
PHYSICAL REVIEW D VOLUME 13, NUMBER 4 15 FEBRUARY 1976

Integral equations for extended solutions in field theory: Monopoles and dyons
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In this paper we give a simple method to obtain extended solutions of nonlinear classical field theories. The
technique applies to problems where the boundary values at either end of the domain are specified, and

consists of converting the set of field equations to a system of coupled nonlinear integral equations that can be

solved numerically by simple iteration. As an illustration, the 't Hooft monopole and the Julia-Zee dually

charged monopole system are studied in detail. The physical structure of these extended solutions and the

possible effects of quantum fluctuations are briefly discussed.

I. INTRODUCTION

The 't Hooft nonsingular magnetic monopole"
in a spontaneously broken non-Abelian gauge theory
has aroused a great deal of interest as an example
of an extended solution in a moderately realistic
four-dimensional field theory. Recent related
work includes the electrically as well as magnetic-
ally charged "dyons" studied by Julia and Zee, '
and the extended nonlinearly coupled scalar theories
discussed by Lee.4 In each case, a set of coupled
nonlinear ordinary differential equations is ob-
tained from the Euler-Lagrange equations by im-
posing the requirements that the solution be time-
independent and spherically symmetric. These
equations are thenceforth treated classically. The
additional requirements that the solution have a
locally integrable energy density, and that it also
have a finite total energy, then impose boundary
conditions at the origin and at infinity.

It has not proved possible to find general analytic
solutions to these problems, as has been done for
a variety of analogous equations in two-dimension-
al field theories, ' although Prasad and Sommer-
field' have succeeded in solving the t Hooft-Julia-
Zee system in terms of simple functions in an

unphysical limit of the theory. Thus, it appears
that further analysis of such problems will require
at least some use of numerical techniques.

The fact that one has to deal with a boundary-
value problem implies that one cannot trivially
integrate the field equations by computer. The
main purpose of this paper is to show that the
numerical solution of such problems is neverthe-
less rather straightforward, if one converts the
set of nonlinear coupled differential equations to
a system of nonlinear integral equations that can
be solved iteratively. We apply this technique here
to the 't Hooft and Julia-Zee equations, but its
range of application appears to be a good deal
wider.

The organization of this paper is as follows: In

Sec. II, we summarize the 't Hooft-Julia-Zee sys-
tem. In the next section, we give a general pre-
scription for converting such a system of nonlinear
differential equations to a system of coupled inte-
gral equations. In order that such integral equa-
tions have a convergent iterative solution, it is
necessary that the trial functions used in the first
iteration be a fair approximation to the actual so-
lution. In Sec. IV, we find such an approximate
solution by a simple variational calculation, and
then in Sec. V we solve the 't Hooft-Julia-Zee sys-
tem iteratively. We conclude with a discussion of
our results and some comments on related prob-
lems. The Appendix contains a discussion of the
general convergence properties of our approach,
illustrated by an especially simple example —the
"kink" solution of the (P4), theory —which is known

analytically. '

II. THE 't HOOFT-JULIA-ZEE MONOPOLE

In this section, we will summarize the features
of the monopole system that are relevant for our
calculations.

t Hooft' considered an SO(3) gauge theory with a
Yang-Mills triplet W; (a = 1,2, 3 isospace indices,
p. = 0, . . . , 3 spacetime indices) coupled to a triplet
of Higgs scalars Q' and with the electromagnetic
charge operator identified with the third component
of isospin. If one breaks the symmetry so that the
scalar field gets a nonzero vacuum expectation
value, two components of the vector field acquire
a mass M~. The third component of the vector
field stays ma, ssless and is identified with the or-
dinary photon field.

't Hooft considered static solutions to this sys-
tem of the form

(2.1)

and

(2.2)
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W'= "V—(r) .0 (2.3)

One now can write the 't Hooft system in terms
of one independent variable x = II/Jwr and a dimen-
sionless parameter P =M, '/Mv'. In the Julia-Zee
case, there is another dimensionless parameter
X, defined below, which is related to the electric
charge of the dyon. If we now rescale the fields
in the following way

where &„„~is the completely antisymmetric Levi-
Civita symbol with e»» =+1. Note that W(r} and

$(r) are functions of ~r
~

only, and that we are
working in the Lorentz frame in which the mon-
opole is at rest. Julia and Zee added a nonvanish-
ing time component (electric field) to the vector
field,

x W" +2xW' —2W- x(1+xW)(P' —V'}

Pxx'P" + 2xf' - 2f+
2

—3xW' —x'W' = 0, (2.5a)

—4xWQ- 2x'W'P- —,'Px'4'=0, (2.5b)

x'V" +2xV' —2V-4xVW- 2x'5"V=0. (2.5c)

The mass of the monopole or dyon is found to be

(2.6)

and substitute them in the Euler-Lagrange equa-
tions, we obtain the field equations

( )
Q(r)

( )
eW(r}

W W

V(x) =
M

(2.4)
W

with a=e'/4v the fine-structure constant and the
mass integral C(R) given by

00 S' 8 2

C(8) = dx (xW'+ W)'+2W' 1+ +-,'x'P" +-,'x'V" +(I+xW)'(P'+ V')+ (y' 1)' '.
8

(2.7)

8Q=-—8
Q

(2.8)

with the charge integral

8 = 2 dx V(1+xW)' .
0

(2.9}

The system (2. 5) has the trivial singular solu-
tion

fI5 =5,
W= -1/x,
V=g,

(2.10a)

(2.10b)

(2.10c)

with 5 and g constant. Note that if 80, then g =1
in order that (2.5b) is satisfied asymptotically.
We are now interested in another, nonsingular
solution which behaves for large x like the singu-
lar one but remains finite at the origin in order to
have a finite mass. Because the equations are
nonlinear, there may be more than one solution
with the same asymptotic behavior.

The observable fields can be constructed using
t Hooft's gauge-invariant electromagnetic field

tensor E„„.' Since E„„satisfies the free-space
Maxwell equations everywhere except at the ori-
gin, the electric and magnetic fields are known

everywhere once we determine their behavior for
One finds that the magnetic field is radial

and corresponds to a magnetic charge of 4v/e at
the origin. There is also a radial electric field
if V(x) WO,

' corresponding to a total electric charge

For the case 8=0, the following analytic solu-
tion was found by Prasad and Sommerfield':

P = coshy(X cothXx —1/x),

W= X/sinhM —1/x,

V = sinhy(X cothXx —1/x),

(2.11a)

(2.11b)

(2.11c)

P(x -0) =ax+0(x'),

W(x 0)=bx+O(x ),
V(x-0) =ex+0(x'),

(2.12)

and the fields vanish at the origin.

where y is a free parameter and X is a scale para-
meter. (Note that this remains a solution if we

replace the hyperbolic functions by circular func-
tions, but this solution is singular and thus of no

physical interest. ) Unfortunately, the theory be-
comes rather unphysical in the limit 8=0 because
this corresponds to either an infinite vector mass
(resulting in an infinite mass for the monopole or
dyon) or a massless scalar field (never observed).
The solution (2.11) provides us, however, with a
nice test case for our technique.

In order that the energy density be integrable at
the origin, it is necessary that &f&, W, and V are
finite as x-0. The requirement of finite total field
energy implies that the behavior of the fields as
x-~ is as in Eqs. (2.10). Since the solution is to
be regular at the origin, we substitute power
series expansions into Eqs. (2.5) and find that the
even terms in each function must vanish. Thus
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III. GENERAL DESCRIPTION OF ITERATIVE PROCEDURE From (3.5) and (3.8) we now find

As we explained in the Introduction, we are in-
terested in the numerical solution of a set of cou-
pled ordinary second-order nonlinear differential
equations for the various wave functions; for ex-
ample, the set (2.5). The boundary values are
given, say, for &=a and x=b; in our example
a =0 and b = ~, and the boundary values there are
(2.10) and (2.12). To convert the set of n differen-
tial equations to a system of integral equations,
we first separate the linear and nonlinear terms in
the equations, and write

LO'& f((x y y }

(with no summation over repeated indices here or
in the other equations of this section). The y, are
the n different fields (i=1, . . . , n), f, consists of.

the nonlinear terms of the ith equation, and the

L, are the linear differential operators.
We now solve the linear homogeneous equations

(3.2)

for homogeneous boundary conditions. From those
we construct the Green's functions G, for the lin-
ear problem, obeying

Z, ,G, (x, x') =-5(x - x') . (3.3)

If it were true that

y, (a) =y, (b) =0 (3.4)

for i =1, . . . , n, then the system {3.1) would be
equivalent to

b

y, (x) = G;(x, x')f, (x', y(x'), y'(x')) dx',
Q

i =1, . . . , n. (3.5)

If, however, we have nonhomogeneous boundary
conditions, as we do in the example considered
here, we proceed as follows. We write

y,.=a,.+z, , (3.6)

L,.z,. =-f, —P, , (3.7)

where

P,. = L,. a,. (3.8}

is a function we can calculate once a,. is given.

where a, is a function which satisfies the nonhomo-
geneous boundary conditions, and which is other-
wise arbitrary and can be chosen to be as simple
as one wants. The z, 's are unknown but they now
satisfy the homogeneous boundary conditions.
We now rewrite (3.2) in the following form:

b

y,.(x) =a, (x)+ G,.(x, x')[ f,(x', y(x'), y'(x'))
a

+ P, ( x')] dx', (3 9)

y Ir) —n(y y ~(r
- 1)) (3.10)

where y', "' is the Hh iteration of y& and a is a
characteristic value for the system and has to
satisfy ~a

~

&1 for convergence. Taxing the func-
tions a,. in Eq. (3.9) to be close to the final solu-
tion, the contribution of the integral will always
be small —which increases the accuracy and de-
creases the total number of iterations. However,
the value of a in Eq. (3.10}, and thus the speed of
convergence, is unaffected by the choice of a, .
Finally, as one may expect, the convergence wor-
sens with an increasing number of coupled equa-
tions.

IV. VARIATIONAL CALCULATION

It is desirable that the initial approximation
y',"= a,. to the solution of the integral equations
(3.9) be reasonably near the exact solution, as
explained in the last section. A simple way to
find such an initial approximation is to choose a
set of simple trial functions which satisfy the
boundary conditions and depend upon a small num-
ber of adjustable parameters, and substitute them
in the mass integral (2.7). The values of the ad-
justable parameters that minimize the mass inte-
gral then determine the initial approximation for
the integral equations.

We take a,s our trial functions for the 't Hooft-
Julia-Zee problem the following set:

which is our set of coupled nonlinear integral
equations.

There are different ways one can solve these in-
tegral equations' depending on the particular prob-
lem, knowledge about the solutions, and the avail-
able computer facilities. In the calculations thai
will be described in the next sections, we simply
iterated the system (3.9) using a suitably chosen

g,. as the first iteration.
It is hard to give a quantitative description of the

convergence of the method because it depends
strongly on the number and properties of the equa-
tions. For a detailed discussion of the conver-
gence criteria, the interested reader is referred
to the Appendix. We mention here a few general
features. The convergence of the simple itera-
tion scheme is first order, which means that after
one is close enough to the actual solution the rela-
tion between successive iterations becomes
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5x
(t —

( 2+ )i)2~ (4.1a,)
Let us first consider the homogeneous equations

that correspond to (3.2). For Wwe have the
equation

W=
x +b' (4.1b) x ' W" + 2x W' —(2 + X'x ') W = 0 (5.2)

(x'+ c)'" (4.1c)

The mass integral C(P) can now be calculated ana-
lytically:

C(P, 6, q) =— + 2Pa Mg + 62f(a, b) + q
~f(c, b)

m 21
64

(4.2)

where

with g = (s) —g . Note the. t we must have g ( 5

in order that S' vanish rather than oscillate as
x- ~. (Oscillatory behavior leads to an infinite
field-energy integral. ) The solutions to (5.2) are
the modified spherical Bessel functions of order
n =1, the general equation for such functions being

x 'f"(x) + 2xf'(x) —[n(n+ 1)+x ']f(x) = 0 . (5.3)

The two independent Bessel functions of order
n =1 are defined as follows:

f(a, b)= 2v a (a —b) -16b +
16b~(b+ a) 1

Mb a —b)' '
coshx sinhx

1y x 2x x (5.4)

It is also simple to express the charge integral
(2.9) in terms of the parameters a, b, and c. We
find

Fc 1 Mc —(c —b)' ~'

b(c —b) 2(c —b)' '
v c+(c—b)' '

7r
k, (x) =—e * 1+—

2x x

Thus i, vanishes at x=0 and diverges for x- ~,
and 4, has the opposite behavior. We can write
the Green's function that satisfies homogeneous
boundary conditions for x=0 and x=~, and has
the correct discontinuity for x=x', as

(4.3)

ac 1
(e —b(( (( —c}'"2 (b —c)'") G (x,x') =

'2x .—i„(xx)k,(xx'), x'&x

—i, (X x) k(z x), x'&x.
(5 5)

Minimizing (4.2) with respect to a, b, and c for
fixed P and g, we obtain the results presented in
Table I (for g =0) and in Fig. 4 (for a range of
values of q). Of course, the values of the energy
integral obtained in this way give only upper limits
to the true monopole or dyon mass. One can im-
prove on this upper limit by increasing the number
of parameters, and indeed 't Hooft' obtained con-
siderably lower values, given also in Table I, us-
ing a total of six parameters for Q and W.'

V. APPLICATION TO 't HOOFT-JULIA-ZEE MONOPOLE

m=1—
(5.1)

We now apply our procedure to the 't Hooft- Julia-
Zee monopole, and solve the system with the
boundary conditions given in (2.10) and (2.12). For
computation, it is convenient to define the func-
tions

e' =—(36' —1),

and the Green's function becomes

Ge(x, x') =

'2&.
i,(e x)k—, (~ x'), x' &x

i, (ex')k,—(e x), x' &x .2E .

Finally, for N we have

x N"+2xN'- 2N =0

and the Green's function is simply

For M, we find a similar linear equation

x 2M" + 2xM' —(2+ e2x 2)M = 0

with

(5 6)

(5.7)

(5.8)

(5.9)

FN=1-—
q

and solve in terms of these functions which go to
zero rather rapidly for large x.'

G„(x,x') =

x' x' &x
x

x I )I2 p X X ~

3x

(5.10)
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TABLE II. Energy and charge integrals for monopole/dyon.

772= 0 1 g =0.5 rj = 0.9

Analytic solution

Integral equations 0
0.1
1

10

1.054

1.053
1.150
1.275
1.466

0.334

0.333
0.266
0.235
0.204

1.414

1.413
1.382
1.456
1.617

1.000

1.000
0.718
0.586
0.496

3.162

3.154
1.765
1.713
1.829

3 ~ 000

3.000
1.176
0.892
0.749

' In Eq. (2.11) we have set A, =1/cosh'. (In the integral equation solution this corresponds to
5=1 for /=0 as well as p &0.)

simple variational calculations, which are also
plotted in Fig. 4, are seen to be rather poor for
increasing charge. This happens because the
trial functions (4.1}increasingly differ in shape
from the actual solutions as q (and 8} increase;
that this is so is apparent from the fact that proper
asymptotic behavior for W(x) requires q &1, as
noted above, while the variational problem can be
solved for arbitrary q.

Indeed, since the charge and mass of the dyon
increase smoothly with g for a given value of p,
but g is constrained by g & 6 = 1 for P c 0, we find
that the curves of C(P, 8) end at some maximum
value C(P, 8 (P)). This, however, gives a rather
misleading picture of the physical situation, be-
cause it does not explicitly reflect a "mass re-

e- )tx 1W(x)-
x

(6.1)

That the true vector mass is M~ far from the dyon

normalization" of the vector field due to the pres-
ence of the nonvanishing V field [recall that V(x)
—g away from the dyon]. The quantity M~ is only
that part of the mass of the charged vector field
which arises from the nonvanishing of the scalar
field P [Q(x) —5 away from the dyon]. Taking both

Q and V into account, the mass of the Yang-Mills
field is M* = XM, where X = 5' —q . This is il-
lustrated by the asymptotic behavior of the vector
field far away from the dyon; from Eq. (2.5a) we
see'0 that W(x) approaches its asymptotic behavior
—1/x exponentially in Xx, not x:

2.0
=l0

l

= 0.5
I

=O. I =0

l.8

cb l.6

l.4

l.2 )

alc. (2 par. )

Gale.

e (/3 = 0.5)
tion

l.o
0 0.2 0.4 0.6 0.8 I.O I.2 I.4 I.6 I.S 2.0

FIG. 4. Energy C{P,O) of the monopole or dyon, measured in units of M~/&, as a function of P=M ~ /Mt and of
the charge integral 8 = {-e/n)Q. The dashed lines are the energies obtained from the simple variational calculation of
Sec. IV, with P =0 for the lowest-lying dashed line and P =0.1, 1, and 10, respectively, for the higher dashed lines.
The solid lines are the results of the integral equation calculation. The solid line for P =0 coincides with the results of
Prasad and Sommerfield. For comparison, we also display the energies calculated by *t Hooft for P =0.1 and 10 and
0=0, and by Julia and Zee for P =0.5.
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0
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0.4
I

0.6
l

0.8
I

I .0
I

I .2
I

I.8

FIG. 5. Energy C*(P*,0) of the monopole or dyon, measured in units of M ~~/&, as a function of the charge integral
8 for several values of P *=As ~ /M~ . (M~ = AM~ is the mass of the charged vector field far from the dyon. )

can also be seen directly from the Lagrangian.
Physically, it seems most reasonable to express

the dyon mass E in terms of the actual vector
mass M~, and as a function of P

~ = M~'/M~~ = P/X',
l.e.)

M
'C(P)i8) = 'C*(P*,8) .

Q
(6.2)

Ez„„(q)~E~„,„(q —n)+nM~~, 1~n~q. (6 3)

In order that this equation be satisfied, it is
sufficient to require that

E~ (x) 5Mv*, O~x~q.—
ax (6.4)

If we keep M and M~ fixed while varying q = 8/&,

we can rewrite (6.4) as

In Fig. 5, we plot C*(p*, 8) for several values of
P*, and now we see that the dyon mass is unbound-
ed as its charge increases if M~~ is held fixed.

It is interesting at this point to examine the
stability of the dyon. One question which arises'
is whether the dyon with electric charge ~Q ~

= qe is
stable against decay into a dyon of smaller charge
plus some number of free charged Yang- Mills
bosons. Since the mass of a Yang-Mills boson far
away from the dyon is M~, this stability condition
can be written

CA(ps 8)~1d
d8 (6.5)

The largest values of 8 for which this condition
is satisfied can be determined graphically from
Fig. 5; for example for P = 1, the largest such III)

is roughly 0.3 . This corresponds to an electric
charge Q =-e8/o=-40e. Equation (6.5) can be
solved pre cisely for the analytic solution of Pra-
sad and Sommerfield, s for which C*(p =0, 8) =1+ 8',
the result is 8 „,», = —,', which corresponds to
Q = -68.5g.

A treatment of the quantum-field- theoretic cor-
rections to the extended solutions we have consid-
ered here is beyond the scope of this paper. We
will, however, give a brief discussion of the phys-
ical structure of these solutions, and mention pos-
sible quantum effects.

At distances from the monopole which are large
compared to the Compton wavelength of the charged
vector field, almost all of the field energy arises
simply from the 2(E'+B') energy of the ordinary
electromagnetic field." The magnetic field main-
tains its inver se- square- law form all the way to
r =0, but at distances less than -1/M~ the charged
components of the Yang- Mills field effectively
contribute a negative energy density which cancels
what would otherwise be a divergence. The result-
ing magnetic field energy is -g'M~, where g =e/n
is the magnetic charge of the monopole. If the
time component of the Yang- Mills field has been
chosen to be nonzero as in Eq. (2.3), then the re-
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suiting "dyon" possesses an extended electric
charge distribution which peaks at -1/M~ and van-
ishes for y-0 and r- ~. Thus the electric field
energy density is nonsingular, and the total elec-
tric field energy is -Q'M~. We can therefore
understand physically the roughly quadratic de-
pendence of the dyon energy on the charge integral
8 = (-n/e)Q displayed in Figs. 4 and 5, and also
why the electric charge needs to be fairly large to
increase the energy significantly.

Since the fields are quite large in the vicinity
of the monopole or dyon, it may be that the quan-
tum fluctuations and vacuum polarization effects
will be large and will produce substantial correc-
tions to the classical energy. This is especially
so since the removal of the divergence in the mag-
netic field energy is a somewhat delicate matter.
Thus the significance of the classical solutions in
the presence of quantum effects is unclear and re-
quires further study.

A particularly interesting question is the influ-
ence of quantum effects on the time component of
the vector field, Wo, whose direction in isotopic
space is assumed in the dyon solution to be parallel
to that of the scalar field (t)'. Far away from the
dyon, the magnitude of Wo is assumed to go to a
constant value proportional to that of P' (the pro-
portionality constant being g &1). Of course, the
asymptotic value of P' is dictated by the paramet-
ers of the potential V(Q) which appears in the
Lagrangian, and this value is stable against small
fluctuations. This is not true for TV, , however,
since there can be no analogous potential V(WO).
The only term in the Lagrangian which is relevant
is the term '+(e "e'W,'W;)', whose sign, because
of the Minkowski metric, is such as to give a neg-
ative mass to the charged spatial components of
the vector field, as we already mentioned. Since
8", vanishes asymptotically in our classical ex-
tended solution, however, this term contributes
nothing to the energy of the time component far
from the dyon.

We thus conclude that, classically, the stability
of the nonvanishing W, field is neutral, like that of
a marble which can rest anywhere on a flat sur-
face. The situation is evidently rather like that
considered by Coleman and Weinberg;" an effec-
tive potential, calculated perhaps in perturbation
theory, may determine the actual vacuum expecta-
tion value of W;. The most exciting possibility is
that the same term mentioned above, +2 (et ~'Wt W t)',
will now tend to give W,' a nonvanishing vacuum
expectation value in the presence of vacuum fluc-
tuations in 8", If the e4 term in the effective po-
tential is of the opposite sign, then that would give
the time component a vacuum expectation value
proportional to 1/e.
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APPENDIX

In this Appendix we will discuss in some detail
the convergence properties of the simple iteration
method for solving the system of integral equations

The iterative procedure is determined by the
relation

(A1)

y(r)(x) (2 (x)

+ G,. x, x') F, x', y,
'" ') x')+J,. x') dx',

(A2)

where y,'."' is the ~th iteration of yi Subtracting
(A2) from (Al) we obtain after we expand
E,.(x', yI" "(x')) to first order about y,.(x') the
following expression:

y; —yi"

~(r)
y y

(r)
i i i

we can write (AS) in vector notation as

~(r) -~g(r - &)

(A4)

(A5)

where K stands for the linear integral operator

(A6)

Suppose that the operator K defines a complete
set of eigenfunctions 4, with corresponding eigen-
values X,:

G, X, X') '
y x') —y,'.

" "x dx'.

(AS)

Here we have assumed that the F,. are once dif-
ferentiable in the y,. and that the y~"' are sufficient-
ly near the actual solution that the second-order
terms are negligible. If we introduce a function
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KC =X 4

Expanding our initial iteration in the eigenfunctions

(A8)

and inserting in Eq. (A5) we find

Use of the analytic solution (A12) in the kernel
gives us an explicit form for the integral operator
K, and the eigenvalue problem (AV) for K becomes

3
G(x, x') „„„)C,(x')dx'= ~,e,(x).2 cosh'jx'y 2

(A18)

g("&=~ a@' = a ~ r@,

a=& s=l
(A9) To find solutions, it is easiest to write the above

equation as the equivalent differential equation

glr &

g(r- 1j (A10)

From this relation we learn that the convergence
of our simple iteration procedure is essentially
governed by the largest eigenvalue X~ of the opera-
tor E. The procedure is convergent if X*&1 and
divergent if X*)1. For large enough r we also
can write

2A.,cosh'(x/2)

where we impose the boundary
eigenfunctions vanish at x= -~
are two sets of solutions. The
even polynomials in cosh'(x/2)
(s=1, 2, . . . ):

conditions that the
and x =+~. There
first set 4, are
of order s

2y" +y(1 —y ) =0, (A11)

where we have set the parameters equal 1. An an-
alytic solution is the "kink","

y =tanh
2 (A12)

which we will use as a test case for the method of
Sec. III. For computational purposes, it is con-
venient to consider the function

which means that the value of a in Eq. (3.10) is
equal to X~. Another consequence of Eq. (A9) is
that the functions a, of (Al) do not directly affect
the convergence properties of the method, but of
course they do influence the total number of itera-
tions needed to obtain an accurate result.

Let us briefly discuss a simple example. We
consider a pure scalar theory in one space and one
time dimension with quartic self-interaction, which
leads to the field equation

C'= e(') cosh '"—'
tt~l

(A20)

where the coefficients are determined by the re-
cursion relation

s(2s+1) -n(2n+1)
n+ 1 2yz(n+ 2) n (A21)

The corresponding eigenvalues are found to be

3
A. =

s(2s+1) ' (A22)

For this set, the largest eigenvalue is A,'= 1. The
iteration scheme would not converge, but we have
to remember that we look for an antisymmetric
solution of the original field equation (All) and
our first guess will therefore also be antisymmet-
ric. This implies that the difference g -g' ' has
no even components.

Equation (A19) has also a set of odd eigenfunc-
tions C',:

for which Eq. (A11) becomes

4'-g=kr*(g-3).

(A13)

(A14) with

nh2 P„c sh 2' (A23)

The Green's function for the linear problem is
(s+ 1)(2s + 1) —(n+ 1)(2n+ 1)

2n(n+ 2) 7f

&~x-x' ~r & ~
(A15) The eigenvalues become

3
s (s+ 1)(2s+ 1)

(A25)

and the nonlinear source is

F(x) = a9 (x)'[3 -g(x)],
leading to the iteration scheme

g-g = G %ax &g 2-g g-g dx'.
~40

(A16)
and the largest eigenvalue, which determines the
speed of convergence of Eq. (A17), is A.;=-,. This
is indeed the value we found from explicit numer-
ical and analytical calculations. For example, if
we take

(A1V)
y' '=tanh
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then a little calculation gives

(„) 1 x 1 , x

so that indeed

(~ ~(r)) )
(~ ~tr-l. ))

A similar analysis can be made for more com-
plicated systems like the 't Hooft- Julia-Zee
monopole, but the analysis is neither simpler
nor more illuminating than the numerical com-
putation itself. From our numerical results, it
is possible to estimate the largest eigenvalue X*.

For the monopole with P =0 and g =0, for exam-
ple, we find X*=0.85.

Let us make a final remark about existence and
uniqueness of the solutions. To prove uniqueness
and existence, one proceeds along a path similar
to the one followed above. If the kernel of Eq.
(A6) in the specified domain of the variable and
for a certain range of values for the fields y, is
bounded such that its eigenvalues are smaller
than 1, it follows that there exists a unique solu-
tion within that range and that domain. ' %e will
not pursue such questions any further in this pa-
per.
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