idea that hadronic mat-
ter has superfluid properties. This leads to scal-
ing effects at low excitation energies in scattering
reactions on nucleons. Above T, the chiral sym-
metry is restored but the parton masses vanish,
which leads again to scaling, but this time in the
high-energy-transfer domain. CAC (conservation
of axial-vector current) is found to hold in both
phases. Moreover, in the T& T, phase we expect

chiral multiplets. The organization of this paper
is as follows: In Sec. II we recapitulate the main
results of Ref. 4 with emphasis on the derivation
of the critical temperature. We derive the expres-
sions of certain physical quantities such as entro-

py, energy, specific heat, and velocity of sound.
This derivation is quite elementary but the expres-
sions obtained might be useful in phenomenological
applications. Section III sketches briefly Landau's
theory of phase transitions of the second kind and

its relation to field theory at finite temperature.
A short discussion of the place of Hagedorn's the-
ory within this context is given. In Secs. IV and V
some new phenomenological results are analyzed.
These results appear as a natural consequence of
the formalism of Secs. II and III and the interpre-
tation of the temperature as an internal parameter.

II. PHASE TRANSITIONS OF THE SECOND KIND IN

FIELD THEORY

Let us consider a renormalizable field theory
which contains among other fields a scalar field
a (or a scalar multiplet of a fields) the Lagrangian
of which reads

L= T —V, (2.1)

V=~p O +4Ao (2.2)

where p.
' and A. are parameters. In order to have

a spectrum bounded from below A, has to be posi-
tive. For the moment we assume A. to be small:
A. «1. The generalization to X-1 will be discussed
in the next section. The Lagrangian L is invariant
under a group G. We consider the case where the
vacuum expe ctation value

(a) =-qw0 (2.3)

so that the symmetry G is spontaneously broken,
and we construct the corresponding field theory
at finite temperature as suggested recently by
Weinberg. 4 In Ref. 4 it was shown that the leading
terms in any group for small coupling constant ~

where V is the scalar potential and T contains the
kinetic terms and other interaction terms. The
renormalizability condition constrains V to be a
polynomial in 0 of order not higher than 4. Since
we are interested in spontaneously broken symmet-
ries V will be chosen to be
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V,« = V, (o) + —,
'

Q;, (T )v, «, , (2 4)

where V„(c) is given by Eq. (2.2) with i),
' replaced

by its renormalized value p„'. Q„(T) is calcu-
lated by using the fact that the quadratic diver-
gences in our renormalizable theory are given by
the tadpole and the boson self-energy graphs.
This formalism gives

and large temperature T are given by the quadrati-
cally divergent loops. These quadratic divergences
can be absorbed by adding a counterterm to the
I agrangian and by a redefinition of the quadratic
terms in V(c). The corresponding effective poten-
tial is

M'(T) =

2&N'(T, ' —T') for T ~T, ,

~N'(T' —T, ') for T&T, .
(2.12)

From Eq. (2.12) we get T, as a function of the
coupling constant X and the physical mass of the
scalar particles:

M (o) M(o)
M2X N

(2.13)

The partition function Z defined in (1.1}becomes
in the "no-loop" approximation4

V,«(o)= ~ (p.„'+XN'T'}o' + Xo (2.5)
(2.14)

~ Veff =0 ato=q.
BG

(2.6)

The absence of spontaneous symmetry breaking
at any temperature is determined by this equation
(i.e., gw 0 implies spontaneous breakdown of sym-
metry).

The solution of Eq. (2.6) which corresponds to a
minimum is

2 + QP$2 T2
C

{2.7)
0 for T&T, .

where N' is a parameter of order 1 which depends
on the group G and the multiplets considered in

The minimum of V,« is given by

V,„„=V,« —NoT'+ 0(&'}, (2.15)

where N, = «'/90 for one scalar boson. From
(2.15) we get for the pressure P

p= —V,« =,-'A. N4(T, ' —T')'+ N T' for T ~T,

(2.16)

where Q is the volume of the system. This approx-
imation is valid as long as we are interested only
in the phase transition, since it gives the non-
analytic parts at T, . In order to get also the ana-
lytic contributions one has to supplement V,«(g)
by other terms which, e.g. for non-gauge field
theories, contain the Stefan-Boltzmann term plus
higher-order corrections in A, which we shall ne-
glect. The complete V.« is now

Since Ã' is positive definite, ' in order to have
gc 0 one must have p. „'&0. The critical tempera-
ture T, is defined by the equation

P= N, T' for T & T, ,

for the entropy density s

(2.17)

2+ g@2T 2 0 (2.8)

The physical mass of the scalar particle is de-
fined by

s= — " = 4NOT'-AN'(T, ' —T')T for T ~T, ,

(2.18)

& Vcr~
2

Q p2
ate= g, (2 9)

s= 4N,T' for T&T, , (2.19)

which leads to

M'(T) =

2A.q for T &T, ,

e = —p+ Ts = 3NOT —XN'(T, ~ —T')[~(T, ' —T')+ T l

for T ~T, , (2.20)

+~N T for T&T, . (2.10) e = 3NT' for T &T, , (2.21)

In order to exhibit explicitly the dependence on

T, we rewrite Eqs. (2.7) and (2.10):

where c is the energy density. From Eqs. {2.16)
and (2.20) we get for the velocity of sound co de-
fined by

N'(T, ' —T'} for T ~T, ,

0 for T&T, ,

(2.11)
8&

C 2

ap

the values

(2.22)
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c = — for T&T~ .
For the specific heat C~ we get

(2.23)

(2.24}

a&o for T &T, ,

a&o for T& T, ,

b&o for any T.

(3.2)

(3.3)

C = —=12' T'+2~&4T'-~X'(T ' T')-TP gT 0 C

for T ~T, , (2.25)

Condition (3.2) implies that a vanishes at T, ,

a(T, ) = 0. (3.4)

Cp 12NpT for T&T, ~ (2.26)

III. PHASE TRANSITIONS OF THE SECOND KIND FOR

STRONG INTERACTIONS

A. Landau's theory of phase transitions of the second kind

In Landau's theory of phase transitions the ther-
modynamic potential P is expanded in terms of an
order parameter g:

aq'+ -' bn'+ 4p (3.1}

where a and b are analytic functions of tempera-
ture T and pressure P. Qp is the analytic part of

P (e.g. , Stefan-Boltzmann term). q vanishes at
T & T, . In order to describe a phase transition
at T = T, from a less symmetric phase to a phase
with higher symmetry, a and b have to satisfy the
following conditions:

We observe that the first derivatives of V,«(e.g. ,
s, P, e) are continuous at T = T„while the second
derivatives C~ and cp are not, which proves that
we have a phase transition of the second kind. It
is also remarkable that the equation of state which
follows from a general field theory with spontan-
eous breakdown is in a first approximation of
Stefan-Boltzmann type with corrections which can
be computed explicitly for any given global sym-
metry. As expected for a Stefan-Boltzmann-type
equation of state the velocity of sound turns out
to be 1jW3. The corrections for T & T, are neg-
ative and can in principle be checked experimen-
tally. " The deviations of the equation of state
from the Stefan-Boltzmann form are also test-
able. " On the other hand it should be clear that
the results given in this section apply at best only
in a perturbation approach for small X. (Indeed
it is not excluded that higher-order corrections
might lead to weak phase transitions of first kind. )
This of course is the case of weak and electro-
magnetic interactions. For strong interactions
when A. -1 no reliable field-theoretical approach
seems to exist so far. Therefore we shall pro-
ceed phenomenologically, suggesting a general-
ization of these results for large coupling con-
stants.

This equation can be used to determine T, (cf.
Sec. II}. Landau assumes that a can be expressed
near T, as

a=A(T —T, ).
The equilibrium condition

(3.5)

—=08$
Bg

(3.6)

implies

Ofor T&T, ; a&0
n'-

a/b -for T &T, ; a&0.

(3.7)

Assuming Eq. (3.5) the second half of Eq. (3.7)
becomes

q' = ——(T, —T}'~; P =; for T & T, , (3 6)

which coincides with Eq. (2.11)obtained in Sec. II
from a scalar field theory.

B Generalization of Landau's theory of phase transition

It is now more or less accepted that Landau's
theory of phase transitions as well as any pertur-
bative field theory at finite temperature can yield
only qualitative results at T, (power behavior in
T -T, , existence of an order parameter, etc.}.
In order to get quantitatively correct results, e.g.
the actual values of critical indexes, a nonpertur-
bative procedure seems necessary. Such a pro-
cedure is provided by the bootstrap approach used
in the renormalization-group method. This sug-
gests that in order to investigate phase transitions
in strong interactions of elementary particles,
where no perturbation theory is expected to work,
a similar procedure has to be applied. This is a
very difficult and as yet unaccomplished task. On
the other hand, it is known from the physics of
condensed matter that the renormalization-group
method recovers the main qualitative results of
Landau's theory as well as those of a perturbative
field theory at finite temperature but provides new
(and better) values for P and the other critical in-
dices. This leads us to the natural conjecture that
the same is expected to happen with a future theory
of strong interactions. This conjecture has some
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independent support also from the observation
that the bootstrap approach, especially its ther-
mod ynatn ical (Hagedorn) version, has already been
applied with apparent success to hadron physics.
In the following we shall therefore adopt the above
conjecture and assume that for phase transitions
in strong interactions the relations given above
are still valid, but with a modified value of P.
Equations (3.1), (3.5), and (3.7) lead to

Q = $0+ ~ay

A'
= ——,

' —,(T, —T)»" + P, for T &T, ,

where

y= 2P-1.

(3.9)

(3.10}

P= I'(T, —T)»" + N T', (3.11)

s = 4N, T' —I'(y+ 2)(T, —T)»", (3.12)

e = 3N,T' —1 (T, —T)» "(T, —T(y+ 1)j, (3.13)

y = 0 is the "canonical" value corresponding to the
value P = —,

' obtained in Sec. 0 as well as in Landau's
original theory. Depending on the value of y we

get a classification into different types of phase
transitions (ph. t) as can be seen below:

(i} y& —2: zero-order ph. t.

(ii) y = —2: no ph. t.

(iii) —1& y& —2: "unphysical" first-order ph. t.

(iv) 0 ~ y ~ —1: second-order ph. t.

(v) y&0: higher-order ph. t.

We give here also the expressions near T, of the
most interesting thermodynamic quantities: pres-
sure p, entropy density s, energy density e, vel-
ocity of sound c„and specific heat C~ for arbi-
trary y:

we have an infinite jump in C~ at T, and the veloc-
ity of sound c,(T, ) =0(if y+0). c, vanishes for a
zero-order ph. t.

hQ„„=b, I, + —,61'+ Q nCi t (4.1)

IV. DEFINITION OF TEMPERATURE AND EXPERIMENTAL
CONSEQUENCES

A. Weak and e1ectromagnetic interactions

Field theories at finite temperature considered
so far' ' treated the temperature as an external
parameter. The values of temperature involved
are of the order of hundreds of GeV and according
to these theories are relevant in astrophysical
domains. Our philosophy is different since we
consider temperature as an internal parameter
connected with the center-of-mass energy
or energy transfer as suggested by Fermi, "
Landau, "Hagedorn, "et a/. In any reaction the
available center-of-mass energy or the energy
loss of the projectile is transformed partially or
totally into heat raising the temperature of the
system (fireball). This system is the medium in
which the elementary fields (e.g. parton fields,
scalar fields, etc. ) propagate and interact. This
could lead to two most important consequences.
For weak and electromagnetic interactions this
implies that the critical temperatures' ' predicted
by the unified gauge theories can be reached
through s cattering experiments. Furthermore,
in these theories it follows that at T ~ T, the sym-
metries broken by weak interactions are restored,
which could imply that in a reaction induced by
neutrinos parity, strangeness, CP, etc. are con-
served. Moreover, in unified theories of weak,
electromagnetic, and strong interactions this
might imply that in these reactions all quantum
numbers are conserved. As a consequence of this
only neutral weak currents could exist since from
the generalized Gell-Mann-¹ishij ima relation

4N T' —1(y+ 2)(T, —T)»",
12N T'+ I'T, (T, —T)»

C =12NT +lT, (T, —T)»,

(3.14)

(3.15)

where Q, I„Y, and C, stand for electric charge,
isospin, hypercharge, and charmed quantum num-
bers, and from the separate conservation of these
quantum numbers it follows that

where
+Q hadrons 0 ~ (4 2)

F=XN T, (3.16)

In Eq. (3.9) we neglected the logarithmic diver-
gences which exist in field theories. These terms
might change the classification given above for
y= —2 or for y~0. For -1+y& —2 the potential
is finite at T, and the first derivatives are discon-
tinous as in ph. t. of the first kind, but they diverge
at T, . This could be interpreted as an unphysical
case.

For ph. t. of the second kind we observed that

This could be checked in reactions at very high
energies (cosmic rays), where temperatures of
order 300 GeV might be reached. The search for
these effects should be one of the most urgent
tasks of cosmic-ray physics, since the observa-
tion of these effects will constitute a clear test
of the unified gauge theories and at the same time
of the correctness and usefulness of the tempera-
ture concept as an internal parameter. Another
aspect of these effects is that weak interactions
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at high energies might become strong in the sense
that they would, conserve all the symmetries char-
acteristic for strong interactions.

B. Strong interactions and cutoff of transverse momenta

~-Iglrp (4.3)dp,
where Tp-m„. This is interpreted by assuming
that an instantaneous thermodynamical equilibrium
is reached after the collision and the observed
pions are emitted according to this equilibrium
distribution which is of the Bose-Einstein type:

n~[exp[(m'+ p ')' '/T] —Ij (4.4)

[The longitudinal momentum P ~~
is not exhibited

in Eq. (4.4) because the longitudinal (incoming)
direction is a privileged direction which has to be
eliminated from equilibrium considerations. ] For
P~&m„- T Eq. (4.4) reduces to (4.3). In this way
one has a device for the measurement of tempera-
ture in strong interactions, and this is also the
definition of temperature used in statistical models
of strong interactions. "'"'" It is one of the most
remarkable facts of high-energy physics that in
the momentum range 10 GeV/c &P, & 100 GeV/c
Tp turns out to be roughly constant, independent of
P&. This is very surprising indeed, since in a
straightforward statistical approach" one would
expect (at least for central collisions, where one
can assume that the whole available center-of-mass
energy is transformed into thermal energy, i.e. ,
heat) T to be an increasing function of P, according
to the equation of state of hadronic matter.

An explanation for this observational fact is
given by the statistical bootstrap model" which
predicts the existence of a maximum temperature
Tp of hadronic matter. This prediction is based
on the fact that in the bootstrap model the ther-
modynamical distribution function diverges for
7 ~T„ i.e., that a ph. t. of zero kind takes place
at T,. As pointed out in Sec. III, such a ph. t. cor-
responds in a phenomenological field-theoretical
approach to y& -2. We turn now to the region

For strong interactions the consequences of the
fact that temperature is an internal rather than
an external parameter have already been seen,
presumably, with present accelerators. The main
implication is the shape of the P, distribution of
secondaries in high-energy strong interactions.
It is known" that as long as the incident momen-
tum P, in P-P collision, e g , i.s .below -100 GeV/c
the inclusive cross section do/dP for the reaction

P+ P- m+ anything

has the form

above 100 GeV. There deviations from the form
(4.3) have been observed" (cf. Fig. 1) which mani-
fest themselves in (among other ways) an effective
increase of T with p, [moreover, the possibility
of a fit to the data with an equation of type (4.3)
seems questionable]. There is so far no satis-
factory explanation for this deviation, and this
makes the search for an alternative explanation
for the observed cutoff in P, desirable.

It is anyway remarkable that the increase of the
effective T with s (s = 2mp; =E, ') at large p~
is in a first approximation of the form

rv
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FIG. 1. A typical transverse-momentum distribution
in particle physics. It is seen that small P~ the slope
corresponds to T m„, while at large p& the slope in-
creases. The reaction is p +p inclusive; p~ is measured
at 8,. =90' prom Ref. 16).

(4.5)

which coincides with what one would expect from
a Stefan-Boltzmann-type equation of state [cf. Eq.
(2.21)] lending support to a statistical interpre-
tation of the effect.

It was suggested some time ago' that hadronic
matter might display superfluid properties and
undergo a phase transition of the second kind.
This might explain the above-mentioned deviations
from Tp= const, since one could assume that even
below T, there is a slow increase of T withE~
which has not been observed because the data are
not precise enough or rather because an inclusive
measurement is not an ideal tool in order to get
the energy dependence of T. [In an inclusive re-
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action we have a superposition of various impact
parameters, i.e. momentum transfers (q, q, ),
and it is to be expected that T depends on q,
rather than on P, .] On the other hand, near T,
if one has a ph. t. of the second kind there is a
(possibly infinite) jump in C~ so that the transition
beyond T, might be inhibited as long as E„~ does
not exceed a certain value. The constancy of T,
with E, in the 10-100 GeV/c range is thus ex-
plained by the divergence of

dE, . dT
Cp - d' —, lim

d
—= 0.

T '1'» rz E e.m.
(4.6)

V. THE o MODEL AND SUPERFLUIDITY OF HADRONIC
MATTER

L= /[ay„s„—g(a —iv ~ ry, )]g+ 2[8 &a) + (s„sP]

——,
' g~ (a'+ w'} — A.

2 (a' + w P, (5 1)

where g, m, and 0 are the quark, pion, and scalar
fields, respectively, and g and p, are parameters.
In (5.1) (o, s) transform as the (-,', —,') representa-
tion of chiral SU(2) x SU(2} so that I. is invariant
under this group. Because of parity conservation
the vacuum expectation value

A simple and well-known illustration of a f ield-
theoretical model of strong interaction with spon-
taneous breakdown of symmetries is the a model. '7

In the following we shall discuss some implications
of our approach within the context of this model ap-
plied to quarks and boson fields.

The Lagrangian of the 0 model is

phase T &T, with the superfluid phase of hadronic
matter as suggested already in Ref. 18 and the
T &T, phase with the normal phase of hadronic
matter. This follows from the important result
of Eq. (5.4) m „=0 (Goldstone boson), which im-
plies a phonon spectrum for the pion cloud of a
nucleon

(5.6)

Indeed, this is Landau's condition for superfluidity,
which was found also to be consistent with ex-
perimental high-energy data. " This also implies
scaling for scattering on nucleons, since the prop-
erties of a superfluid are determined only by the
collective excitations of the system which are rep-
resented by the excitation function (5.6) where no
mass scale is present. (The scattering occurs
essentially on the pion cloud and not on the indivi-
dual partons. } This could possibly explain the
scaling observed in deep-inelastic e-P scattering
even at low energies where the superfluid proper-
ties of the target are not affected by the energy
transfer and no Bjorken scaling is expected. At
the same time, at very high energies where one
could expect the system to be in the phase T & T,
similar scaling properties might appear (although
the system is not superfluid anymore) because the
scattering objects which are seen now by the vir-
tual photon are massless partons [cf. Eq. (5.5}].
Furthermore, it is interesting to point out that
from this model it follows that CAC should hold
at low energies (because m, = 0}as well as at
high energies (because the chiral symmetry is re-
stored). Furthermore, at T &T, this model pre-
dicts the existence of chiral multiplets and all the
other consequences of an exact chiral symmetry,
such as g„/g» = 1, etc. Last but not least, within
this model one can estimate using Eq. (2.13) the
critical temperature

(v), = 0 (5.2)
(5.7)

(o),w 0. (5.3)

Introducing temperature as discussed in Sec. II
we get

so that the spontaneous breakdown of this symmetry
is again achieved by the condition of the second-order phase transition in strong

interaction connected with the superfluid properties
of hadronic matter. Using the Weinberg formalism
of Ref. 4 for our SU(2) xSU(2) a model (including
the quark, the pion, and the scalar fields g, t,
and a) we get an effective potential

T ~T, , (a)ow0, m~ = 0, mg( ) ae0o, (5.4} Vfr = 5[V~'+ (~-kg)T'](a'+ v')

+ X(a'+ m')', (5 8)

T&T, , (a), = 0, m, =m, x0, m= 0, (5.5)

where m, m„, and m are the masses of the
quarks, pions, and 0, respectively. It is natural
to identify the spontaneously-broken-symmetry

(5.9)

where p„ is the renormalized value of p, in Eq.
(5.1), and A and g are defined in Eq. (5.1). Com-
paring Eqs. (2.5) and (5.8} we obtain

=1
3A.

'
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so that the critical temperature in Eq. (5.7} is

tPl Q
c gg/g[2(1 /3/)]1/2 s (5.10)

where m =M, (0) is the mass of the c particle at
T = 0. A numerical estimation of T, would be pos-
sible if we had experimental knowledge about the
scalar meson cr.
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