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It is hypothesized that the state vector describes the physical state of a single system in nature. Then it is
necessary that the state vector of a macroscopic apparatus not assume the form of a superposition of
macroscopically distinguishable state vectors. To prevent this, it is suggested that a nonlinear term be added to
the Schrodinger equation, which rapidly drives the amplitude of one or another of the state vectors in such a
superposition to one, and the rest to zero. It is proposed that it is the phase angles of the amplitudes
immediately after a measurement which determine which amplitude is driven to one. A diffusion equation is
arrived at to describe the reduction of an ensemble of state vectors corresponding to an ensemble of
macroscopically identically prepared experiments. Then a nonlinear term to add to the Schrodinger equation is
presented, and it is shown that this leads to the diffusion equation in a weak-coupling approximation.

I. INTRODUCTION

What is it in Nature that is in one -to-one cor -
respondence with the state vector of quantum the -
ory? Most physicists answer: “The state vector
corresponds to an ensemble of identical systems
in Nature.” Bohr' felt that quantum theory, with
this interpretation, was a complete and satisfying
theory. However, Einstein®'® argued that, since
single systems exist in Nature and quantum theory
does not describe them, quantum theory is an in-
complete description of Nature and should be mod -
ified.

In the present form of quantum theory, the state-
ment “The physical state of a single system in
nature is in one-to-one correspondence with the
state vector of the theory” is not acceptable. In
this paper we propose an altered form of quantum
theory for which this statement is acceptable.

Then this theory can be regarded as directly de -
scribing reality, and need not be thought of as
describing just the statistical behavior of reality.

The conflict between the above statement and
quantum theory was made evident by Schrodinger*
with his “cat paradox.” As is well known,’ Schro -
dinger pointed out that if one accepts the truth of
the above statement, then it is possible to set up
an experimental arrangement whereby the physical
state of a single cat in a closed box is in one-to-
one correspondence with the state vector
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5 |cat alive) + R |cat dead). (1.1)
This conflicts with our common sense notion that
a cat (whether observed or not) is either alive or
dead, and so its physical state should be in cor -

respondence with either of the state vectors
|cat alive) or |cat dead). (1.2)

In other words, the state vector (1.1) predicted by
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quantum theory corresponds to no physical state
of the cat, and this contradicts the statement.
Therefore, either the statement is false, or our
common sense is at fault, or quantum theory is at
fault. It is usual to reject the statement. How -
ever, in this paper we will accept the statement,
and examine the possibility that quantum theory

is at fault.

It is the linearity of the Schrédinger equation
which produces the state vector (1.1).% If quantum
theory is modified so that the Schrodinger equation
becomes nonlinear, it could be possible to produce
a final -state vector of the cat which is one of those
in (1.2). However, when the experiment is re-
peated many times, half the time the cat comes
out alive and half the time it comes out dead. In
order to agree with the outcome of this repeated
experiment, the nonlinear Schrodinger equation
must produce different solutions each time it is
solved: Half the time it must predict the final -
state vector |cat alive), and half the time it must
predict the final -state vector |cat dead). But
since the final -state vector predicted by the non-
linear Schrodinger equation must be uniquely de -
termined by the initial values of the variables in
the equation, we must answer the question “What
are the variables in the nonlinear Schrddinger
equation whose differing initial values lead to dif-
fering final-state vectors?”

Recently, Bohm and Bub’ have introduced a
Schrodinger equation modified by nonlinear terms
which depend on certain “hidden variables” first
introduced by Wiener and Siegel.® It is the initial
values of these hidden variables which determine
what the final -state vector will be. Such a theory
has been called a “hidden -variable theory of the
first kind” by Belinfante.’

In the modification of the Schrdodinger equation
suggested here, no new variables are to be in-
troduced into quantum theory. The variables will
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be the amplitudes x,Y? and phases 6, of the co-
efficients of the expansion of the state vector
[4(t)) in a certain basis |¢,(t)) (to be prescribed
later):

[0y = 3 x,"*expli6,()]|@a(8) . (1.3)

It will be the initial values of the 6, which deter -
mine the final -state vector. Loosely speaking,
the phase angles 6, are the hidden variables of
this theory.

The theory is to work in the following way. Con-
sider an experiment wherein a microscopic system
interacts with a macroscopic system (apparatus).
Before the interaction takes place, the combined
system (hereafter simply called “the system”) is
to be described by a state vector, say |x()). How-
ever, the correct state vector to use in describing
the system is never precisely known because the
physical state of the system can never be pre-
cisely defined experimentally. As a result, one
can construct an ensemble of state vectors |y,(t)),
each one of which is consistent with all known ex -
perimental facts about the system. One does not
know which state vector to choose to describe the
system, so one may regard them a priori as
equally likely.

Choose one of these initial -state vectors, and
follow its time evolution. Before the interaction,
[0(t)) = |xx(t)). Immediately after the interaction,
[(¢)) will have the form (1.3), where each |¢,(t))
corresponds to a possible outcome of the experi-
ment. The Schrédinger equation without the non-
linear term would maintain (1.3) as a super-
position of macroscopically different states, with
the values of x, essentially unchanged, after the
interaction has ceased. However, the nonlinear
Schrodinger equation (whose effects should be
negligibly different from the effects of the linear
Schrodinger equation during the interaction) should
rapidly drive all x,’s to zero, except one x, which
is driven to unity, after the interaction has ceased.
If this occurs, we will say that the nonlinear
Schrodinger equation possesses “property 1.”

Thus, with a nonlinear Schrodinger equation pos -
sessing property 1, each initial -state vector |y,(t))
determines a final -state vector |¢,(t)) which cor -
responds to a particular macroscopic outcome of
the experiment. The indeterminism that is ob-
served in Nature is regarded as due to our in-
ability to select the precisely correct state vector
corresponding to the initial physical state of the
system. Another initial -state vector |y, (¢)), just
slightly different from [x,(¢)), can result in a com-
pletely different final -state vector l«,o,,,(t)). In order
that we obtain agreement with the statistical pre-
dictions of quantum theory, the nonlinear Schro-
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dinger equation must have a second property which
determines how frequently each final -state vector
l@,(t)) occurs.

We proceed to define this second property by
first grouping the initial -state vectors into equiv -
alence classes as follows. Starting with any ini-
tial -state vector, compute |(0)), where ¢=0 is
a time immediately after the interaction has
ceased, but before the reduction (the effect of the
nonlinear term) has begun. |[¢(0)) will have the
form (1.3) All initial -state vectors for which |(0))
has identical x,(0), . ..,x,(0), ... [but different
6,(0), ...,8,(0),...] are in the same equivalence
class. We will assume that, in each equivalence
class, every 6,(0) is randomly distributed. It is
the values of these 6,(0), themselves determined
by the initial -state vector, which determine the
final -state vector.

Agreement with the statistical predictions of
quantum theory will be obtained if the nonlinear
Schrodinger equation, acting on the initial -state
vectors of an equivalence class, produces the
final -state vector |¢,(t)) [i.e., drives the nth co-
efficient x,(¢) to unity] for a fraction x,(0) of the
total number of members of the equivalence class.
If this occurs, we will say that the nonlinear
Schrodinger equation possesses “property 2.”

To summarize: The reason we get different re-
sults each time we repeat an experiment is at-
tributed to the fact that each time we start out with
a different physical state of the system, and there-
fore a different initial -state vector, obtain dif-
ferent phase angles 6,(0) after each interaction,
and so each time the nonlinear Schrodinger equa-
tion drives a different x, to unity.

Our approach to the construction of such a theory
proceeds in two steps. In the first step, in Secs.
IT and III, we construct a “diffusion equation” or
“master equation.” This equation is to statisti-
cally describe the reduction behavior of the solu-
tions of a nonlinear Schrodinger equation possess-
ing properties 1 and 2. Then in Sec. IV we suggest
a nonlinear term to add to the Schrédinger equa-
tion, and in Secs. V and VI we show that (in suit-
able approximate schemes of solution) the diffusion
equation can be derived from it. The equations in-
troduced are the simplest we have been able to
find with the desired properties. We will try to
make the choice of these equations plausible, but
they are not “inevitable.”

II. DIFFUSION EQUATION FOR A TWO-STATE SYSTEM
To illustrate what we have in mind, we will be -

gin by discussing the reduction of a two -state
quantum system.!® We introduce the probability
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density p(x,, x,, t) which gives the probability at
time ¢ that the squared amplitudes for the two
states will lie in an infinitesimal range about the
values x,, x,. If we restrict our attention to the
behavior of the state vectors in an equivalence
class characterized by certain x,(0), x,(0), the
initial probability density is

P (x4, X5y 0) = 6(2, ~x,(0))8(x, —x,(0))
=8(x, —x,(0)8(1 —x; —x,) (2.1)

(of course x, +x,=1 at any time).

We wish to write down a ““diffusion equation”
whose solution, subject to the initial condition
(2.1), will be the probability density p for the

—J

equivalence class. It is to be a linear equation

so that the solution for an ensemble of equivalence
classes will simply be the sum of solutions for
each individual equivalence class. Without more
ado, we shall write down the equation we have in
mind,

9 2
a—F; :“<5?x_1 -5%) (x1%)p (2.2)
(» is some positive number, p is a positive cou-
pling constant), present solutions for » =2, 1, and
then motivate the choice of this equation.

The solution of (2.2) for » =2, which agrees
with (2.1) at ¢ =0 [setting x,(0)=x,], is

pdx,dx, =dx,d In[x,(1 —x;) /(1 =x,)x,]6(1 =, —x,)(272ut)”"?
X [xoexp( — (4 t) ™Y =t +1nx, (1 —x0) /(1 = x,)%,] )

+(1 —xg)expl —{(4ut) ™Y +pt +1n[x, (1 = x,) /(1 —x,)x,] 1 2]

(2.3a)

=dx, dx,0(1 =%, = x,)[%6(1 = %)%, "3(1 —x,) " 34rut]Y? exp(—5ut —(4ut) YIn[x,(1 —x,) /(1 =x,)x,] ¥ .

(2.3b)

From (2.3a) we can see that this solution, regarded as a function of x,, consists of two peaks, initially
superimposed at x, =x,, which separate and travel toward x, =0 and x, =1. The peaks are Gaussian in
the variable In[x,(1 -x,)/(1 —x,)x,]. The areas under the peaks traveling toward x,=1 and x, =0 are x, and

1 —x,, respectively. As{-,

p—==x,(0)6(x; —=1)8(x,) +[1 =x,(0)]6(x,)8(x, - 1),

t—wo

(2.4)

which exhibits property 1 (embodied in the 6 functions) and property 2 (embodied in the numerical coef -
ficients multiplying the & functions). From (2.3b) it can most clearly be seen that this solution [unlike the
solution below in (2.5)] vanishes at x, =0, 1 for any finite time.

The solution of (2.2) for » =1, with the same initial condition (2.1), is

p=6(1 —x; —x){U(x)U ()1, Xy, %) +8(xy =1)[xg =Falt, 1, %) +0(xy)[1 = x5 —f>(8, 0, x0) ]},

3

(2.5a)

n+1

Fi (8, 31, %) = [x6(1 =x0) /3y (1 = %) 1Y% D" [(22+3)/(20 +1)"(2n + 2)* 1Py, 1 (2, - 1P, (22, - 1)

n=0

X exp[ =\ (n +1)(n +2)t] .

In (2.5), U(x) is the step function (U =1 for x> 0;

U =0 for x<0) and P}, ,(t) is an associated Legendre
function. An important aspect of (2.5) is the pre-
sence of the & functions 6(x,), 6(x, —1) and the step
functions U(x,), U(x,). When (2.5) is substituted
into the right-hand side of (2.2), these 5 func-
tions are multiplied by x,x, =x,(1 —x,) and so they
vanish [since x5(x) and all its derivatives vanish
when integrated with respect to infinitely dif -
ferentiable test functions], while differentiation
of the step functions produces 6 -function terms
obtained when (2.5) is substituted into the left -
hand side of (2.2). The process we are consider -
ing is somewhat akin to random walk with ab-

(2.5b)

—

sorbing barriers: it is interesting that the pile-
up of probability density in the “barriers” at x, =0
and x, =1 is completely contained in the solution.

As t—, the solution (2.5) approaches (2.4), so
(2.5) also exhibits properties 1 and 2. This of
course is no accident; we now turn to the dif-
fusion equation (2.2) to examine the properties it
imposes on its solutions.

The dependence of Eq. (2.2) upon the differential
operator (8/9x, —3/9x,) forces the probability den-
sity to flow along lines of constant x, +x,. The
initial condition (2.1) puts all the probability den-
sity on the line x, +x,=1, so p retains the factor
5(1 —x, -x,) for all .
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To discuss probability conservation, we write

p=p(x,,t)8(1 —x, —x,), converting (2.2) into

85 - 32 r =

ﬂ_“‘ 5}1—2 xl (l—xl)p. (2.6)
Integration of (2.6) from x=0" to 1* (+ refer to the
addition or subtraction of an infinitesimal num -
ber) yields

rl=0-] :

(2.7)

It can be shown that the right -hand side of (2.7)
vanishes for » = 2 because p is nonsingular at the
boundary (in fact, p and all its derivatives vanish).
For 0<7< 2, it can be shown that if the limits on
the right -hand side of (2.7) were taken from within
the interval (i.e., x, =17, x, =0%), these terms would
not vanish: Indeed, they represent the probability
flux to the boundary. However, the limits are
taken from outside the interval, where p vanishes
identically, so probability is conserved. Solutions
(2.3) and (2.5) illustrate both kinds of boundary
behavior.

To see why p is non-negative, we rewrite (2.6)
as an equation for ¢ =x,"(1 —x,)"p:

r—

X P

o (. [0 ,~
ﬁfpdx’—“[axl (a —x,)pﬁ:l# T ax,

2
a—(1)-:ptx,'(l —x,) 0% (2.8)

Because the function multiplying 82¢/9x* is non-
negative on the interval 0-1, this is an elliptic -
parabolic equation. For such an equation there
exists a minimum principle,!! stating that ¢ takes
on its minimum value on the boundary of the space -
time strip 0sx<1, 0< <. [Essentially the argu-
ment is that a minimum of ¢ within the strip re-
quires 9¢/8t=0, 8%¢/9x,%>0, which (2.8) forbids.]
It can be shown that ¢ vanishes at the boundary
x,=0,1, and as t—~, and by (2.1) is =0 at ¢ =0.
Therefore, ¢ =0 everywhere and so p is non-
negative.

To show why all solutions possess properties
1 and 2 we multiply (2.6) by x, and by x,(1 —x,),
and after integrations by parts we obtain

9 1
o [ xipla, Dax, =0, (2.9)
ot J,

9 1 1
——f x(1 =x)P(xy, t)dx, = —2[ %" (1 =2))P(x)dx, .
at J, o

(2.10)

The right-hand side of (2.10) will be negative as
long as p has support on the open interval 1>x, >0,
and will only vanish if

p=ad(x,) +b6(1 —x,) . (2.11)

Therefore, the integral on the left -hand side of
(2.10) is a monotonically decreasing function of
time. However, this integral is bounded below

by zero, so it approaches a limit as t-~«. Then
the right-hand side of (2.10) must vanish as ¢t -~ ©, and
asthis only occurs whenp assumes the form (2.11)
we conclude that (2.11) holds in the limit ¢ -,
[Incidentally, the limit of the integral on the left-
hand side of (2.10) is therefore also zero as {—«.]
This means that the solutions possess property

1.

According to Eq. (2.1), the mean value of x, at
time £ =0 is x,(0). According to Eq. (2.11), the
mean value of x, as t—« approaches b. Since
Eq. (2.9) states that the mean value of x, does
not change, we conclude that b =x,(0). Similarly,
the mean value of 1 —x; does not change, soa=1
-x,(0). It then follows from Eq. (2.11) that the
asymptotic form of p is (2.4), and thus property
2 is obtained.

All these properties of solutions of Eq. (2.2)
are unaffected by replacing (x,x,)” in Eq. (2.2) by
any function of x,, x, that is positive for x, +x,=1,
0<x,;< 1, and vanishes on the boundary x,=0, 1.

III. DIFFUSION EQUATION

The diffusion equation that generalizes Eq. (2.2)
to an N -state quantum system is

3p(X,t) _ (a 3N, .,
T_“ﬁ: - ) Xy X P (3.1)

L \ox, 9x,

(the a,,’s are real constants, and for simplicity
in later expressions, we will suppose @,, =Q .,).

The solutions of Eq. (3.1), subject to the initial
condition for an equivalence class

p(X, 0) = 6(x, —x,(0))6(x, —x,(0)) « * 8(xy —xy(0)),
(3.2)

enjoy analogous properties to those of the solu-
tions of Eq. (2.2). We will now state these five
properties and sketch the proofs of these state-
ments.

1. p is proportional to 6(1 —x; =+ + + —xy). This
follows from the dependence of (3.1) on the differ-
ences (8/9x, - 8/0x,,), and the vanishing of p off
the hyperplane x, ++ + » +xy =1 at ¢ =0 due to the
initial condition (3.2).

2. Probability is conserved. The integral of
(3.1) over a volume slightly larger than the hyper-
cube 0< x;< 1 results in

9 1 1
—f dxy - f dxyp=0 (3.3)
ot Jo 0

for any solution of (3.1) that vanishes as the bound -
ary of the hypercube is approached from the out-
side.
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3. p is non-negative. Multiplying (3.1) by
(%,%, + + + xy)" andwriting ¢ = (x,%,. . .xy)", We obtain

00 ey (52
L 3 @ x, )0 (B

n<m
The right -hand side of (3.4) is an elliptic operator
on ¢ on the hyperplane x, +x,++ * *+xy, =1 con-
tained within the hypercube 0< x;< 1 because of
the positive -definite nature of the characteristic
expression

i U6 Xy (8" = E™)7>0 (3.5)
n<m
(E is any nonzero vector lying in the hyperplane,
ie., [£/#0,2°%,£"=0). Thus by the minimum
principle already mentioned,!! ¢ takes on its
minimum value on the boundary of the union of the
spatial domain with the time domain0<¢<«. For
the solutions we are considering, ¢ vanishesonthe
boundary of the spatial domain and at f -~ < and is non-
negative at t =0, so ¢ =0 everywhere.
4. The solution possesses property 1. From
(3.1) we have

9 1 1

—f dx,- + J dxyxyp =0, (3.6)
at 0 0

9 1 1

-f axy: - J. dxyx, (1 —x,)p

al 0 0

1 1
=—2uf dx---[ dx ( oz,,,%c,,,’)x'p.
o 1 o N Z":'k kR R
(3.7)

By the identical argument given in Sec. II, we con-
clude that the right-hand side of (3.7) must vanish
as t—=, which means that p is nonvanishing only
where the other factors in the integral on the

right -hand side of (3.7) vanish, i.e., at x,=0,1

(X m.m#e ¥rm’ X, vanishes only if each x,=0, m #k,
which means x,=1). Since this holds for all k, p
is asymptotically the sum of products of 6 func -
tions

p'—_::Clé(l —xl)a(xz) o G(XN)
+o0 o +Cy0(x)0(x,) ¢ - (1 —xy) (3.8)

(the c;’s are constants). [Terms such as 6(1 - x,)
8(1 - x;) cannotoccur, since p~8(1 —x; =+ + - =xy)]
Thus all the probability density ends up at corners
of the hypercube, satisfying property 1.

5. The solution possesses property 2. The ex-
pectation value of x, at =0 is x,(0), by (3.2).

At t—= it is c,, by (3.8). It does not change with
time by (3.6). Therefore, c, =x,(0).

A few more remarks about Eq. (3.1) conclude
this section. These five properties of the solu-
tions of (3.1) are unaffected by replacing each x,”
by any function of x, that is positive for 0< x,< 1

and vanishes at x,=0, 1.

An existence proof does not yet exist, nor have
we been able to find exact solutions for N > 2.

Equation (3.1) should allow solutions for N > 2
which involve step functions and & functions, as in
the solution (2.5). This is discussed further in
Appendix A. Also, in Appendix B is a crude esti-
mate of the characteristic time 7 for the reduction
to take place. It is argued there that T=N""'/u
(r=1: N is the number of states). The case r =1,
for which 7 is independent of N (assuming  is in-
dependent of N) would appear to be of special in-
terest.

IV. NONLINEAR SCHRODINGER EQUATION

It has been possible to find a nonlinear Schro-
dinger equation whose solutions are statistically
described by the diffusion equation, in the weak-
coupling limit, The strong-coupling limit is as
yet imperfectly understood, but might satisfactori-
ly describe the reduction process: This is dis-
cussed in Sec. VII. In this section the nonlinear
Schrédinger equation will be presented. Then
in the next two sections the diffusion equation
will be derived in two different ways from the non-
linear Schrédinger equation.

Recalling the discussion in Sec. I, |§(¢)) is the
state vector corresponding to a microscopic sys-
tem and an apparatus undergoing an experiment.
Without the nonlinear term in the Schrodinger
equation, we suppose that

l(t)) = exp[ - il ~*(H o +H )t 1| 9(0)) 4.1)

where H, +H; is the usual quantum-mechanical
Hamiltonian for the combined system. It is as-
sumed that the effect of H; is negligible except
for a brief interval of time prior to ¢t =0 during
which the interaction of the microscopic system
with the apparatus is supposed to take place.

A complete orthonormal basis of state vectors
to describe the combined system is denoted by

l@a(t))=exp[— ik (H, - hw,)t]|¢,(0)). (4.2)

The extra factor involving w, =(@,(0)|H ,|¢,(0)),
making |¢,(¢)) time independent if it should be an
eigenvector of H, (which it generally will not be),
is necessary to the weak-coupling approximation
as will be seen. The choice of these state vectors
is important, for they correspond to the physical
states that we observe around us, i.e., one or
another (and not a linear superposition) is the

end result of the reduction process. Each must
be “close” to being an eigenvector of all operators
corresponding to macroscopically observable
quantities (even if these operators do not com-
mute). How these state vectors are to be chosen
and the precise meaning of “close” we leave to
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future elucidation of the theory.

Those among the |,(t)) that can be regarded as
a priori equally likely initial-state vectors of the
combined system will be denoted by |x,(f)). Be-
fore the interaction, |¢(t)) is identical to one of
the [xx(t)).

The probability amplitude for the nth state is
defined as

an(t) =x," *()exp[i6,(t)]= (@, ()| w(2)) . (4.3)

Except for the factor involving w,, these are the
usual interaction-picture amplitudes. It follows
from (4.1) and (4.2) that without the nonlinear
term, the probability amplitudes satisfy the Schro-
dinger equation

+ Z (@n OIH @ (1))a (4.4)

m#1
The nonlinear term that we propose to add to the
right-hand side of (4.4) is

da,
dt

Y3 @ amexplirBy),  (4.5)

m=1

+Ni(g¥)™?

where X is a real coupling constant. The constants
a,.exp(ir8,,) are elements of a Hermitian matrix
(anm =Umns Bnm = —an)'

Any remarks that we are able to make concern-
ing direct solution of (4.4)+ (4.5) are postponed
to Sec. VII. Here we merely note that, as a con-
sequence of (4.4)+ (4.5),

PEARLE 13

2 Z a3 (e () =L i 5(0)=0, (4.6)

so probability is conserved. Before and after the
interaction, the Schrodinger equation does not
depend upon H;:

ot 28Rl

N
+Mia,” Z a¥a, exp(ivBnm) . 4.7
m=1

(We have multiplied by a,;" so that the equation is
defined even when q,=0.) Before the interaction,
only one amplitude—say a,—is nonzero, and it
satisfies the equation

ih% =hw,a, +Ni(ay

i )7 'a) ar g (4.8)

whose solution is a, = exp[ — i(w, +Xay)t].

After the interaction has ceased at ¢t =0, many
a, are nonzero. Our task is to solve (4.7) for
t= 0, given the initial values a,(0). In what fol-
lows, it will be helpful to write (4.7) as two
coupled equations:

"—Zxx'/ZZx

de,
dt

Uy SINV (6, = 0, +B,),  (4.92)

N
= - w, = Ax, /D Zl X 20 nCOSY (0, = 6., +B,,) -

(4.9p)

V. DIFFUSION EQUATION BY PRIGOGINE’S METHOD

Two different derivations of the diffusion equation from (4.9) will be presented. Each involves a plausi-
ble but not rigorously justified approximation, so we feel that two of these are more convincing than one.

We define the probability density f(x,, x,, . . .

» X535 01, 0y ...

,0y;t) for an ensemble of solutions of (4.9),

and seek to solve the equation for the conservation of probability:

(%X ) 20y ST (6, = 0, +B ) | -

9 9

We will solve (5.1) approximately by applying a scheme essentially equivalent to that developed by
Prigogine'? and co-workers. Upon expanding f in a Fourier series in the differences of angles

f=p&t)+ i Ema(X, texplir(8,, — 6,)]+*

m,n=1

(8mn=8nm &mm=0), inserting (5.2) into (5.1), and requiring the coefficients of 1 and exp[ir(8; - 6;)] to

vanish, one obtains

9 9 ’ " - . ,
5P 2N Y o () 0y (20) [ iy XD ) — iy XD (=i7 )] = O,
n,m

9
2. e ag,f
9 -
- ; 30, [Fx, x+<r/z)x,,,r/zoz,,,,,cos~r((9,l -6, +8,,)]=0.
(5.1)
(5.2)
(5.3a)
=0. (5.3b)

9 . . - .
3781~ ir(w; —wy)gi; —in(x;x;) 77 2(8 /0 x; — 8 /0x;)(xx;) p[exp(ivB ;) ;s +



13 REDUCTION OF THE STATE VECTOR BY A NONLINEAR... 863

The approximation consists of taking into account only lowest-order phase-angle correlations, i.e., ne-
glecting all terms other than those explicitly given in (5.2) and (5.3). Prigogine argues that this approxi-

mation is appropriate to a weak-coupling theory.

We assume that at =0, f is independent of the phase angles (random-phase approximation mentioned
in Sec. I). Therefore, g;;(%X,0)=0, and (5.3b) can be integrated:

t
&i;exXp(irB;;) = ix(x;x;) 77728 /8 x; — 8 /0x;)(x;x;) ay; f dt,p (X, t)explir(w; — w;)(t -t,)]. (5.4)
0

When (5.4) is inserted into (5.3a), an equation for p results:

ap

n,m

t
a2 S 0/, -0 /0,00, (x,,x,,,)'J; dt o, t,)cosr(w, —w )i -1,). (5.5)

It now remains to evaluate the integral on the right-hand side of (5.5). Assuming that the frequencies
w, are closely spaced, we may convert the sum over n to an integral by defining

O-u).m(i9 tl)dwz)\z Z

n
Inlw-(dw’ 2 =w,<wHdw 2}

0 is nonzero only for a range of frequencis Aw
about some frequency w,. We shall suppose that
o (or rather its average over a small volume sur-
rounding X) is independent of w throughout this
range of frequencies, and denote it ¢,(X,t). It
follows from summing (integrating) Eq. (5.6) over
all w in the range Aw that

Ta(X, 1) = (Aw) A% Y (8/0x, - 8/0x,,)?

n

X A2 (X, X)) P(X, t) . (5.7)

Equation (5.5) may be written as

wot(Aw/2)

ap ¢ -
" > f on(X, tl)dt,f dw
m 0

Wy (Aw/2)
xcosr(w-w,)(t-t). (5.8)

Now the weak-coupling condition is
Aw>> )\, (5.9)

and since the time over which p or ¢ changes ap-
preciably is A~! or larger, it follows from (5.9)
that o, is essentially constant over a time inter-
val >(Aw)”!. On the other hand, the frequency in-
tegral in (5.8) is only appreciably large for (¢-¢,)
~(Aw)~![e.g., it has the value Aw for ¢,=¢, but is
of order of magnitude (f-¢,)"", and oscillates rap-
idly, for (t-¢,)> (Aw)~!]. Thus one can replace
on(X, t,) by 0,,(X, #) in (5.8), since o is essentially
constant over the time interval where the frequen-
cy integral is large. Then the lower limit of the
time integral can be extended to —« with no appre-
ciable error, and both integrals in (5.8) can be
evaluated, yielding

aa—’;z(n/r) S0, 0). (5.10)

(0/0x, =8 /0x,, )20, 2(x,x,) P(X, t,) . (5.6)

Putting (5.7) into (5.10), we obtain the diffusion
equation
a—p—(xzrr/A ) (3/8x, -3 /0y )2
ot - raw Z Xn = '\m)

n,m

X, 2,0, pX, ),  (5.11)

which is identical to (3.1) if we identify the coupling
constants

L =2221/7Aw . (5.12)

It is illuminating to apply the methods of this
and the next section to the ordinary (linear) Schré-
dinger equation (4.4); this is done in Appendix C.

V1. DIFFUSION EQUATION BY THE
FOKKER-PLANCK METHOD

It follows from the weak-coupling condition (5.9)
and the equations of motion (4.9) that the angular
differences 6, - 6, change very rapidly (as tAw)
while x, changes relatively slowly (as fx). We
may think of x,, as undergoing a small increment
¢, every € seconds, given by (4.9a) as'®

O, =2xex,”? Z x, 2, ,sinr(6, — 6, +B,m)
0@, (6.1)

We shall assume that (4.9b) can effectively be
taken into account by supposing that the angles
6, vary randomly, when ¢ is of the order of (Aw) 1.
Then a method of Markoff as presented by Chan-
drasekhar'? can be applied. The probability that
after M increments (occupying time Af=Me) the
net displacement <I>,,EZ:M ¢, lies in a range d®,
about @, is given by [Ref. 14, Egs. (51) and (53)]
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W(®,, ...,

2m/r

2m/r
Alzy, ..., 2y)= (211/7 ’Nf do,. f
| ;
Evaluation of (6.3) yields

A ={ 1-(xe)? E (%) 0y 22,2 = 2,2,) +O(e3)} !

= exp l:_

7\2% At Y (XnX ) W (2, —zm)z] .

Since A is a Gaussian, it follows that W is a Gaus-
sian. Actually, we will only need to know the

first few moments of the probability distribution,
which are readily calculated to first order in At
from (6.2) and (6.4):

<‘1>n>5f a3we, =0, (6.52)
(®,2) = 2\% Atx,” Z Xy Qe (6.5b)
(2,20 =— 222 AlX, X, Qp i . (6.5¢)

Now we can utilize the well -known Fokker-Planck
equation [Ref. 13, Eq. (224)]
9 - _a_ L 2
57 PAL=- }: o [P(®)]+5 }: 7 (@]

9

* :L; X0, [0(®,®,0] +O((A)®) (6.6)

to describe the diffusion of the x,’s, where At is

a time long enough for many increments of each
x, to take place (M large), but small enough so
that each x, changes by a small amount during

At. Putting (6.5) into (6.6), we obtain the diffusion
equation

5PN
n,

m *n

2

3x,2

[pxnrxmranmz]

2

]
2 r r 2
- 2\% "z(;n Sxox, [ox, %, 0], (6.7)
which is identical to (3.1) if we identify the cou-
pling constants ;=%

VII. COMMENTS ON SOLUTIONS

The weak-coupling approximation (5.9) may be ap-

propriate for physical phenomena if the states

|@,) can be chosen so that the spread in energies
hAw is of the magnitude of the thermal energy
spread of the apparatus. An apparatus consisting
of A particles at temperature T has energy ~ART
and energy spread iAw~AY?%T. For an apparatus
containing 10%° particles at room temperature,

> ® N
®,)dd =d<I>(27T)-Nf dz,* * +dzyexp <- i Z z,,cb,,)A(zl, ey Zy), (6.2)
g n=1

- ) M
dByexp |:i > 2,04(%, 9)} } . (6.3)

(6.4)

r

Aw =~10% sec~!. If the reduction time Aw/A\>~1071°
sec, then A=10" sec™’, and (5.9) is satisfied. The
energy ZA=~107° erg is small, comparable to an
apparatus’s gravitational self-energy.

The nonlinear Schrédinger equations (4.4) and
(4.5)

e T W ACKOL AR,

MY 4 A ndy (7.1)

[A,m=a,exp(ivB,,)] deserve further exploration,
independently of the weak-coupling approximation.
If, for some 7, the equation possesses properties
1 and 2 in the strong-coupling limit A > Aw, it
could be the basis for a satisfactory theory in that
limit, even though the diffusion equation may not
describe the behavior of its solutions.

In the extreme strong-coupling limit Aw=0 (i.e.,
one might as well set w,=0), it is easy to examine
the solution of (4.9) for the case N =2. Property 1
is satisfied and property 2 is not satisfied. For
example, for » =2, a constant of the motion®® is
x,%,/8in?(0, — 6,) [for » =1 it is x ,x,/cos?(6, - 6,)].
This has as critical points (end or beginning
points of essentially all trajectories) (x,, x,) =(0, 1)
or (1,0), 6, —-0,=0 or =, thereby evidencing prop-
erty 1. Computer solutions for N> 2 and some
preliminary analysis lead us to believe that prop-
erty 1 is possessed by these solutions: We have
as yet no knowledge of the status of property 2
for large N.

In the strong-coupling limit A > Aw# 0, for N =2,
only some trajectories are driven to 0 or 1: The
rest oscillate. As Aw increases, the region of
coordinate space wherein trajectories are
“trapped” into going to 0 or 1 decreases. For Aw,
larger than a critical value =2, all trajectories
oscillate. Thus one cannot understand the reduc-
tion behavior in the weak-coupling limit for large
N from the case N =2: It is a statistical phenom-
enon as shown in Secs. V and V1.
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VIII. CONCLUDING REMARKS

The aim of this work, as stated in the Intro-
duction, is to convert quantum mechanics from a
description of statistical behavior to a descrip-
tion of individual behavior. The theory presented
here to describe the reduction of the state vector
has the virtue of not introducing any new variables
into quantum theory. An explicit set of equations
(7.1) to describe the complete measurement pro-
cess has been given. Once the states |¢,(t)), the
matrix A, , and the constants » and A are chosen,
the theory is subject to comparison with experi-
ment, and possible refutation or confirmation.

Of special interest are experiments such as that
of Papaliolios'®® which look for effects involving
interference with the usual predictions of quantum
theory.

Since the theory is incomplete without knowledge
of |¢,(t)), Apm» 7, and X, we would like to make
some remarks concerning these quantities.

We have noted at the end of Sec. III that only
when 7 =1 is the reduction time independent of
the number of states N. Furthermore, if we are
dealing with two separated systems 1 and 2 which
do not interact (so that H, =H,, 1 H;,) and choose
A=A, +A,, it is readily seen that (7.1) is separable
into two similar equations for systems 1 and 2,
if and only if » =1. These facts, and the simple
bilinear form of (7.1) when » =1, incline us to
choose r =1.

In the nonlinear Schrodinger equation (7.1), the
Hermitian matrix A, , = @, ,exp(i8,,) governs the
nonlinear interaction just as the matrix elements
of H govern the linear interaction. In the absence
of a principle or structure which encompasses
both quantum theory and nonlinear modifications
of it in a natural way, it is difficult to see how
these matrix elements should be chosen. Until
a plausible choice appears, one may simply choose
Aa=1.

If A,, is regarded as a matrix element of an
operator A, the operator A must have nonvanishing
matrix elements between states that are macro-
scopically distinguishable, and so will probably
be a nonlocal operator. Perhaps a relativistic
extension of this theory will place restrictions on
A.
The magnitudes |A, .| =a,,, along with x, de-
termine the reduction rate. The rate cannot be
too fast, or else the usual quantum predictions
will be interfered with. It also cannot be too slow,
or else it will predict that a system can be ob-

served in a superposition of macroscopically dis-
tinguishable states (the experiment of Papa-
liolios,'¢*° when analyzed in the context of the
Bohm-Bub’ theory, had a reduction time of 10~!*
sec or faster). Perhaps the matrix element mag-
nitudes should be small for a microscopic system,
but large for a macroscopic system. Since a
macroscopic system may be though of as composed
of many microscopic systems, such a limitation
on magnitudes may act as a constraint on the form
of the matrix elements.

The problem of selecting the state vectors Iq),,)
corresponding to the actual physical states is
similar to the problem in ordinary quantum mech-
anics of selecting those Hermitian operators that
correspond to actual physical measurements. Pre-
sumably one should choose the |¢,) to be eigen-
vectors of those operators, but one still is left
with the problem of identifying certain super-
position of degenerate state vectors as corre-
sponding to physical states.

An interesting distinction between this theory
and quantum mechanics appears in the choice of
the phase factor multiplying |¢,). In quantum
mechanics these phase factors make no difference,
but in the present theory these phase factors de-
termine the angles 6, immediately after a mea-
surement, which in turn determine the experi-
mental outcome. If all quantities in the theory
were known except these phase factors, and if
one could know the true initial state of a physical
system (its phase factor has no importance), then
one could experimentally determine these phase
factors. Only the correct choice of phase factors
would enable one to predict the precise outcomes
of all experiments. The experimental difficulty
of preparing a macroscopic system so that its
state vector is precisely known prevents us from
experimentally determining these phase factors.
But this should not be regarded as a defect of the
theory any more than the prediction of the posi-
tions of particles in a gas (which are also experi-
mentally difficult to observe) should be regarded
as a defect of classical mechanics. On the con-
trary, in explaining the statistical outcome of re-
peated “identical” experiments as due to an ex-
perimental difficulty that has not yet been over-
come (rather than as a fundamental property of
Nature, as does quantum theory), a conceptual
structure is available which may encourage the
performance of really identical experiments whose
outcomes violate the statistical predictions of
quantum theory.

APPENDIX A

A solution of the diffusion equation (3.1) involving step and & functions, for N=2, is given in Eq. (2.5).
We believe such solutions exist for all N. In this appendix, we will illustrate the considerations involved
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by considering the case N =3.
We look for a solution of (3.1) in the form

p=8(1 —x; =%, — x)[U (X )U (6,)U ()9, 55 + 6 (2, )U (x,)U (x5) g + 6(x,)U (x5 )U (¢, ),
+8(xa)U (%, )U (%,)p,, + 6(x,)8(x,) 5 + 6(x,)5(x3)p, + 6(x3)8(x,)p,]. (A1)

The functions p,,, p;;, p; are supposed to be singularity-free for ¢>0. The initial condition (3.2)is that of Pi2ss
while the p;;, p; vanish at {=0. The probability flow takes place in the triangular-shaped segment of the
plane x, +x,+x,=1 that lies within the cube 0=x,=1. P2 is the probability density within the triangle,
p;;0(x) is the probability density along an edge of the triangle, and 8(x;)5(x;)p, is the probability density

at a corner of the triangle.

Substitution of (A1) into (3.1) (a,,, =1)yields a set of coupled equations, showing how the probability flows
from the interior of the triangle to its sides, and from there to its corners:

9

n<m

:—tpijﬁ(l =%y = %;) = 1(8/8x; = 8/8x,) (xx;)p;;0(1 —x; —x,)+ ub(1l —x; —x,)1im Y (8/0x, - 8/0x,) (x,x,)p

9 .
S Pi= lim E (8/8x, —3/8x;)(x2,) ;e
x,,-’O.r;*z n
xi=

3
Wplzaﬁ(l =Xy =Xy =) = FLZ (8/0x, —8/8%,,)* (X,%,,) 1236 (1 =Xy =%y = X3), (A2a)

1232
Xp=0 n
kii.i

(A2b)

(A2c)

Equation (A2a) is the diffusion equation for P23, Whose integrated probability is not conserved for solutions
of this kind because p,,, does not vanish at the boundary. The injection of probability into the sides of the
triangle is provided by the source term on the far right of (A2b), and the rest of (A2b) describes the dif-
fusion of this probability. Lastly, (A2c) describes the buildup of probability at the corners of the triangle.
We believe (but have not been able to prove satisfactorily) that solutions of this type exist for 0<r<2,

for all values of N.

APPENDIX B

In this appendix we give a crude estimate of the reduction time’s dependence upon the number of states
N, according to the diffusion equation. We assume an approximate solution of the form

p:N"{ts(x, - {1 A1 a(t)]>6(x2 -N~'a(t))++* 8(xy ~N"'a(t))+ -

N

+80c, ~N'a(t))5(x, ~N"a(t) - . . 5 (xN _ [1 ;

[a(0)=1, a(?) == 0]. Eachterminthis sumdescribes
N -1 x,’s going to zero while 1 x, goes to unity.
For simmlicity, we have taken x,(0)=N"! for all ,
and shall set a,,,=1 in (3.1).

The function a(¢) is to be determined by taking
the second moment of (3.1):

9
o fxlzpdxl ceedxy=2u(N-1) fxl’;vcz'pdx1 o dxy.

(B2)

[The symmetry of p has been used to simplify the
right -hand side of (B2)]. The zeroth and first mo-
ments of (3.1) (i.e., conservation of probability and
constancy of the mean of x,) are automatically
satisfied by (B1). The mixed second-moment

N-1
N a(t)])} (B1)
equation
<] - -
7 fx,-x,pdx= -2u fx,- x; "pdX (B3)

will be satisfied if (B2) is satisfied [summation of
(B3) over all j #4, substitution of Z)mxj: 1-x,
on the left-hand side of (B3), and use of the sym-
metry of p and constancy of (x;) results in (B2)].
Thus all moments up to and including the second
will be satisfied by (B1).

Substitution of (B1) into (B2) yields

- (1 -a)(®a/3t)= uN=""Pa"{2[1 - (1 ~N")a]"
+ (1 _ 2N-1)N-(r-l)ar}‘
(B4)
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Since N is quite large, while a’s order of magnitude
is unity, Eq. (B4) may be replaced by

da

7" —2uN="Vgr(1 —a)"t, ¥>1 (B5a)

da -

—d—t—~—p.a(1 —ay'2-a), r=1 (B5b)
2 o pa® (1 —a)y'N2O" | 0<y<l. (B5c)

at
The characteristic time 7 can be immediately read
from (B5):

T~N"™/u,
~N2OT /)

We note that 7 is independent of N for »=1.

(B6a)
(B6b)

r=1

1=7>0.

APPENDIX C

In this appendix we apply the Prigogine and Fok-
ker-Planck methods of Secs. V and VI to a more
familiar situation. We consider aprobleminordin-
ary (linear) quantum mechanics of a physical sys-
tem whose vector evolves according to (4.4), where
the matrix elements of the interaction Hamiltonian
are constants:

(X = pmps Bum= —Bmne Suppose we have an ensem -
ble of state vectors (1.3) at =0, where each phase
angle 6,(0) is randomly distributed throughout the
ensemble. We wish to obtain a diffusion equation
describing the time evolution of the distribution
of squared amplitudes.

Equation (C1) may be rewritten as a set of real
coupled equations for the amplitudes x,(¢) and
phases 6,(t):

= 1/22x

in=1

amSin e, =6, +8, ),

(C2a)
N

én: -4 "xn-l/z Z anmxmllzcos(em - 9n+Bnm)'
m=1

(C2b)

Equations (C2) are identical in form to Egs. (4.9)
(when »=1,x=1), except that 6, — 6, in the lat-
ter is replaced by 6, —6, in the former. [This
difference cannot be transformed away by a
redefinition of 8,,’s or x: Effectively the right-
hand sides of (C2a) and (4.9a) have opposite signs.]
This difference is responsible for the dramatically
different behavior of the solutions of (4.9) and (C2).
As in Sec. V, we define the probability density

: dan =
“"iﬂ =hw,a, f,,eeey 2y 36, ...,0, 1), wWrite the equation for
N the conservation of probability analogous to (5.1),
+ Z (72, XD (iB )]0 (c1) expand f in the Fourier series (5.2), and obtain the
m=1 set of coupled equations
9 3 . .
a? -2 Z 9 m)”zanm(zi)—l[ gmnexp(—lﬁmn) -g:;nexp(+ 4 Bm)]}z 0, (C3a)
g, . .
Tgt”_ —iw; - wi)gij""i(xixj)l/z(a/axi -9/0x;)plexp(-iL,,) o]+ =0. (C3Db)
Integration of (C3b) subject to the initial condition g;;(0)=0 and substitution into (C3a) yields
t
= @,,%(8/0x, —8/8x,)x,%,,(8/0x, —0/0x,,) fdtlp(i, t)cos(w, — w,)(t -1,), (C4)
n,m 0
analogous to (5.5). Finally, the procedures em- a(xg) Z (@ra,,2/8w)((x,) —(x) (C6)

ployed in going from (5.5) to (5.11) (assuming the
weak -coupling condition Aw>>a,,) can be applied

to (C4), resulting in the diffusion equation
0p(X, 1) _ Ta,,’
at - Z Aw (a/axn - a/axm)xﬂxm

n,m

x (3/9x, —9/8x,)p(X, t). (C5)

An essential property of the solution of (C5) is
revealed by multiplying the equation by x, and
integrating over X, obtaining (after integrations
by parts)

(xp = kap dX). The numerical coefficients on the
right -hand side of Eq. (C6) are just the “golden
rule” transition rates: The expectation values of
the probabilities thus obey the “master equation”
based upon second-order perturbation theory that
is often written down for the probabilities them -
selves.

The differential operator on the right-hand side
of (C5) is a negative-definite Hermitian operator.
Therefore, each term in the eigenfunction expan-
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sion of p is multiplied by a time -decaying expo -
nential, except the eigenfunction whose eigenvalue
is zero. If a sufficient number of «,,’s are non-
vanishing, this eigenfunction is simply (N —1)!
X8(1=x, —x, =+ —xy); thus, as - » the ampli-
tudes x, exhibit the ergodic property, uniformly
filling all of the available coordinate space. The
asymptotic probability distribution of a single am-
plitude x, is

p(xl,w)zJ‘dxzo.-dxm(]\l—1)!6(1—x1 —Xy =t —xy)

= (N - 1)(1 _xl)N- 1, (C7)
while from (C7) or (C6) it follows that
(x,,) ::N'

We conclude that the solution of the diffusion
equation (C5) appears to satisfactorily describe
the behavior of an ensemble of solutions of Schrd -
dinger’s equation (C1), which give us additional
confidence in our use of Prigogine’s method.

Lastly, we indicate that the Fokker-Planck
method applied to Schrédinger’s equation (C1) like-
wise results in the diffusion equation (C5).

As in Sec. VI, x, is regarded as undergoing
small increments ¢,(¢) every € seconds, while
6,’s vary randomly:

O(t) = €k, (2) + 3%, (t) + O(€%). (C8)

Only terms of order € are needed to find the coef -
ficients in the Fokker-Planck equation to order

At. The right-hand side of (C8) can be found using
(C2). Then A must be calculated according to
(6.3):
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A(E) = {1 + 1’ Ezn<¢n>9 - % Zznzm<¢n¢m>0 + 0(63)§M
(C9a)
= {1 +ie? Z Znamnz(xm -xn)

n,m

—€ D U X2, - 202 )+0(53)}M(C9b)
nm m\<n n“m

n,m
(where ( ), refers to an average over all 6,). The
result differs from the expression (6.4) for A in
the presence of the imaginary term on the right -
hand side of (C9b): This is because (¥,), vanishes
for the nonlinear Schrddinger equation, but does
not vanish here.

Next, A is substituted into Eq. (6.2) to find the
probability distribution W(3), where &,=27¥¢_ is
the cumulative displacement in x, occurring overa
time interval A¢=Me. It is then possible to find
the moments (&,),(®,5,(®,®,). The latter two are
identical to (6.5b) and (6.5¢) (with A=7=1), while
the former is

(@y=€atY a,2(x, -x,) (C10)

Finally, these moments can be inserted into the
Fokker-Planck equation (6.6), resulting in

—~-—eZa - %,)p]
92
2
+ € n’Emanm ——z-ax

- [x%,0]

32
2
—26;0["". W[xnxmp]’ (C11)

which is identical to (C5) when €=27/Aw.
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